51
|
Ji Z, Wang C, Tong Q. Role of miRNA-324-5p-Modified Adipose-Derived Stem Cells in Post-Myocardial Infarction Repair. Int J Stem Cells 2021; 14:298-309. [PMID: 34158416 PMCID: PMC8429947 DOI: 10.15283/ijsc21025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives To seek out the role of mircoRNA (miR)-324-5p-modified adipose-derived stem cells (ADSCs) in post-myocardial infarction (MI) myocardial repair. Methods and Results Rat ADSCs were cultivated and then identified by morphologic observation, osteogenesis and adipogenesis induction assays and flow cytometry. Afterwards, ADSCs were modified by miR-324-5p lentiviral vector, with ADSC proliferation and migration measured. Then, rat MI model was established, which was treated by ADSCs or miR-324-5p-modified ADSCs. Subsequently, the function of miR-324-5p-modified ADSCs in myocardial repair of MI rats was assessed through functional assays. Next, the binding relation of miR-324-5p and Toll-interacting protein (TOLLIP) was validated. Eventually, functional rescue assay of TOLLIP was performed to verify the role of TOLLIP in MI. First, rat ADSCs were harvested. Overexpressed miR-324-5p improved ADSC viability. ADSC transplantation moderately enhanced cardiac function of MI rats, reduced enzyme levels and decreased infarct size and apoptosis; while miR-324-5p-modified ADSCs could better promote post-MI repair. Mechanically, miR-324-5p targeted TOLLIP in myocardial tissues. Moreover, TOLLIP overexpression debilitated the promotive role of miR-324-5p-modified ADSCs in post-MI repair in rats. Conclusions miR-324-5p-modified ADSCs evidently strengthened post-MI myocardial repair by targeting TOLLIP in myocardial tissues.
Collapse
Affiliation(s)
- Zhou Ji
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chan Wang
- Jinzhou Hospital of Traditional Chinese Medicine, Jinzhou, China
| | - Qing Tong
- Office of Academic Research, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
52
|
Li X, Goobie GC, Gregory AD, Kass DJ, Zhang Y. Toll-Interacting Protein in Pulmonary Diseases. Abiding by the Goldilocks Principle. Am J Respir Cell Mol Biol 2021; 64:536-546. [PMID: 33233920 PMCID: PMC8086045 DOI: 10.1165/rcmb.2020-0470tr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TOLLIP (Toll-interacting protein) is an intracellular adaptor protein with diverse actions throughout the body. In a context- and cell type–specific manner, TOLLIP can function as an inhibitor of inflammation and endoplasmic-reticulum stress, an activator of autophagy, or a critical regulator of intracellular vacuole trafficking. The distinct functions of this protein have been linked to innate immune responses and lung epithelial-cell apoptosis. TOLLIP genetic variants have been associated with a variety of chronic lung diseases, including idiopathic pulmonary fibrosis, asthma, and primary graft dysfunction after lung transplantation, and with infections, such as tuberculosis, Legionella pneumonia, and respiratory viruses. TOLLIP exists in a delicate homeostatic balance, with both positive and negative effects on the trajectory of pulmonary diseases. This translational review summarizes the genetic and molecular associations that link TOLLIP to the development and progression of noninfectious and infectious pulmonary diseases. We highlight current limitations of in vitro and in vivo models in assessing the role of TOLLIP in these conditions, and we describe future approaches that will enable a more nuanced exploration of the role of TOLLIP in pulmonary conditions. There has been a surge in recent research evaluating the role of this protein in human diseases, but critical mechanistic pathways require further exploration. By understanding its biologic functions in disease-specific contexts, we will be able to determine whether TOLLIP can be therapeutically modulated to treat pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Gillian C Goobie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Clinician Investigator Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alyssa D Gregory
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
53
|
Yamano K, Kojima W. Molecular functions of autophagy adaptors upon ubiquitin-driven mitophagy. Biochim Biophys Acta Gen Subj 2021; 1865:129972. [PMID: 34332032 DOI: 10.1016/j.bbagen.2021.129972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Perturbations in organellar health can lead to an accumulation of unwanted and/or damaged organelles that are toxic to the cell and which can contribute to the onset of neurodegenerative diseases such as Parkinson's disease. Mitochondrial health is particularly critical given the indispensable role the organelle has not only in adenosine triphosphate production but also other metabolic processes. Byproducts of oxidative respiration, such as reactive oxygen species, however, can negatively impact mitochondrial fitness. Consequently, selective degradation of damaged mitochondria, which occurs via a specific autophagic process termed mitophagy, is essential for normal cell maintenance. SCOPE OF REVIEW Recent