51
|
Spatial Tuning Shifts Increase the Discriminability and Fidelity of Population Codes in Visual Cortex. J Neurosci 2017; 37:3386-3401. [PMID: 28242794 DOI: 10.1523/jneurosci.3484-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 11/21/2022] Open
Abstract
Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex.SIGNIFICANCE STATEMENT Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings.
Collapse
|
52
|
Abstract
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Collapse
Affiliation(s)
| | - Marisa Carrasco
- 1 Department of Psychology, New York University.,2 Center for Neural Science, New York University
| |
Collapse
|
53
|
Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys. J Neurosci 2016; 37:1394-1412. [PMID: 28003348 DOI: 10.1523/jneurosci.2682-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/03/2016] [Accepted: 12/10/2016] [Indexed: 11/21/2022] Open
Abstract
Despite the enduring interest in motion integration, a direct measure of the space-time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus-response correlations across space and time, computing the linear space-time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms.SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space-time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing.
Collapse
|
54
|
Sussman TJ, Jin J, Mohanty A. Top-down and bottom-up factors in threat-related perception and attention in anxiety. Biol Psychol 2016; 121:160-172. [DOI: 10.1016/j.biopsycho.2016.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/19/2023]
|
55
|
Asadollahi A, Knudsen EI. Spatially precise visual gain control mediated by a cholinergic circuit in the midbrain attention network. Nat Commun 2016; 7:13472. [PMID: 27853140 PMCID: PMC5118544 DOI: 10.1038/ncomms13472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022] Open
Abstract
A primary function of the midbrain stimulus selection network is to compute the highest-priority location for attention and gaze. Here we report the contribution of a specific cholinergic circuit to this computation. We functionally disconnected the tegmental cholinergic nucleus isthmi pars parvocellularis (Ipc) from the optic tectum (OT) in barn owls by reversibly blocking excitatory transmission in the Ipc. Focal blockade in the Ipc decreases the gain and spatial discrimination of OT units specifically for the locations represented by the visual receptive fields (VRFs) of the disconnected Ipc units, and causes OT VRFs to shift away from that location. The results demonstrate mechanisms by which this cholinergic circuit controls bottom-up stimulus competition and by which top-down signals can bias this competition, and they establish causal linkages between a particular circuit, gain control and dynamic shifts of VRFs. This circuit may perform the same function in all vertebrate species. Attention and gaze impact the spatial responsiveness of neurons in the optic tectum. Here the authors elucidate the mechanism by which cholinergic inputs affect receptive field properties of tectal neurons in a spatially precise manner in barn owls.
Collapse
Affiliation(s)
- Ali Asadollahi
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Visuo-Motor Laboratory, Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Eric I Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
56
|
Romeo A, Supèr H. Global oscillation regime change by gated inhibition. Neural Netw 2016; 82:76-83. [PMID: 27479874 DOI: 10.1016/j.neunet.2016.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
The role of sensory inputs in the modelling of synchrony regimes is exhibited by means of networks of spiking cells where the relative strength of the inhibitory interaction is controlled by the activation of a linear unit working as a gating variable. Adaptation to stimulus size is determined by the value of a changing length scale, modelled by the time-varying radius of a circular receptive field. In this set-up, 'consolidation' time intervals relevant to attentional effects are shown to depend on the dynamics governing the evolution of the introduced length scale.
Collapse
Affiliation(s)
- August Romeo
- Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, Spain
| | - Hans Supèr
- Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, Spain; Institute of Neurosciences, Faculty of Psychology, University of Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain.
| |
Collapse
|
57
|
A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure. PLoS Comput Biol 2016; 12:e1004770. [PMID: 26890584 PMCID: PMC4758641 DOI: 10.1371/journal.pcbi.1004770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022] Open
Abstract
Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell. Exerting visual attention results in profound changes in the activity of neurons in visual areas of the brain. Attention increases the firing of some neurons, decreases that of others, moves and resizes the receptive fields of individual neurons, and changes their preferred features according to what is being attended. How are these complex, subtle effects generated? While several models explain various subsets of these effects, a consistent explanation compatible with anatomical and physiological observations remains elusive. Here we show that the apparently complex and multifaceted effects of attention on neural responses can be explained as the automatic consequence of a top-down modulation, falling on higher visual areas (as suggested by anatomical observations), and interacting with short-range inhibition and feedback connections between areas. Our model only assumes the existence of well-known features of brain organization (reciprocal inter-area connections, mutual inhibition between neighboring neurons) to explain a wide range of attentional effects, including apparently finely-tuned effects (complex shifts in feature preferences, automatic scaling of competitive effects to receptive field size, resizing or shifting of receptive fields, etc). Our model also makes novel, testable predictions about the effect of certain attentional manipulations on neural responses.
Collapse
|
58
|
Marino AC, Mazer JA. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology. Front Syst Neurosci 2016; 10:3. [PMID: 26903820 PMCID: PMC4743436 DOI: 10.3389/fnsys.2016.00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron's spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed.
