51
|
Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers (Basel) 2020; 12:cancers12092508. [PMID: 32899370 PMCID: PMC7564443 DOI: 10.3390/cancers12092508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The reactivation of embryonic developmental programs is crucial for melanoma cells to grow and to metastasize. In order to understand this process better, we first summarize the melanocytic differentiation process both in vivo and in vitro. Secondly, we compare and highlight important similarities between neural crest cell fate during differentiation and tumor cell characteristics during melanoma mestastasis. Finally, we suggest possible therapeutic targets, which could be used to inhibit phenotype switching by developmental cues and hence also suppress the metastatic melanoma spread. Abstract Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.
Collapse
|
52
|
Intrinsic Balance between ZEB Family Members Is Important for Melanocyte Homeostasis and Melanoma Progression. Cancers (Basel) 2020; 12:cancers12082248. [PMID: 32796736 PMCID: PMC7465899 DOI: 10.3390/cancers12082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
It has become clear that cellular plasticity is a main driver of cancer therapy resistance. Consequently, there is a need to mechanistically identify the factors driving this process. The transcription factors of the zinc-finger E-box-binding homeobox family, consisting of ZEB1 and ZEB2, are notorious for their roles in epithelial-to-mesenchymal transition (EMT). However, in melanoma, an intrinsic balance between ZEB1 and ZEB2 seems to determine the cellular state by modulating the expression of the master regulator of melanocyte homeostasis, microphthalmia-associated transcription factor (MITF). ZEB2 drives MITF expression and is associated with a differentiated/proliferative melanoma cell state. On the other hand, ZEB1 is correlated with low MITF expression and a more invasive, stem cell-like and therapy-resistant cell state. This intrinsic balance between ZEB1 and ZEB2 could prove to be a promising therapeutic target for melanoma patients. In this review, we will summarise what is known on the functional mechanisms of these transcription factors. Moreover, we will look specifically at their roles during melanocyte-lineage development and homeostasis. Finally, we will overview the current literature on ZEB1 and ZEB2 in the melanoma context and link this to the 'phenotype-switching' model of melanoma cellular plasticity.
Collapse
|
53
|
Tang Y, Durand S, Dalle S, Caramel J. EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers (Basel) 2020; 12:E2154. [PMID: 32759677 PMCID: PMC7465730 DOI: 10.3390/cancers12082154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription factors, extensively described for their role in epithelial-mesenchymal transition (EMT-TFs) in epithelial cells, also display essential functions in the melanocyte lineage. Recent evidence has shown specific expression patterns and functions of these EMT-TFs in neural crest-derived melanoma compared to carcinoma. Herein, we present an update of the specific roles of EMT-TFs in melanocyte differentiation and melanoma progression. As major regulators of phenotype switching between differentiated/proliferative and neural crest stem cell-like/invasive states, these factors appear as major drivers of intra-tumor heterogeneity and resistance to treatment in melanoma, which opens new avenues in terms of therapeutic targeting.
Collapse
Affiliation(s)
- Yaqi Tang
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Simon Durand
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Stéphane Dalle
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
- Dermatology Unit, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite, France
| | - Julie Caramel
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| |
Collapse
|
54
|
Yeon M, Kim Y, Jung HS, Jeoung D. Histone Deacetylase Inhibitors to Overcome Resistance to Targeted and Immuno Therapy in Metastatic Melanoma. Front Cell Dev Biol 2020; 8:486. [PMID: 32626712 PMCID: PMC7311641 DOI: 10.3389/fcell.2020.00486] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Therapies that target oncogenes and immune checkpoint molecules constitute a major group of treatments for metastatic melanoma. A mutation in BRAF (BRAF V600E) affects various signaling pathways, including mitogen activated protein kinase (MAPK) and PI3K/AKT/mammalian target of rapamycin (mTOR) in melanoma. Target-specific agents, such as MAPK inhibitors improve progression-free survival. However, BRAFV600E mutant melanomas treated with BRAF kinase inhibitors develop resistance. Immune checkpoint molecules, such as programmed death-1 (PD-1) and programmed death ligand-1(PD-L1), induce immune evasion of cancer cells. MAPK inhibitor resistance results from the increased expression of PD-L1. Immune checkpoint inhibitors, such as anti-PD-L1 or anti-PD-1, are main players in immune therapies designed to target metastatic melanoma. However, melanoma patients show low response rate and resistance to these inhibitors develops within 6–8 months of treatment. Epigenetic reprogramming, such as DNA methylaion and histone modification, regulates the expression of genes involved in cellular proliferation, immune checkpoints and the response to anti-cancer drugs. Histone deacetylases (HDACs) remove acetyl groups from histone and non-histone proteins and act as transcriptional repressors. HDACs are often dysregulated in melanomas, and regulate MAPK signaling, cancer progression, and responses to various anti-cancer drugs. HDACs have been shown to regulate the expression of PD-1/PD-L1 and genes involved in immune evasion. These reports make HDACs ideal targets for the development of anti-melanoma therapeutics. We review the mechanisms of resistance to anti-melanoma therapies, including MAPK inhibitors and immune checkpoint inhibitors. We address the effects of HDAC inhibitors on the response to MAPK inhibitors and immune checkpoint inhibitors in melanoma. In addition, we discuss current progress in anti-melanoma therapies involving a combination of HDAC inhibitors, immune checkpoint inhibitors, and MAPK inhibitors.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
55
|
Abstract
RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed 'undruggable'. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRASG12C, we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies.