accumulating evidence has shown that autophagy adaptors (also referred to as autophagy receptors) play critical roles in connecting ubiquitinated mitochondria with the autophagic machinery of the autophagy-lysosome pathway that is required for degradation. In this review, we focus on our current understanding of the autophagy adaptor mechanisms underlying PINK1/Parkin-driven mitophagy. MAJOR CONCLUSIONS Although autophagy adaptors are canonically defined as proteins that possess ubiquitin-binding domains and ATG8s-binding motifs, the recent identification of novel binding partners has contributed to the development of a more sophisticated model for how autophagy adaptors contribute to the molecular hub that organizes autophagic cargo-degradation. GENERAL SIGNIFICANCE Although mitophagy is recognized as one of the selective autophagy pathways that removes dysfunctional mitochondria, a more nuanced understanding of the interactions connecting autophagy adaptors and their associated proteins is needed to gain deeper insights into the fundamental biological processes underlying human diseases, including neurodegenerative disorders. This review is part of a Special Issue entitled Mitophagy.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
54
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
55
|
Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Cell Death Differ 2021; 28:827-842. [PMID: 33208889 PMCID: PMC7937681 DOI: 10.1038/s41418-020-00657-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Most cellular stress responses converge on the mitochondria. Consequently, the mitochondria must rapidly respond to maintain cellular homeostasis and physiological demands by fine-tuning a plethora of mitochondria-associated processes. The outer mitochondrial membrane (OMM) proteins are central to mediating mitochondrial dynamics, coupled with continuous fission and fusion. These OMM proteins also have vital roles in controlling mitochondrial quality and serving as mitophagic receptors for autophagosome enclosure during mitophagy. Mitochondrial fission segregates impaired mitochondria in smaller sizes from the mother mitochondria and may favor mitophagy for eliminating damaged mitochondria. Conversely, mitochondrial fusion mixes dysfunctional mitochondria with healthy ones to repair the damage by diluting the impaired components and consequently prevents mitochondrial clearance via mitophagy. Despite extensive research efforts into deciphering the interplay between fission-fusion and mitophagy, it is still not clear whether mitochondrial fission essentially precedes mitophagy. In this review, we summarize recent breakthroughs concerning OMM research, and dissect the functions of these proteins in mitophagy from their traditional roles in fission-fusion dynamics, in response to distinct context, at the intersection of the OMM platform. These insights into the OMM proteins in mechanistic researches would lead to new aspects of mitochondrial quality control and better understanding of mitochondrial homeostasis intimately tied to pathological impacts.
Collapse
|
56
|
Roach TG, Lång HKM, Xiong W, Ryhänen SJ, Capelluto DGS. Protein Trafficking or Cell Signaling: A Dilemma for the Adaptor Protein TOM1. Front Cell Dev Biol 2021; 9:643769. [PMID: 33718385 PMCID: PMC7952518 DOI: 10.3389/fcell.2021.643769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Lysosomal degradation of ubiquitinated transmembrane protein receptors (cargo) relies on the function of Endosomal Sorting Complex Required for Transport (ESCRT) protein complexes. The ESCRT machinery is comprised of five unique oligomeric complexes with distinct functions. Target of Myb1 (TOM1) is an ESCRT protein involved in the initial steps of endosomal cargo sorting. To exert its function, TOM1 associates with ubiquitin moieties on the cargo via its VHS and GAT domains. Several ESCRT proteins, including TOLLIP, Endofin, and Hrs, have been reported to form a complex with TOM1 at early endosomal membrane surfaces, which may potentiate the role of TOM1 in cargo sorting. More recently, it was found that TOM1 is involved in other physiological processes, including autophagy, immune responses, and neuroinflammation, which crosstalk with its endosomal cargo sorting function. Alteration of TOM1 function has emerged as a phosphoinositide-dependent survival mechanism for bacterial infections and cancer progression. Based on current knowledge of TOM1-dependent cellular processes, this review illustrates how TOM1 functions in coordination with an array of protein partners under physiological and pathological scenarios.
Collapse
Affiliation(s)
- Tiffany G. Roach
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Heljä K. M. Lång
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Samppa J. Ryhänen
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
57
|
Zellner S, Schifferer M, Behrends C. Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling. Mol Cell 2021; 81:1337-1354.e8. [PMID: 33545068 DOI: 10.1016/j.molcel.2021.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.