Collapse
Affiliation(s)
- Alexandria C Marino
- Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, USA; Medical Scientist Training Program, Yale University School of MedicineNew Haven, CT, USA
| | - James A Mazer
- Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, USA; Department of Neurobiology, Yale University School of MedicineNew Haven, CT, USA; Department of Psychology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
59
|
Romero MC, Janssen P. Receptive field properties of neurons in the macaque anterior intraparietal area. J Neurophysiol 2016; 115:1542-55. [PMID: 26792887 DOI: 10.1152/jn.01037.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/12/2016] [Indexed: 01/08/2023] Open
Abstract
Visual object information is necessary for grasping. In primates, the anterior intraparietal area (AIP) plays an essential role in visually guided grasping. Neurons in AIP encode features of objects, but no study has systematically investigated the receptive field (RF) of AIP neurons. We mapped the RF of posterior AIP (pAIP) neurons in the central visual field, using images of objects and small line fragments that evoked robust responses, together with less effective stimuli. The RF sizes we measured varied between 3°(2)and 90°(2), with the highest response either at the fixation point or at parafoveal positions. A large fraction of pAIP neurons showed nonuniform RFs, with multiple local maxima in both ipsilateral and contralateral hemifields. Moreover, the RF profile could depend strongly on the stimulus used to map the RF. Highly similar results were obtained with the smallest stimulus that evoked reliable responses (line fragments measuring 1-2°). The nonuniformity and dependence of the RF profile on the stimulus in pAIP were comparable to previous observations in the anterior part of the lateral intraparietal area (aLIP), but the average RF of pAIP neurons was located at the fovea whereas the average RF of aLIP neurons was located parafoveally. Thus nonuniformity and stimulus dependence of the RF may represent general RF properties of neurons in the dorsal visual stream involved in object analysis, which contrast markedly with those of neurons in the ventral visual stream.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| |
Collapse
|
60
|
Abstract
Firestone & Scholl (F&S) postulate that vision proceeds without any direct interference from cognition. We argue that this view is extreme and not in line with the available evidence. Specifically, we discuss two well-established counterexamples: Attention directly affects core aspects of visual processing, and multisensory modulations of vision originate on multiple levels, some of which are unlikely to fall "within perception."
Collapse
|
61
|
Crapse TB, Basso MA. Insights into decision making using choice probability. J Neurophysiol 2015; 114:3039-49. [PMID: 26378203 DOI: 10.1152/jn.00335.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
A long-standing question in systems neuroscience is how the activity of single neurons gives rise to our perceptions and actions. Critical insights into this question occurred in the last part of the 20th century when scientists began linking modulations of neuronal activity directly to perceptual behavior. A significant conceptual advance was the application of signal detection theory to both neuronal activity and behavior, providing a quantitative assessment of the relationship between brain and behavior. One metric that emerged from these efforts was choice probability (CP), which provides information about how well an ideal observer can predict the choice an animal makes from a neuron's discharge rate distribution. In this review, we describe where CP has been studied, locational trends in the values found, and why CP values are typically so low. We discuss its dependence on correlated activity among neurons of a population, assess whether it arises from feedforward or feedback mechanisms, and investigate what CP tells us about how many neurons are required for a decision and how they are pooled to do so.
Collapse
Affiliation(s)
- Trinity B Crapse
- Joaquin Fuster Laboratory of Cognitive Neuroscience, Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, The Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Michele A Basso
- Joaquin Fuster Laboratory of Cognitive Neuroscience, Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, The Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
62
|
Pang CY, Mueller MM. Competitive interactions in somatosensory cortex for concurrent vibrotactile stimulation between and within hands. Biol Psychol 2015. [DOI: 10.1016/j.biopsycho.2015.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
63
|
Clark K, Squire RF, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Prog Neurobiol 2015; 132:59-80. [PMID: 26159708 DOI: 10.1016/j.pneurobio.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/26/2022]
Abstract
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.
Collapse
Affiliation(s)
- Kelsey Clark
- Montana State University, Bozeman, MT, United States
| | - Ryan Fox Squire
- Stanford University, Stanford, CA, United States; Lumos Labs, San Francisco, CA, United States
| | - Yaser Merrikhi
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
64
|
Miconi T, Groomes L, Kreiman G. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cereb Cortex 2015; 26:3064-82. [PMID: 26092221 DOI: 10.1093/cercor/bhv129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global "priority map" that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects.
Collapse
Affiliation(s)
- Thomas Miconi
- Children's Hospital, Harvard Medical School, Boston, MA, USA The Neurosciences Institute, La Jolla, CA 92037, USA
| | - Laura Groomes
- Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School, Boston, MA, USA Center for Brain Science Swartz Center for Theoretical Neuroscience, Harvard University, Cambridge, MA, USA
| |
Collapse
|
65
|
Abstract
The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospatial attention from single-voxel, fMRI time courses. Briefly, this technique involves first estimating a voxel's population receptive field (pRF) and then "drifting" attention through the pRF such that the modulation of the voxel's fMRI time course reflects the spatial topography of attention. The topography of the attentional field (AF) is then estimated using a time-course modeling procedure. Notably, we are able to make these measurements in many visual areas including smaller, higher order areas, thus enabling a more comprehensive comparison of attentional mechanisms throughout the full hierarchy of human visual cortex. Using this technique, we show that the AF scales with eccentricity and varies across visual areas. We also show that voxels in multiple visual areas exhibit suppressive attentional effects that are well modeled by an AF having an enhancing Gaussian center with a suppressive surround. These findings provide extensive, quantitative neurophysiological data for use in modeling the psychological effects of visuospatial attention.
Collapse
|
66
|
Carrasco M, Barbot A. How Attention Affects Spatial Resolution. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 79:149-60. [PMID: 25948640 PMCID: PMC4698156 DOI: 10.1101/sqb.2014.79.024687] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention.
Collapse
Affiliation(s)
- Marisa Carrasco
- Department of Psychology, New York University, New York, New York 10003 Center for Neural Science, New York University, New York, New York 10003
| | - Antoine Barbot
- Department of Psychology, New York University, New York, New York 10003
| |
Collapse
|
67
|
Abstract
Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder.
Collapse
|
68
|
Cléry J, Guipponi O, Wardak C, Ben Hamed S. Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics: Knowns and unknowns. Neuropsychologia 2015; 70:313-26. [PMID: 25447371 DOI: 10.1016/j.neuropsychologia.2014.10.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Justine Cléry
- Centre de Neuroscience Cognitive, UMR5229, CNRS-Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron, France
| | - Olivier Guipponi
- Centre de Neuroscience Cognitive, UMR5229, CNRS-Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron, France
| | - Claire Wardak
- Centre de Neuroscience Cognitive, UMR5229, CNRS-Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron, France
| | - Suliann Ben Hamed
- Centre de Neuroscience Cognitive, UMR5229, CNRS-Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron, France.
| |
Collapse
|
69
|
Sprague TC, Saproo S, Serences JT. Visual attention mitigates information loss in small- and large-scale neural codes. Trends Cogn Sci 2015; 19:215-26. [PMID: 25769502 PMCID: PMC4532299 DOI: 10.1016/j.tics.2015.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/31/2015] [Accepted: 02/06/2015] [Indexed: 01/28/2023]
Abstract
The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding.