Collapse
|
56
|
Patel A, Garcia LF, Mannella V, Gammon L, Borg TM, Maffucci T, Scatolini M, Chiorino G, Vergani E, Rodolfo M, Maurichi A, Posch C, Matin RN, Harwood CA, Bergamaschi D. Targeting p63 Upregulation Abrogates Resistance to MAPK Inhibitors in Melanoma. Cancer Res 2020; 80:2676-2688. [PMID: 32291316 DOI: 10.1158/0008-5472.can-19-3230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/04/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
Targeting the MAPK pathway by combined inhibition of BRAF and MEK has increased overall survival in advanced BRAF-mutant melanoma in both therapeutic and adjuvant clinical settings. However, a significant proportion of tumors develop acquired resistance, leading to treatment failure. We have previously shown p63 to be an important inhibitor of p53-induced apoptosis in melanoma following genotoxic drug exposure. Here, we investigated the role of p63 in acquired resistance to MAPK inhibition and show that p63 isoforms are upregulated in melanoma cell lines chronically exposed to BRAF and MEK inhibition, with consequent increased resistance to apoptosis. This p63 upregulation was the result of its reduced degradation by the E3 ubiquitin ligase FBXW7. FBXW7 was itself regulated by MDM2, and in therapy-resistant melanoma cell lines, nuclear accumulation of MDM2 caused downregulation of FBXW7 and consequent upregulation of p63. Consistent with this, both FBXW7-inactivating mutations and MDM2 upregulation were found in melanoma clinical samples. Treatment of MAPK inhibitor-resistant melanoma cells with MDM2 inhibitor Nutlin-3A restored FBXW7 expression and p63 degradation in a dose-dependent manner and sensitized these cells to apoptosis. Collectively, these data provide a compelling rationale for future investigation of Nutlin-3A as an approach to abrogate acquired resistance of melanoma to MAPK inhibitor targeted therapy. SIGNIFICANCE: Upregulation of p63, an unreported mechanism of MAPK inhibitor resistance in melanoma, can be abrogated by treatment with the MDM2 inhibitor Nutlin-3A, which may serve as a strategy to overcome resistance.
Collapse
Affiliation(s)
- Ankit Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lucia Fraile Garcia
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Viviana Mannella
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Luke Gammon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tiffanie-Marie Borg
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Scatolini
- Molecular Oncology Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Elisabetta Vergani
- Department of Experimental Oncology and Molecular Medicine, Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Monica Rodolfo
- Department of Experimental Oncology and Molecular Medicine, Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Andrea Maurichi
- Department of Surgery, Melanoma and Sarcoma Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Christian Posch
- Department of Dermatology, The Rudolfstiftung Hospital, Vienna, Austria.,Faculty of Medicine, Sigmund Freud University, Vienna, Austria.,Department of Dermatology, Technical University of Munich, Munich, Germany
| | - Rubeta N Matin
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
57
|
Drápela S, Bouchal J, Jolly MK, Culig Z, Souček K. ZEB1: A Critical Regulator of Cell Plasticity, DNA Damage Response, and Therapy Resistance. Front Mol Biosci 2020; 7:36. [PMID: 32266287 PMCID: PMC7096573 DOI: 10.3389/fmolb.2020.00036] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
The predominant way in which conventional chemotherapy kills rapidly proliferating cancer cells is the induction of DNA damage. However, chemoresistance remains the main obstacle to therapy effectivity. An increasing number of studies suggest that epithelial-to-mesenchymal transition (EMT) represents a critical process affecting the sensitivity of cancer cells to chemotherapy. Zinc finger E-box binding homeobox 1 (ZEB1) is a prime element of a network of transcription factors controlling EMT and has been identified as an important molecule in the regulation of DNA damage, cancer cell differentiation, and metastasis. Recent studies have considered upregulation of ZEB1 as a potential modulator of chemoresistance. It has been hypothesized that cancer cells undergoing EMT acquire unique properties that resemble those of cancer stem cells (CSCs). These stem-like cells manifest enhanced DNA damage response (DDR) and DNA repair capacity, self-renewal, or chemoresistance. In contrast, functional experiments have shown that ZEB1 induces chemoresistance regardless of whether other EMT-related changes occur. ZEB1 has also been identified as an important regulator of DDR by the formation of a ZEB1/p300/PCAF complex and direct interaction with ATM kinase, which has been linked to radioresistance. Moreover, ATM can directly phosphorylate ZEB1 and enhance its stability. Downregulation of ZEB1 has also been shown to reduce the abundance of CHK1, an effector kinase of DDR activated by ATR, and to induce its ubiquitin-dependent degradation. In this perspective, we focus on the role of ZEB1 in the regulation of DDR and describe the mechanisms of ZEB1-dependent chemoresistance.