Collapse
Affiliation(s)
- Susanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Martina Schifferer
- Munich Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany.
| |
Collapse
|
58
|
Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends Biochem Sci 2020; 46:329-343. [PMID: 33323315 DOI: 10.1016/j.tibs.2020.11.007] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease (PD) for over 30 years. Despite this, the role of mitochondrial dysfunction as an initiator, propagator, or bystander remains undetermined. The discovery of the role of the PD familial genes PTEN-induced putative kinase 1 (PINK1) and parkin (PRKN) in mediating mitochondrial degradation (mitophagy) reaffirmed the importance of this process in PD aetiology. Recently, progress has been made in understanding the upstream and downstream regulators of canonical PINK1/parkin-mediated mitophagy, alongside noncanonical PINK1/parkin mitophagy, in response to mitochondrial damage. Progress has also been made in understanding the role of PD-associated genes, such as SNCA, LRRK2, and CHCHD2, in mitochondrial dysfunction and their overlap with sporadic PD (sPD), opening opportunities for therapeutically targeting mitochondria in PD.
Collapse
|
59
|
Roberts RF, Bayne AN, Goiran T, Lévesque D, Boisvert FM, Trempe JF, Fon EA. Proteomic Profiling of Mitochondrial-Derived Vesicles in Brain Reveals Enrichment of Respiratory Complex Sub-assemblies and Small TIM Chaperones. J Proteome Res 2020; 20:506-517. [PMID: 33242952 DOI: 10.1021/acs.jproteome.0c00506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The generation of mitochondrial-derived vesicles (MDVs) is implicated in a plethora of vital cell functions, from mitochondrial quality control to peroxisomal biogenesis. The discovery of distinct subtypes of MDVs has revealed the selective inclusion of mitochondrial cargo in response to varying stimuli. However, the true scope and variety of MDVs is currently unclear, and unbiased approaches have yet to be used to understand their biology. Furthermore, as mitochondrial dysfunction has been implicated in many neurodegenerative diseases, it is essential to understand MDV pathways in the nervous system. To address this, we sought to identify the cargo in brain MDVs. We used an in vitro budding assay and proteomic approach to identify proteins selectively enriched in MDVs. 72 proteins were identified as MDV-enriched, of which 31% were OXPHOS proteins. Interestingly, the OXPHOS proteins localized to specific modules of the respiratory complexes, hinting at the inclusion of sub-assemblies in MDVs. Small TIM chaperones were also highly enriched in MDVs, linking mitochondrial chaperone-mediated protein transport to MDV formation. As the two Parkinson's disease genes PINK1 and Parkin have been previously implicated in MDV biogenesis in response to oxidative stress, we compared the MDV proteomes from the brains of wild-type mice with those of PINK1-/- and Parkin-/- mice. No significant difference was found, suggesting that PINK1- and Parkin-dependent MDVs make up a small proportion of all MDVs in the brain. Our findings demonstrate a previously uncovered landscape of MDV complexity and provide a foundation from which further novel MDV functions can be discovered. Data are available via ProteomeXchange with identifier PXD020197.
Collapse
Affiliation(s)
- Rosalind F Roberts
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Andrew N Bayne
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Thomas Goiran
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
60
|
Ryan TA, Phillips EO, Collier CL, Jb Robinson A, Routledge D, Wood RE, Assar EA, Tumbarello DA. Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles. EMBO J 2020; 39:e102539. [PMID: 32311122 PMCID: PMC7265236 DOI: 10.15252/embj.2019102539] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple mitochondrial quality control pathways exist to maintain the health of mitochondria and ensure cell homeostasis. Here, we investigate the role of the endosomal adaptor Tollip during the mitochondrial stress response and identify its interaction and colocalisation with the Parkinson's disease-associated E3 ubiquitin ligase Parkin. The interaction between Tollip and Parkin is dependent on the ubiquitin-binding CUE domain of Tollip, but independent of Tom1 and mitophagy. Interestingly, this interaction is independent of Parkin mitochondrial recruitment and ligase activity but requires an intact ubiquitin-like (UBL) domain. Importantly, Tollip regulates Parkin-dependent endosomal trafficking of a discrete subset of mitochondrial-derived vesicles (MDVs) to facilitate delivery to lysosomes. Retromer function and an interaction with Tom1 allow Tollip to facilitate late endosome/lysosome trafficking in response to mitochondrial stress. We find that upregulation of TOM20-positive MDVs upon mitochondrial stress requires Tollip interaction with ubiquitin, endosomal membranes and Tom1 to ensure their trafficking to the lysosomes. Thus, we conclude that Tollip, via an association with Parkin, is an essential coordinator to sort damaged mitochondrial-derived cargo to the lysosomes.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, UK
| | | | | | | | | | - Rebecca E Wood
- Biological Sciences, University of Southampton, Southampton, UK
| | - Emelia A Assar
- Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|