Collapse
Affiliation(s)
- Thomas C Sprague
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0109, USA.
| | - Sameer Saproo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - John T Serences
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0109, USA; Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA.
| |
Collapse
|
70
|
Gravel N, Harvey B, Nordhjem B, Haak KV, Dumoulin SO, Renken R, Curčić-Blake B, Cornelissen FW. Cortical connective field estimates from resting state fMRI activity. Front Neurosci 2014; 8:339. [PMID: 25400541 PMCID: PMC4215614 DOI: 10.3389/fnins.2014.00339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/06/2014] [Indexed: 01/04/2023] Open
Abstract
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that—despite some variability in CF estimates between RS scans—neural properties such as CF maps and CF size can be derived from resting state data.
Collapse
Affiliation(s)
- Nicolás Gravel
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen Groningen, Netherlands ; Laboratorio de Circuitos Neuronales, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile ; NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| | - Ben Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University Utrecht, Netherlands
| | - Barbara Nordhjem
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University Utrecht, Netherlands
| | - Remco Renken
- NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| | - Branislava Curčić-Blake
- NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen Groningen, Netherlands ; NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| |
Collapse
|
71
|
Klein B, Harvey B, Dumoulin S. Attraction of Position Preference by Spatial Attention throughout Human Visual Cortex. Neuron 2014; 84:227-237. [DOI: 10.1016/j.neuron.2014.08.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
72
|
Jurica P, Gepshtein S, Tyukin I, van Leeuwen C. Sensory optimization by stochastic tuning. Psychol Rev 2014; 120:798-816. [PMID: 24219849 DOI: 10.1037/a0034192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation.
Collapse
|
73
|
Kerr RR, Grayden DB, Thomas DA, Gilson M, Burkitt AN. Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence. Front Neural Circuits 2014; 8:94. [PMID: 25152715 PMCID: PMC4126059 DOI: 10.3389/fncir.2014.00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/20/2014] [Indexed: 11/13/2022] Open
Abstract
The brain is able to flexibly select behaviors that adapt to both its environment and its present goals. This cognitive control is understood to occur within the hierarchy of the cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed to exhibit much stronger responses when they receive inputs at their soma/basal dendrites that are coincident with inputs at their apical dendrites. This corresponds to inputs from both lower-order regions (feedforward) and higher-order regions (feedback), respectively. In addition to this, coherence between oscillations, such as gamma oscillations, in different neuronal groups has been proposed to modulate and route communication in the brain. In this paper, we develop a simple, but novel, neural mass model in which cortical units (or ensembles) exhibit gamma oscillations when they receive coherent oscillatory inputs from both feedforward and feedback connections. By forming these units into circuits that can perform logic operations, we identify the different ways in which operations can be initiated and manipulated by top-down feedback. We demonstrate that more sophisticated and flexible top-down control is possible when the gain of units is modulated by not only top-down feedback but by coherence between the activities of the oscillating units. With these types of units, it is possible to not only add units to, or remove units from, a higher-level unit's logic operation using top-down feedback, but also to modify the type of role that a unit plays in the operation. Finally, we explore how different network properties affect top-down control and processing in large networks. Based on this, we make predictions about the likely connectivities between certain brain regions that have been experimentally observed to be involved in goal-directed behavior and top-down attention.
Collapse
Affiliation(s)
- Robert R Kerr
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; NICTA, Victoria Research Lab, The University of Melbourne Melbourne, VIC, Australia
| | - David B Grayden
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; NICTA, Victoria Research Lab, The University of Melbourne Melbourne, VIC, Australia ; Bionics Institute East Melbourne, VIC, Australia
| | - Doreen A Thomas
- Department of Mechanical Engineering, The University of Melbourne Melbourne, VIC, Australia
| | - Matthieu Gilson
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute Saitama, Japan
| | - Anthony N Burkitt
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; NICTA, Victoria Research Lab, The University of Melbourne Melbourne, VIC, Australia ; Bionics Institute East Melbourne, VIC, Australia
| |
Collapse
|
74
|
Detorakis GI, Rougier NP. Structure of receptive fields in a computational model of area 3b of primary sensory cortex. Front Comput Neurosci 2014; 8:76. [PMID: 25120461 PMCID: PMC4112916 DOI: 10.3389/fncom.2014.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/29/2014] [Indexed: 11/24/2022] Open
Abstract
In a previous work, we introduced a computational model of area 3b which is built upon the neural field theory and receives input from a simplified model of the index distal finger pad populated by a random set of touch receptors (Merkell cells). This model has been shown to be able to self-organize following the random stimulation of the finger pad model and to cope, to some extent, with cortical or skin lesions. The main hypothesis of the model is that learning of skin representations occurs at the thalamo-cortical level while cortico-cortical connections serve a stereotyped competition mechanism that shapes the receptive fields. To further assess this hypothesis and the validity of the model, we reproduced in this article the exact experimental protocol of DiCarlo et al. that has been used to examine the structure of receptive fields in area 3b of the primary somatosensory cortex. Using the same analysis toolset, the model yields consistent results, having most of the receptive fields to contain a single region of excitation and one to several regions of inhibition. We further proceeded our study using a dynamic competition that deeply influences the formation of the receptive fields. We hypothesized this dynamic competition to correspond to some form of somatosensory attention that may help to precisely shape the receptive fields. To test this hypothesis, we designed a protocol where an arbitrary region of interest is delineated on the index distal finger pad and we either (1) instructed explicitly the model to attend to this region (simulating an attentional signal) (2) preferentially trained the model on this region or (3) combined the two aforementioned protocols simultaneously. Results tend to confirm that dynamic competition leads to shrunken receptive fields and its joint interaction with intensive training promotes a massive receptive fields migration and shrinkage.