Collapse
Affiliation(s)
- Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Zoran Culig
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czechia.,Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
58
|
Rebecca VW, Herlyn M. Nongenetic Mechanisms of Drug Resistance in Melanoma. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Resistance to targeted and immune-based therapies limits cures in patients with metastatic melanoma. A growing number of reports have identified nongenetic primary resistance mechanisms including intrinsic microenvironment- and lineage plasticity–mediated processes serving critical functions in the persistence of disease throughout therapy. There is a temporally shifting spectrum of cellular identities fluidly occupied by therapy-persisting melanoma cells responsible for driving therapeutic resistance and metastasis. The key epigenetic, metabolic, and phenotypic reprogramming events requisite for the manifestation and maintenance of so-called persister melanoma populations remain poorly understood and underscore the need to comprehensively investigate actionable vulnerabilities. Here we attempt to integrate the field's observations on nongenetic mechanisms of drug resistance in melanoma. We postulate that the future design of therapeutic strategies specifically addressing therapy-persisting subpopulations of melanoma will improve the curative potential of therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Vito W. Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
59
|
Fumagalli MR, Lionetti MC, Zapperi S, La Porta CAM. Cross-Talk Between circRNAs and mRNAs Modulates MiRNA-mediated Circuits and Affects Melanoma Plasticity. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:95-104. [PMID: 31734859 PMCID: PMC6937352 DOI: 10.1007/s12307-019-00230-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
CircularRNAs (circRNAs) are non-coding RNAs which compete for microRNA (miRNA) binding, influencing the abundance and stability of other RNA species. Herein we have investigated the effect of circRNAs on the mir200-ZEB1 feedback loop in relationship with the aggressiveness of human melanoma cells. We first compared the level of expression of key factors in the mir200-ZEB1 feedback loop in primary human melanoma cells compared with their matching metastatic one and found a correlation between the aggressiveness of the cells and the level of expression of ZEB1 and SNAI1. We also analyzed factors in the mir200-ZEB1 feedback loop, including circZEB1, during the phenotypic switching of human melanoma cells. Our results showed a correlation between the level of ZEB1 and SNAI1 and the fraction of cancer stem cells in the population. The level of circZEB1 was, however, consistently high during the entire phenotypic transformation. To understand this result we propose a mathematical model of the regulatory circuit. According to the model, the experimental observations can be explained by the presence of a back-splicing factor limiting circRNA production.
Collapse
Affiliation(s)
- Maria Rita Fumagalli
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, Milano, 20133, Italy
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano, 20133, Italy
| | - Maria Chiara Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano, 20133, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, Milano, 20133, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, Milano, 20125, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano, 20133, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, Milano, 20133, Italy.