Collapse
Affiliation(s)
| | - Nicolas P Rougier
- INRIA Bordeaux Sud-Ouest Bordeaux, France ; Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, UMR 5293 Bordeaux, France ; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, UMR 5800 Talence, France
| |
Collapse
|
75
|
Ni AM, Murray SO, Horwitz GD. Object-centered shifts of receptive field positions in monkey primary visual cortex. Curr Biol 2014; 24:1653-1658. [PMID: 25017208 DOI: 10.1016/j.cub.2014.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Stimuli that project the same retinal visual angle can appear to occupy very different proportions of the visual field if they are perceived to be at different distances [1-8]. Previous research shows that perceived angular size alters the spatial distribution of activity in early retinotopic visual cortex [7, 9-11]. For example, a sphere superimposed on the far end of a corridor scene appears to occupy a larger visual angle and activates a larger region of primary visual cortex (V1) compared with the same sphere superimposed on the near end of the corridor [7]. These previous results, however, were obtained from human subjects using psychophysics and fMRI, a fact that fundamentally limits our understanding of the underlying neuronal mechanisms. Here, we present an animal model that allows for a finer examination of size perception at the level of single neurons. We first show that macaque monkeys perceive a size-distance illusion similarly to humans. Then, using extracellular recordings, we test the specific hypothesis [12] that neurons in V1 shift the position of their receptive fields (RFs) in response to complex monocular depth cues. Consistent with this hypothesis, we found that when ring-shaped stimuli appeared at the back of the corridor, RFs of V1 neurons shifted toward the center of the rings. When the same stimuli appeared at the front of the corridor, RFs shifted outward. Thus, our results show for the first time that V1 RFs can shift, potentially serving as the neural basis for the perception of angular size.
Collapse
Affiliation(s)
- Amy M Ni
- National Primate Research Center and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.
| | - Gregory D Horwitz
- National Primate Research Center and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
76
|
A review of the mechanisms by which attentional feedback shapes visual selectivity. Brain Struct Funct 2014; 220:1237-50. [PMID: 24990408 DOI: 10.1007/s00429-014-0818-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
The glut of information available for the brain to process at any given moment necessitates an efficient attentional system that can 'pick and choose' what information receives prioritized processing. A growing body of work, spanning numerous methodologies and species, reveals that one powerful way in which attending to an item separates the wheat from the chaff is by altering a basic response property in the brain: neuronal selectivity. Selectivity is a cornerstone response property, largely dictating our ability to represent and interact with the environment. Although it is likely that selectivity is altered throughout many brain areas, here we focus on how directing attention to an item affects selectivity in the visual system, where this response property is generally more well characterized. First, we review the neural architecture supporting selectivity, and then discuss the various changes that could occur in selectivity for an attended item. In a survey of the literature, spanning neurophysiology, neuroimaging and psychophysics, we reveal that there is general convergence regarding the manner with which selectivity is shaped by attentional feedback. In a nutshell, the literature suggests that the type of changes in selectivity that manifest appears to depend on the type of attention being deployed: whereas directing spatial attention towards an item only alters spatial selectivity, directing feature-based attention can alter the selectivity of attended features.
Collapse
|
77
|
Bobier B, Stewart TC, Eliasmith C. A unifying mechanistic model of selective attention in spiking neurons. PLoS Comput Biol 2014; 10:e1003577. [PMID: 24921249 PMCID: PMC4055282 DOI: 10.1371/journal.pcbi.1003577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Visuospatial attention produces myriad effects on the activity and selectivity of cortical neurons. Spiking neuron models capable of reproducing a wide variety of these effects remain elusive. We present a model called the Attentional Routing Circuit (ARC) that provides a mechanistic description of selective attentional processing in cortex. The model is described mathematically and implemented at the level of individual spiking neurons, with the computations for performing selective attentional processing being mapped to specific neuron types and laminar circuitry. The model is used to simulate three studies of attention in macaque, and is shown to quantitatively match several observed forms of attentional modulation. Specifically, ARC demonstrates that with shifts of spatial attention, neurons may exhibit shifting and shrinking of receptive fields; increases in responses without changes in selectivity for non-spatial features (i.e. response gain), and; that the effect on contrast-response functions is better explained as a response-gain effect than as contrast-gain. Unlike past models, ARC embodies a single mechanism that unifies the above forms of attentional modulation, is consistent with a wide array of available data, and makes several specific and quantifiable predictions. At a given moment, a tremendous amount of visual information falls on the retinae, far more than the brain is capable of processing. By directing attention to a spatial location, stimuli at that position can be selectively processed, while irrelevant information from non-attended locations can be largely ignored. We present a detailed model that describes the mechanisms by which visual spatial attention may be implemented in the brain. Using this model, we simulated three previous studies of spatial attention in primates, and analysed the simulation data using the same methods as in the original experiments. Across these simulations, and without altering model parameters, our model produces results that are statistically indistinguishable from those recorded in primates. Unlike previous work, our model provides greater biological detail of how the brain performs selective visual processing, while also accurately demonstrating numerous forms of selective attention. Our results suggest that these seemingly different forms of attentional effects may result from a single mechanism for selectively processing attended stimuli.