| |
Collapse
|
60
|
Siena ÁDD, Plaça JR, Araújo LF, de Barros II, Peronni K, Molfetta G, de Biagi CAO, Espreafico EM, Sousa JF, Silva WA. Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma. Sci Rep 2019; 9:11350. [PMID: 31383874 PMCID: PMC6683136 DOI: 10.1038/s41598-019-47363-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and little is known about the impact of deregulated expression of long noncoding RNAs (lncRNAs) in the progression of this cancer. In this study, we explored RNA-Seq data to search for lncRNAs associated with melanoma progression. We found distinct lncRNA gene expression patterns across melanocytes, primary and metastatic melanoma cells. Also, we observed upregulation of the lncRNA ZEB1-AS1 (ZEB1 antisense RNA 1) in melanoma cell lines. Data analysis from The Cancer Genome Atlas (TCGA) confirmed higher ZEB1-AS1 expression in metastatic melanoma and its association with hotspot mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) gene and RAS family genes. In addition, a positive correlation between ZEB1-AS1 and ZEB1 (zinc finger E-box binding homeobox 1) gene expression was verified in primary and metastatic melanomas. Using gene expression signatures indicative of invasive or proliferative phenotypes, we found an association between ZEB1-AS1 upregulation and a transcriptional profile for invasiveness. Enrichment analysis of correlated genes demonstrated cancer genes and pathways associated with ZEB1-AS1. We suggest that the lncRNA ZEB1-AS1 could function by activating ZEB1 gene expression, thereby influencing invasiveness and phenotype switching in melanoma, an epithelial-to-mesenchymal transition (EMT)-like process, which the ZEB1 gene has an essential role.
Collapse
Affiliation(s)
- Ádamo Davi Diógenes Siena
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Jéssica Rodrigues Plaça
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil
| | - Luiza Ferreira Araújo
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Kamila Peronni
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Greice Molfetta
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil
| | - Carlos Alberto Oliveira de Biagi
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cellular and Molecular Biology at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josane Freitas Sousa
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil.,Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Wilson Araújo Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil. .,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil. .,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil.
| |
Collapse
|
61
|
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 2019; 19:405-414. [PMID: 31101865 DOI: 10.1038/s41568-019-0149-1] [Citation(s) in RCA: 739] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.
Collapse
Affiliation(s)
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
62
|
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 2019; 19:377-391. [PMID: 31209265 DOI: 10.1038/s41568-019-0154-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Malignant melanoma is notorious for its inter- and intratumour heterogeneity, based on transcriptionally distinct melanoma cell phenotypes. It is thought that these distinct phenotypes are plastic in nature and that their transcriptional reprogramming enables heterogeneous tumours both to undergo different stages of melanoma progression and to adjust to drug exposure during treatment. Recent advances in genomic technologies and the rapidly expanding availability of large gene expression datasets have allowed for a refined definition of the gene signatures that characterize these phenotypes and have revealed that phenotype plasticity plays a major role in the resistance to both targeted therapy and immunotherapy. In this Review we discuss the definition of melanoma phenotypes through particular transcriptional states and reveal the prognostic relevance of the related gene expression signatures. We review how the establishment of phenotypes is controlled and which roles phenotype plasticity plays in melanoma development and therapy. Because phenotype plasticity in melanoma bears a great resemblance to epithelial-mesenchymal transition, the lessons learned from melanoma will also benefit our understanding of other cancer types.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
63
|
Zhu L, Liu Z, Dong R, Wang X, Zhang M, Guo X, Yu N, Zeng A. MicroRNA-3662 targets ZEB1 and attenuates the invasion of the highly aggressive melanoma cell line A375. Cancer Manag Res 2019; 11:5845-5856. [PMID: 31388313 PMCID: PMC6607987 DOI: 10.2147/cmar.s200540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous melanoma is the most aggressive form of skin cancer. It accounts for approximately 5% of all cutaneous malignancies and is currently responsible for the majority of skin cancer-related deaths. However, the exact mechanisms responsible for the occurrence of melanoma, in particular the invasive growth in normal skin or muscle tissue, remain unknown. Materials and methods miR-3662, a microRNA is a potential tumor suppressor targeting zinc finger E-box binding homeobox 1 (ZEB1), which functions as a key regulator of the epithelial-mesenchymal transition (EMT) process. This microRNA was identified using an online database (miRDB) and expression was confirmed by Western blot analysis. Quantitative polymerase chain reaction (qPCR) was used to examine whether miR-3662 inhibits the EMT process in the aggressive melanoma cell line, A375, through the modification of the expression of invasion-related genes in A375 cells. The effects of miR-3662 on the in vivo growth of A375 cells were examined in a nude mouse model. Results Using virtual screening of the miRDB database, miR-3662 was shown to target the 3ʹ untranslated region (UTR) of the ZEB1 gene. Expression of miR-3662 via a lentivirus vector significantly decreased protein levels of ZEB1 and inhibited the growth of A375 cells in vitro and in vivo. The reduction in ZEB1 expression induced by miR-3662 resulted in EMT inhibition in A375 cells and decreased the relative expression of metastasis genes. Conclusion Down-regulation of ZEB1’s expression via miR-3662 lentivirus vectors significantly decreased the in vitro and in vivo growth of the highly aggressive melanoma cell line A375.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Zhifei Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Ruijia Dong
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiao Guo
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
64
|
Contribution of Epithelial Plasticity to Therapy Resistance. J Clin Med 2019; 8:jcm8050676. [PMID: 31091749 PMCID: PMC6571660 DOI: 10.3390/jcm8050676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.
Collapse
|
65
|
Tuncer E, Calçada RR, Zingg D, Varum S, Cheng P, Freiberger SN, Deng CX, Kleiter I, Levesque MP, Dummer R, Sommer L. SMAD signaling promotes melanoma metastasis independently of phenotype switching. J Clin Invest 2019; 129:2702-2716. [PMID: 31039140 DOI: 10.1172/jci94295] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of metastatic melanoma is thought to require the dynamic shifting of neoplastic cells between proliferative and invasive phenotypes. Contrary to this conventional "phenotype switching" model, we now show that disease progression can involve malignant melanoma cells simultaneously displaying proliferative and invasive properties. Using a genetic mouse model of melanoma in combination with in vitro analyses of melanoma cell lines, we found that conditional deletion of the downstream signaling molecule Smad4, which abrogates all canonical TGF-β signaling, indeed inhibits both tumor growth and metastasis. Conditional deletion of the inhibitory signaling factor Smad7, however, generated cells that are both highly invasive and proliferative, indicating that invasiveness is compatible with a high proliferation rate. In fact, conditional Smad7 deletion led to sustained melanoma growth and at the same time promoted massive metastasis formation, a result consistent with data indicating that low SMAD7 levels in patient tumors are associated with a poor survival. Our findings reveal that modulation of SMAD7 levels can overcome the need for phenotype switching during tumor progression and may thus represent a novel therapeutic target in metastatic disease.
Collapse
Affiliation(s)
- Eylul Tuncer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Raquel R Calçada
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Daniel Zingg
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Sandra Varum
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ingo Kleiter
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany and Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
66
|
Faião-Flores F, Smalley KSM. Get with the Program! Stemness and Reprogramming in Melanoma Metastasis. J Invest Dermatol 2019; 138:10-13. [PMID: 29273143 DOI: 10.1016/j.jid.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/05/2023]
Abstract
Cancer cells are highly plastic and adopt multiple phenotypic states that contribute to tumor progression. Heppt et al. demonstrate that the homeodomain transcription factor Msh homeobox 1 reprograms melanoma cells to a precursor state associated with melanoma progression and increased liver metastasis. Identification of this new role for Msh homeobox 1 may facilitate the development of new therapies that limit melanoma dissemination.
Collapse
Affiliation(s)
- Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.
| |
Collapse
|
67
|
Liu X, Zhang SM, McGeary MK, Krykbaeva I, Lai L, Jansen DJ, Kales SC, Simeonov A, Hall MD, Kelly DP, Bosenberg MW, Yan Q. KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations. Mol Cancer Ther 2019; 18:706-717. [PMID: 30523048 PMCID: PMC6397704 DOI: 10.1158/1535-7163.mct-18-0395] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Tumor heterogeneity is a major challenge for cancer treatment, especially due to the presence of various subpopulations with stem cell or progenitor cell properties. In mouse melanomas, both CD34+p75- (CD34+) and CD34-p75- (CD34-) tumor subpopulations were characterized as melanoma-propagating cells (MPC) that exhibit some of those key features. However, these two subpopulations differ from each other in tumorigenic potential, ability to recapitulate heterogeneity, and chemoresistance. In this study, we demonstrate that CD34+ and CD34- subpopulations carrying the BRAFV600E mutation confer differential sensitivity to targeted BRAF inhibition. Through elevated KDM5B expression, melanoma cells shift toward a more drug-tolerant, CD34- state upon exposure to BRAF inhibitor or combined BRAF inhibitor and MEK inhibitor treatment. KDM5B loss or inhibition shifts melanoma cells to the more BRAF inhibitor-sensitive CD34+ state. These results support that KDM5B is a critical epigenetic regulator that governs the transition of key MPC subpopulations with distinct drug sensitivity. This study also emphasizes the importance of continuing to advance our understanding of intratumor heterogeneity and ultimately develop novel therapeutics by altering the heterogeneous characteristics of melanoma.