Collapse
Affiliation(s)
- Bruce Bobier
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Terrence C. Stewart
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Eliasmith
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
78
|
Baruch O, Yeshurun Y. Attentional attraction of receptive fields can explain spatial and temporal effects of attention. VISUAL COGNITION 2014. [DOI: 10.1080/13506285.2014.911235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Sprague TC, Serences JT. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat Neurosci 2013; 16:1879-87. [PMID: 24212672 PMCID: PMC3977704 DOI: 10.1038/nn.3574] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/09/2013] [Indexed: 11/13/2022]
Abstract
Computational theories propose that attention modulates the topographical
landscape of spatial ‘priority’ maps in regions of visual cortex
so that the location of an important object is associated with higher activation
levels. While single-unit recording studies have demonstrated attention-related
increases in the gain of neural responses and changes in the size of spatial
receptive fields, the net effect of these modulations on the topography of
region-level priority maps has not been investigated. Here, we used fMRI and a
multivariate encoding model to reconstruct spatial representations of attended
and ignored stimuli using activation patterns across entire visual areas. These
reconstructed spatial representations reveal the influence of attention on the
amplitude and size of stimulus representations within putative priority maps
across the visual hierarchy. Our results suggest that attention increases the
amplitude of stimulus representations in these spatial maps, particularly in
higher visual areas, but does not substantively change their size.
Collapse
Affiliation(s)
- Thomas C Sprague
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
80
|
Abstract
Subjects naturally form and use expectations to solve familiar tasks, but the accuracy of these expectations and the neuronal mechanisms by which these expectations enhance behavior are unclear. We trained animals (Macaca mulatta) in a challenging perceptual task in which the likelihood of a very brief pulse of motion was consistently modulated over time and space. Pulse likelihood had dramatic effects on behavior: unexpected pulses were nearly invisible to the animals. To examine the neuronal basis of such inattention blindness, we recorded from single neurons in the middle temporal (MT) area, an area related to motion perception. Fluctuations in how reliably MT neurons both signaled stimulus events and predicted behavioral choices were highly correlated with changes in performance over the course of individual trials. A simple neuronal pooling model reveals that the dramatic behavioral effects of attention in this task can be completely explained by changes in the reliability of a small number of MT neurons.
Collapse
|
81
|
Galashan FO, Saßen HC, Kreiter AK, Wegener D. Monkey area MT latencies to speed changes depend on attention and correlate with behavioral reaction times. Neuron 2013; 78:740-50. [PMID: 23719167 DOI: 10.1016/j.neuron.2013.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
Selective visual attention is known to be associated with characteristic modulations of neuronal activity in early visual cortex, but there is only rare evidence showing that these neuronal modulations are directly related to attention-dependent behavioral improvements. Here, we describe a strong, transient increase in the response of neurons in the mediotemporal (MT) area to behaviorally relevant speed changes that is not only modulated by attention but also highly correlated with the animal's performance. In trials with fast reaction time (RT), this transient component occurs with short latency, whereas latency increases monotonically with slower RT. Importantly, RTs are related not to the firing rate modulation during sustained attentive tracking of the target prior to the speed change but to the variability of the neuronal response. Our findings suggest a direct link between attention-dependent response modulations in early visual cortex and improved behavioral performance.
Collapse
Affiliation(s)
- F Orlando Galashan
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany
| | | | | | | |
Collapse
|
82
|
Abstract
How is visual space represented in cortical area MT+? At a relatively coarse scale, the organization of MT+ is debated; retinotopic, spatiotopic, or mixed representations have all been proposed. However, none of these representations entirely explain the perceptual localization of objects at a fine spatial scale--a scale relevant for tasks like navigating or manipulating objects. For example, perceived positions of objects are strongly modulated by visual motion; stationary flashes appear shifted in the direction of nearby motion. Does spatial coding in MT+ reflect these shifts in perceived position? We performed an fMRI experiment employing this "flash-drag" effect and found that flashes presented near motion produced patterns of activity similar to physically shifted flashes in the absence of motion. This reveals a motion-dependent change in the neural representation of object position in human MT+, a process that could help compensate for perceptual and motor delays in localizing objects in dynamic scenes.
Collapse
|
83
|
Perceptual separation of transparent motion components: the interaction of motion, luminance and shape cues. Exp Brain Res 2013; 230:71-86. [PMID: 23831850 DOI: 10.1007/s00221-013-3631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Transparency is perceived when two or more objects or surfaces can be separated by the visual system whilst they are presented in the same region of the visual field at the same time. This segmentation of distinct entities on the basis of overlapping local visual cues poses an interesting challenge for the understanding of cortical information processing. In psychophysical experiments, we studied stimuli that contained randomly positioned disc elements, moving at two different speeds in the same direction, to analyse the interaction of cues during the perception of motion transparency. The current work extends findings from previous experiments with sine wave luminance gratings which only vary in one spatial dimension. The reported experiments manipulate low-level cues, like differences in speed or luminance, and what are likely to be higher level cues such as the relative size of the elements or the superposition rules that govern overlapping regions. The mechanism responsible for separation appears to be mediated by combination of the relevant and available cues. Where perceived transparency is stronger, the neural representations of components are inferred to be more distinguishable from each other across what appear to be multiple cue dimensions. The disproportionally large effect on transparency strength of the type of superposition of disc suggests that with this manipulation, there may be enhanced separation above what might be expected from the linear combination of low-level cues in a process we term labelling. A mechanism for transparency perception consistent with the current results would require a minimum of three stages; in addition to the local motion detection and global pooling and separation of motion signals, findings suggest a powerful additional role of higher level separation cues.
Collapse
|
84
|
Abstract
Re-entrant or feedback pathways between cortical areas carry rich and varied information about behavioural context, including attention, expectation, perceptual tasks, working memory and motor commands. Neurons receiving such inputs effectively function as adaptive processors that are able to assume different functional states according to the task being executed. Recent data suggest that the selection of particular inputs, representing different components of an association field, enable neurons to take on different functional roles. In this Review, we discuss the various top-down influences exerted on the visual cortical pathways and highlight the dynamic nature of the receptive field, which allows neurons to carry information that is relevant to the current perceptual demands.