Collapse
Affiliation(s)
- Xiaoni Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Ling Lai
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Daniel P Kelly
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
68
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
69
|
Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother 2018; 110:400-408. [PMID: 30530042 DOI: 10.1016/j.biopha.2018.11.112] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Highly expressed Zinc-finger E-box binding protein 1 (ZEB1) is significantly associated with the malignancy of various cancers. Signal transduction and activation of ZEB1 play important roles in cancer transformation and epithelial-mesenchymal transition (EMT). Emerging evidence suggests that ZEB1 drives the induction of EMT with activation of stem cell traits, immune evasion and epigenetic reprogramming. As an ideal target for EMT research, ZEB1 has been extensively studied for decades. However, the link between ZEB1 and epigenetic regulation of EMT has only recently been discovered. ZEB1 facilitates the epigenetic silencing of E-cadherin by recruiting multiple chromatin enzymes of E-cadherin promoter, such as histone deacetylases (HDACs), DNA methyltransferase (DNMT) and ubiquitin ligase. Destruction of the connection between ZEB1 and these chromatin-modifying enzymes may represent an efficient for treating cancer. In this review, we outlined the biological function of ZEB1 in tumorigenic progression and epigenetic modifications and elucidate its transcriptional network, which is a suitable potential target for the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Lei Xu
- Pharmaceutical Preparation Section, Hospital of Laiwu Steel Group, 68 Xinxing Road, Laigang 271126, Shandong Province, China
| | - Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
70
|
Kudo K, Yoneda A, Sakiyama D, Kojima K, Miyaji T, Yamazaki M, Yaita S, Hyodo T, Satow R, Fukami K. Cell surface CD63 increased by up-regulated polylactosamine modification sensitizes human melanoma cells to the BRAF inhibitor PLX4032. FASEB J 2018; 33:3851-3869. [PMID: 30508500 DOI: 10.1096/fj.201800664rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BRAF inhibitor PLX4032 is effective in treating BRAF-mutated melanoma; however, because drug resistance develops in most cases, it is critical to develop a new strategy for inhibiting drug-resistant melanoma growth. The melanoma-associated membrane glycoprotein CD63 is involved in cell proliferation and metastasis. Here, we found that cell surface CD63 suppresses the proliferation of human melanoma cells and PLX4032-resistant cells. Endogenous CD63 protein levels were negatively correlated with PLX4032 resistance of human melanoma cell lines. CD63 overexpression in these cells, in which endogenous CD63 levels are low, suppressed cell proliferation under PLX4032 treatment. The cell surface levels and average molecular mass of CD63 were increased with PLX4032 treatment because of the up-regulated polylactosamine modification caused by induced β1,3- N-acetylglucosaminyltransferase 2 expression, which is involved in polylactosamine synthesis. Forced cell surface localization of CD63 led to reduced melanoma cell proliferation without PLX4032 treatment. CD63 overexpression in PLX4032-resistant cells, in which CD63 levels were lower and cell surface polylactosamine levels were higher than those in parental cells, effectively suppressed proliferation. Our study shows the potential of CD63 to sensitize melanoma cells to PLX4032 and to reduce the proliferation of PLX4032-resistant cells.-Kudo, K., Yoneda, A., Sakiyama, D., Kojima, K., Miyaji, T., Yamazaki, M., Yaita, S., Hyodo, T., Satow, R., Fukami, K. Cell surface CD63 increased by up-regulated polylactosamine modification sensitizes human melanoma cells to the BRAF inhibitor PLX4032.
Collapse
Affiliation(s)
- Kohya Kudo
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and.,Advanced Research and Development Programs for Medical Innovation (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Daiki Sakiyama
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Kai Kojima
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Takeki Miyaji
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Miku Yamazaki
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Saori Yaita
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Takuya Hyodo
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and
| | - Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and.,Advanced Research and Development Programs for Medical Innovation (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and.,Advanced Research and Development Programs for Medical Innovation (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
71
|
van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 2018; 37:6195-6211. [PMID: 30002444 DOI: 10.1038/s41388-018-0378-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Chemoresistance remains a major complication of cancer treatments. Recent data provide strong evidence that chemoresistance is linked to epithelial-mesenchymal transition (EMT), a latent developmental process, which is re-activated during cancer progression. EMT involves transcriptional reprogramming and is driven by specific EMT transcription factors (EMT-TFs). In this review, we provide support for the idea that EMT-TFs contribute to the development of resistance against cancer therapy and discuss how EMT-TFs might be targeted to advance novel therapeutic approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands.
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
72
|
Sinnberg T, Niessner H, Levesque MP, Dettweiler C, Garbe C, Busch C. Embryonic bone morphogenetic protein and nodal induce invasion in melanocytes and melanoma cells. Biol Open 2018; 7:bio.032656. [PMID: 29716947 PMCID: PMC6031345 DOI: 10.1242/bio.032656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress in melanoma therapy via inhibition of activated oncogenes or immune stimulation, most stage IV melanoma patients still have limited survival times. Existing therapeutic approaches eventually fail to prevent further invasion and metastasis, which is driven by a morphological process termed epithelial-mesenchymal transition (EMT). We previously demonstrated that inhibition of EMT in melanoma cells via antagonizing the bone morphogenetic protein (BMP)-pathway abrogated EMT and neural crest migration of melanoma cells in chick embryos. Here, we show that BMP-2 is highly expressed in invasive melanoma cells and is elevated in the serum of stage IV melanoma patients compared to stage IB-IIC patients and healthy controls. Highly BMP-2-expressing melanoma cells display enhanced invasion in the rhombencephalon of the chick embryo. In addition to driving neural crest migration in the zebrafish embryo, the agonists BMP-2, BMP-7 and nodal induce EMT/invasion in radial growth phase melanoma cells and in human melanocytes in skin reconstructs. Blocking either BMP or nodal signaling by antagonists (noggin, lefty), or the Alk4/5/7-receptor inhibitor SB431542, decreases EMT and invasion of melanoma cells in human epidermal skin reconstructs. Together, our data suggest that inhibition of EMT-inducing pathways in melanoma might be a therapeutic approach to attenuate melanoma cell invasiveness. Summary: We show that bone morphogenetic protein and nodal drive epithelial-mesenchymal transition (EMT) and invasiveness in melanoma cells, induce EMT and a melanoma-like invasive phenotype in melanocytes.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Heike Niessner
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Mitchell P Levesque
- Department of Dermatology, UniversitaetsSpital Zuerich, Gloriastrasse 31, 8091 Zuerich, Switzerland
| | - Christoph Dettweiler
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Claus Garbe
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Christian Busch
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| |
Collapse
|
73
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
74
|
Fane ME, Chhabra Y, Smith AG, Sturm RA. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res 2018; 32:9-24. [PMID: 29781575 DOI: 10.1111/pcmr.12710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis. In melanoma, BRN2 has been implicated as one of the master regulators of the acquisition of invasive behaviour within the phenotype switching model of progression. As a mediator of melanoma cell phenotype switching, it coordinates the transition to a dedifferentiated, slow cycling and highly motile cell type. Its inverse expression relationship with MITF is believed to mediate tumour progression and metastasis within this model. Recent evidence has now outlined a potential epigenetic switching mechanism in melanoma cells driven by BRN2 expression that induces melanoma cell invasion. We summarize the role of BRN2 in tumour cell dissemination and metastasis in melanoma, while also examining it as a potential metastatic regulator in other tumour models.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
75
|
Thyagarajan A, Saylae J, Sahu RP. Acetylsalicylic acid inhibits the growth of melanoma tumors via SOX2-dependent-PAF-R-independent signaling pathway. Oncotarget 2018. [PMID: 28636992 PMCID: PMC5564820 DOI: 10.18632/oncotarget.18326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acquired resistance to standard therapies remains a serious challenge, requiring novel therapeutic approaches that incorporate potential factors involved in tumor resistance. As cancers including melanoma express inflammatory cyclooxygenases generating prostaglandins implicated in tumor growth, we investigated mechanism of anti-inflammatory drug, acetylsalicylic acid (ASA) which has been shown to inhibit various tumor types, however, its effects against highly aggressive melanoma model are unclear. Given our reports that an activation of platelet-activating factor-receptor (PAF-R) augments the growth and impede efficacies of therapeutic agents in experimental melanoma, we also sought to determine if PAF-R mediates anti-melanoma activity of ASA. The current studies using stably PAF-R-positive (B16-PAFR) and negative (B16-MSCV) murine melanoma cells and PAF-R-expressing and deficient mice, demonstrate that ASA inhibits the in-vitro and in-vivo growth of highly aggressive B16F10 melanoma via bypassing tumoral or stromal PAF-R signaling. Similar ASA-induced effects in-vitro were seen in human melanoma and nasopharyngeal carcinoma cells positive or negative in PAF-R. Mechanistically, the ASA-induced decrease in cell survival and increase in apoptosis were significantly blocked by prostaglandin F2 alpha (PGF2α) agonists. Importantly, PCR array and qRT-PCR analysis of B16-tumors revealed significant downregulation of sry-related high-mobility-box-2 (SOX2) oncogene by ASA treatment. Interestingly, modulation of SOX2 expression by PGF2α agonists and upregulation by fibroblast growth factor 1 (FGF-1) rescued melanoma cells from ASA-induced decreased survival and increased apoptosis. Moreover, PGF2α-receptor antagonist, AL8810 mimics ASA-induced decreased melanoma cells survival which was significantly blocked by PGF2α and FGF-1. These findings indicate that ASA inhibits the growth of aggressive melanoma via SOX2-dependent-PAF-R-indepedent pathway.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Jeremiah Saylae