Collapse
Affiliation(s)
- Charles D Gilbert
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|
85
|
Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci 2013; 14:188-200. [PMID: 23422910 DOI: 10.1038/nrn3443] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Attention allows us to select relevant sensory information for preferential processing. Behaviourally, it improves performance in various visual tasks. One prominent effect of attention is the modulation of performance in tasks that involve the visual system's spatial resolution. Physiologically, attention modulates neuronal responses and alters the profile and position of receptive fields near the attended location. Here, we develop a hypothesis linking the behavioural and electrophysiological evidence. The proposed framework seeks to explain how these receptive field changes enhance the visual system's effective spatial resolution and how the same mechanisms may also underlie attentional effects on the representation of spatial information.
Collapse
|
86
|
Abstract
Visual adaptation is expected to improve visual performance in the new environment. This expectation has been contradicted by evidence that adaptation sometimes decreases sensitivity for the adapting stimuli, and sometimes it changes sensitivity for stimuli very different from the adapting ones. We hypothesize that this pattern of results can be explained by a process that optimizes sensitivity for many stimuli, rather than changing sensitivity only for those stimuli whose statistics have changed. To test this hypothesis, we measured visual sensitivity across a broad range of spatiotemporal modulations of luminance, while varying the distribution of stimulus speeds. The manipulation of stimulus statistics caused a large-scale reorganization of visual sensitivity, forming the orderly pattern of sensitivity gains and losses. This pattern is predicted by a theory of distribution of receptive field characteristics in the visual system.
Collapse
|
87
|
Brown SR. Emergence in the central nervous system. Cogn Neurodyn 2012; 7:173-95. [PMID: 24427200 DOI: 10.1007/s11571-012-9229-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022] Open
Abstract
"Emergence" is an idea that has received much attention in consciousness literature, but it is difficult to find characterizations of that concept which are both specific and useful. I will precisely define and characterize a type of epistemic ("weak") emergence and show that it is a property of some neural circuits throughout the CNS, on micro-, meso- and macroscopic levels. I will argue that possession of this property can result in profoundly altered neural dynamics on multiple levels in cortex and other systems. I will first describe emergent neural entities (ENEs) abstractly. I will then show how ENEs function specifically and concretely, and demonstrate some implications of this type of emergence for the CNS.
Collapse
Affiliation(s)
- Steven Ravett Brown
- Department of Neuroscience, Mt. Sinai School of Medicine, Icahn Medical Institute, 1425 Madison Ave, Rm 10-70E, New York, NY 10029 USA ; 158 W 23rd St, Fl 3, New York, NY 10011 USA
| |
Collapse
|
88
|
Thiele A, Herrero JL, Distler C, Hoffmann KP. Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 2012; 32:16602-15. [PMID: 23175816 PMCID: PMC6621794 DOI: 10.1523/jneurosci.0554-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022] Open
Abstract
Previous studies have investigated the effects of acetylcholine (ACh) on neuronal tuning, coding, and attention in primary visual cortex, but its contribution to coding in extrastriate cortex is unexplored. Here we investigate the effects of ACh on tuning properties of macaque middle temporal area MT neurons and contrast them with effects of gabazine, a GABA(A) receptor blocker. ACh increased neuronal activity, it had no effect on tuning width, but it significantly increased the direction discriminability of a neuron. Gabazine equally increased neuronal activity, but it widened tuning curves and decreased the direction discriminability of a neuron. Although gabazine significantly reduced response reliability, ACh application had little effect on response reliability. Finally, gabazine increased noise correlation of simultaneously recorded neurons, whereas ACh reduced it. Thus, both drugs increased firing rates, but only ACh application improved neuronal tuning and coding in line with effects seen in studies in which attention was selectively manipulated.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | | | | | | |
Collapse
|
89
|
Spatial interference between attended items engenders serial visual processing. Atten Percept Psychophys 2012; 75:229-43. [DOI: 10.3758/s13414-012-0392-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
90
|
Layton OW, Browning NA. Recurrent competition explains temporal effects of attention in MSTd. Front Comput Neurosci 2012; 6:80. [PMID: 23060788 PMCID: PMC3464456 DOI: 10.3389/fncom.2012.00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 09/19/2012] [Indexed: 12/03/2022] Open
Abstract
Navigation in a static environment along straight paths without eye movements produces radial optic flow fields. A singularity called the focus of expansion (FoE) specifies the direction of travel (heading) of the observer. Cells in primate dorsal medial superior temporal area (MSTd) respond to radial fields and are therefore thought to be heading-sensitive. Humans frequently shift their focus of attention while navigating, for example, depending on the favorable or threatening context of approaching independently moving objects. Recent neurophysiological studies show that the spatial tuning curves of primate MSTd neurons change based on the difference in visual angle between an attentional prime and the FoE. Moreover, the peak mean population activity in MSTd retreats linearly in time as the distance between the attentional prime and FoE increases. We present a dynamical neural circuit model that demonstrates the same linear temporal peak shift observed electrophysiologically. The model qualitatively matches the neuron tuning curves and population activation profiles. After model MT dynamically pools short-range motion, model MSTd incorporates recurrent competition between units tuned to different radial optic flow templates, and integrates attentional signals from model area frontal eye fields (FEF). In the model, population activity peaks occur when the recurrent competition is most active and uncertainty is greatest about the relative position of the FoE. The nature of attention, multiplicative or non-multiplicative, is largely irrelevant, so long as attention has a Gaussian-like profile. Using an appropriately tuned sigmoidal signal function to modulate recurrent feedback affords qualitative fits of deflections in the population activity that otherwise appear to be low-frequency noise. We predict that these deflections mark changes in the balance of attention between the priming and FoE locations.
Collapse
Affiliation(s)
- Oliver W Layton
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA
| | | |
Collapse
|
91
|
Keitel C, Andersen SK, Quigley C, Müller MM. Independent effects of attentional gain control and competitive interactions on visual stimulus processing. ACTA ACUST UNITED AC 2012; 23:940-6. [PMID: 22510530 DOI: 10.1093/cercor/bhs084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Attention filters behaviorally relevant stimuli from the constant stream of sensory information comprising our environment. Research into underlying neural mechanisms in humans suggests that visual attention biases mutual suppression between stimuli resulting from competition for limited processing resources. As a consequence, processing of an attended stimulus is facilitated. This account makes 2 assumptions: 1) An attended stimulus is released from mutual suppression with competing stimuli and 2) an attended stimulus experiences greater gain in the presence of competing stimuli than when it is presented alone. Here, we tested these assumptions by recording frequency-tagged potentials elicited in early visual cortex that index stimulus-specific processing. We contrasted the processing of a given stimulus when its location was attended or unattended and in the presence or the absence of a nearby competing stimulus. At variance with previous findings, competition similarly suppressed processing of attended and unattended stimuli. Moreover, the magnitude of attentional gain was comparable in the presence or the absence of competing stimuli. We conclude that visuospatial selective attention does not directly modulate mutual suppression between stimuli but instead acts as a signal gain, which biases processing toward attended stimuli independent of competition.
Collapse
Affiliation(s)
- Christian Keitel
- Institut für Psychologie, Universität Leipzig, Seeburgstraße, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
92
|
Kumano H, Uka T. Reduction in receptive field size of macaque MT neurons in the presence of visual noise. J Neurophysiol 2012; 108:215-26. [PMID: 22496523 DOI: 10.1152/jn.00710.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The visual system faces a trade-off between increased spatial integration of disparate local signals and improved spatial resolution to filter out irrelevant noise. Increased spatial integration is beneficial when signals are weak, whereas increased spatial resolution is particularly beneficial when focusing on a small object in a cluttered natural scene. The receptive field (RF) size of visual cortical neurons can be modulated depending on various factors such as sensory context, allowing adaptive integration of sensory signals. In this study, we explored the spatial integration properties of neurons in macaque middle temporal visual area (MT). We hypothesized that spatial resolution would increase when high-contrast noise was presented simultaneously with a visual stimulus, enabling focus on a small object in a cluttered scene. To test this hypothesis, we mapped the RFs of MT neurons of two fixating monkeys in a 5 × 5 grid manner using a small patch of random-dot motion. To examine the effects of noise on RF profile, a dynamic noise (0% coherence dots) of varying diameter was concurrently presented at the RF center. We found that RF size decreased when noise diameter increased. Analyses based on the response normalization model and area summation provided evidence for the potential contribution of spatial summation properties within the RF and surround suppression to the apparent contraction of RF size. Our results suggest that MT neurons integrate smaller regions of motion signals when signals are embedded in noise, an efficient strategy to filter out surrounding noise.
Collapse
Affiliation(s)
- Hironori Kumano
- Department of Neurophysiology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | | |
Collapse
|
93
|
Leitão J, Thielscher A, Werner S, Pohmann R, Noppeney U. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study. ACTA ACUST UNITED AC 2012; 23:873-84. [PMID: 22490546 DOI: 10.1093/cercor/bhs078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulating evidence suggests that multisensory interactions emerge already at the primary cortical level. Specifically, auditory inputs were shown to suppress activations in visual cortices when presented alone but amplify the blood oxygen level-dependent (BOLD) responses to concurrent visual inputs (and vice versa). This concurrent transcranial magnetic stimulation-functional magnetic resonance imaging (TMS-fMRI) study applied repetitive TMS trains at no, low, and high intensity over right intraparietal sulcus (IPS) and vertex to investigate top-down influences on visual and auditory cortices under 3 sensory contexts: visual, auditory, and no stimulation. IPS-TMS increased activations in auditory cortices irrespective of sensory context as a result of direct and nonspecific auditory TMS side effects. In contrast, IPS-TMS modulated activations in the visual cortex in a state-dependent fashion: it deactivated the visual cortex under no and auditory stimulation but amplified the BOLD response to visual stimulation. However, only the response amplification to visual stimulation was selective for IPS-TMS, while the deactivations observed for IPS- and Vertex-TMS resulted from crossmodal deactivations induced by auditory activity to TMS sounds. TMS to IPS may increase the responses in visual (or auditory) cortices to visual (or auditory) stimulation via a gain control mechanism or crossmodal interactions. Collectively, our results demonstrate that understanding TMS effects on (uni)sensory processing requires a multisensory perspective.
Collapse
Affiliation(s)
- Joana Leitão
- Cognitive Neuroimaging Group, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
94
|
Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC. Multifocal attention filters targets from distracters within and beyond primate MT neurons' receptive field boundaries. Neuron 2012; 72:1067-79. [PMID: 22196340 DOI: 10.1016/j.neuron.2011.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 01/25/2023]
Abstract
Visual attention has been classically described as a spotlight that enhances the processing of a behaviorally relevant object. However, in many situations, humans and animals must simultaneously attend to several relevant objects separated by distracters. To account for this ability, various models of attention have been proposed including splitting of the attentional spotlight into multiple foci, zooming of the spotlight over a region of space, and switching of the spotlight among objects. We investigated this controversial issue by recording neuronal activity in visual area MT of two macaques while they attended to two translating objects that circumvented a third distracter object located inside the neurons' receptive field. We found that when the attended objects passed through or nearby the receptive field, neuronal responses to the distracter were either decreased or remained unaltered. These results demonstrate that attention can split into multiple spotlights corresponding to relevant objects while filtering out interspersed distracters.
Collapse
Affiliation(s)
- Robert Niebergall
- Cognitive Neurophysiology Laboratory, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | |
Collapse
|
95
|
Abstract
As we shift our gaze to explore the visual world, information enters cortex in a sequence of successive snapshots, interrupted by phases of blur. Our experience, in contrast, appears like a movie of a continuous stream of objects embedded in a stable world. This perception of stability across eye movements has been linked to changes in spatial sensitivity of visual neurons anticipating the upcoming saccade, often referred to as shifting receptive fields (Duhamel et al., 1992; Walker et al., 1995; Umeno and Goldberg, 1997; Nakamura and Colby, 2002). How exactly these receptive field dynamics contribute to perceptual stability is currently not clear. Anticipatory receptive field shifts toward the future, postsaccadic position may bridge the transient perisaccadic epoch (Sommer and Wurtz, 2006; Wurtz, 2008; Melcher and Colby, 2008). Alternatively, a presaccadic shift of receptive fields toward the saccade target area (Tolias et al., 2001) may serve to focus visual resources onto the most relevant objects in the postsaccadic scene (Hamker et al., 2008). In this view, shifts of feature detectors serve to facilitate the processing of the peripheral visual content before it is foveated. While this conception is consistent with previous observations on receptive field dynamics and on perisaccadic compression (Ross et al., 1997; Morrone et al., 1997; Kaiser and Lappe, 2004), it predicts that receptive fields beyond the saccade target shift toward the saccade target rather than in the direction of the saccade. We have tested this prediction in human observers via the presaccadic transfer of the tilt-aftereffect (Melcher, 2007).
Collapse
|
96
|
Boynton GM. Spikes, BOLD, attention, and awareness: a comparison of electrophysiological and fMRI signals in V1. J Vis 2011; 11:12. [PMID: 22199162 DOI: 10.1167/11.5.12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early fMRI studies comparing results from fMRI and electrophysiological experiments support the notion that the blood oxygen level-dependent (BOLD) signal reliably follows the spiking activity of an underlying neuronal population averaged across a small region in space and a brief period in time. However, more recent studies focusing on higher level cognitive factors such as attention and visual awareness report striking discrepancies between the fMRI response in humans and electrophysiological signals in macaque early visual areas. Four hypotheses are discussed that can explain the discrepancies between the two methods: (1) the BOLD signal follows local field potential (LFP) signals closer than spikes, and only the LFP is modulated by top-down factors, (2) the BOLD signal is reflecting electrophysiological signals that are occurring later in time due to feedback delay, (3) the BOLD signal is more sensitive than traditional electrophysiological methods due to massive pooling by the hemodynamic coupling process, and finally (4) there is no real discrepancy, and instead, weak but reliable effects on firing rates may be obscured by differences in experimental design and interpretation of results across methods.
Collapse
|
97
|
Wright JM, Morris AP, Krekelberg B. Weighted integration of visual position information. J Vis 2011; 11:11.14.11. [PMID: 22159711 DOI: 10.1167/11.14.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ability to localize visual objects is a fundamental component of human behavior and requires the integration of position information from object components. The retinal eccentricity of a stimulus and the locus of spatial attention can affect object localization, but it is unclear whether these factors alter the global localization of the object, the localization of object components, or both. We used psychophysical methods in humans to quantify behavioral responses in a centroid estimation task. Subjects located the centroid of briefly presented random dot patterns (RDPs). A peripheral cue was used to bias attention toward one side of the display. We found that although subjects were able to localize centroid positions reliably, they typically had a bias toward the fovea and a shift toward the locus of attention. We compared quantitative models that explain these effects either as biased global localization of the RDPs or as anisotropic integration of weighted dot component positions. A model that allowed retinal eccentricity and spatial attention to alter the weights assigned to individual dot positions best explained subjects' performance. These results show that global position perception depends on both the retinal eccentricity of stimulus components and their positions relative to the current locus of attention.
Collapse
Affiliation(s)
- Jessica M Wright
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
98
|
Abstract
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
Collapse
|
99
|
Carrasco M. Visual attention: the past 25 years. Vision Res 2011; 51:1484-525. [PMID: 21549742 DOI: 10.1016/j.visres.2011.04.012] [Citation(s) in RCA: 1230] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 11/16/2022]
Abstract
This review focuses on covert attention and how it alters early vision. I explain why attention is considered a selective process, the constructs of covert attention, spatial endogenous and exogenous attention, and feature-based attention. I explain how in the last 25 years research on attention has characterized the effects of covert attention on spatial filters and how attention influences the selection of stimuli of interest. This review includes the effects of spatial attention on discriminability and appearance in tasks mediated by contrast sensitivity and spatial resolution; the effects of feature-based attention on basic visual processes, and a comparison of the effects of spatial and feature-based attention. The emphasis of this review is on psychophysical studies, but relevant electrophysiological and neuroimaging studies and models regarding how and where neuronal responses are modulated are also discussed.
Collapse
Affiliation(s)
- Marisa Carrasco
- Psychology and Neural Science, New York University, NY, NY, United States.
| |
Collapse
|
100
|
Analyzing neural responses with vector fields. J Neurosci Methods 2011; 197:109-17. [PMID: 21345348 DOI: 10.1016/j.jneumeth.2011.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/23/2011] [Accepted: 02/15/2011] [Indexed: 11/23/2022]
Abstract
Analyzing changes in the shape and scale of single cell response fields is a key component of many neurophysiological studies. Typical analyses of shape change involve correlating firing rates between experimental conditions or "cross-correlating" single cell tuning curves by shifting them with respect to one another and correlating the overlapping data. Such shifting results in a loss of data, making interpretation of the resulting correlation coefficients problematic. The problem is particularly acute for two dimensional response fields, which require shifting along two axes. Here, an alternative method for quantifying response field shape and scale based on correlation of vector field representations is introduced. The merits and limitations of the methods are illustrated using both simulated and experimental data. It is shown that vector correlation provides more information on response field changes than scalar correlation without requiring field shifting and concomitant data loss. An extension of this vector field approach is also demonstrated which can be used to identify the manner in which experimental variables are encoded in studies of neural reference frames.
Collapse
|