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| |
Collapse
|
76
|
Byeon HK, Na HJ, Yang YJ, Ko S, Yoon SO, Ku M, Yang J, Kim JW, Ban MJ, Kim JH, Kim DH, Kim JM, Choi EC, Kim CH, Yoon JH, Koh YW. Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation. Oncotarget 2018; 8:596-609. [PMID: 27880942 PMCID: PMC5352181 DOI: 10.18632/oncotarget.13480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibitor on epithelial-to-mesenchymal transition (EMT) in BRAF mutant thyroid cancer cells and the effect of dual inhibition from combinatorial therapy. Two thyroid cancer cell lines, 8505C and BCPAP were selected and treated with BRAF inhibitor, PLX4032 and its effect on EMT were examined and compared. Further investigation was carried out in orthotopic xenograft mouse models. Unlike BCPAP cells, the BRAF inhibitor resistant 8505C cells showed increased expressions of EMT related markers such as vimentin, β-catenin, and CD44. The combinatorial treatment of PLX4032 and PHA665752, a c-Met inhibitor reversed EMT. Similar results were confirmed in vivo. c-Met-mediated reactivation of the PI3K/AKT pathway contributes to the drug resistance to PLX4032 in BRAF (V600E) mutant anaplastic thyroid cancer cells and further promotes tumor cell migration and invasion by upregulated EMT mechanism. Dual inhibition of BRAF and c-Met leads to reversal of EMT, suggesting a maximal therapeutic response.
Collapse
Affiliation(s)
- Hyung Kwon Byeon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwi Jung Na
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeon Ju Yang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sooah Ko
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Jae Wook Kim
- Department of Otorhinolaryngology, Soonchunhyang University College of Medicine, Republic of Korea
| | - Myung Jin Ban
- Department of Otorhinolaryngology, Soonchunhyang University College of Medicine, Republic of Korea
| | - Ji-Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Da Hee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Chang Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
77
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
78
|
Sinnberg T, Levesque MP, Krochmann J, Cheng PF, Ikenberg K, Meraz-Torres F, Niessner H, Garbe C, Busch C. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol Cancer 2018; 17:59. [PMID: 29454361 PMCID: PMC5816360 DOI: 10.1186/s12943-018-0773-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Background During embryonic development Wnt family members and bone morphogenetic proteins (BMPs) cooperatively induce epithelial-mesenchymal transition (EMT) in the neural crest. Wnt and BMPs are reactivated during malignant transformation in melanoma. We previously demonstrated that the BMP-antagonist noggin blocked the EMT phenotype of melanoma cells in the neural crest and malignant invasion of melanoma cells in the chick embryo; vice-versa, malignant invasion was induced in human melanocytes in vivo by pre-treatment with BMP-2. Results Although there are conflicting results in the literature about the role of β-catenin for invasion of melanoma cells, we found Wnt/β-catenin signaling to be analogously important for the EMT-like phenotype of human metastatic melanoma cells in the neural crest and during invasion: β-catenin was frequently expressed at the invasive front of human primary melanomas and Wnt3a expression was inversely correlated with survival of melanoma patients. Accordingly, cytoplasmic β-catenin levels were increased during invasion of melanoma cells in the rhombencephalon of the chick embryo. Fibroblast derived Wnt3a reduced melanoma cell adhesion and enhanced migration, while the β-catenin inhibitor PKF115–584 increased adhesion and reduced migration in vitro and in the chick embryonic neural crest environment in vivo. Similarly, knockdown of β-catenin impaired intradermal melanoma cell invasion and PKF115–584 efficiently reduced liver metastasis in a chick chorioallantoic membrane model. Our observations were accompanied by specific alterations in gene expression which are linked to overall survival of melanoma patients. Conclusion We present a novel role for Wnt-signaling in neural crest like melanoma cell invasion and metastasis, stressing the crucial role of embryonic EMT-inducing neural crest signaling for the spreading of malignant melanoma. Electronic supplementary material The online version of this article (10.1186/s12943-018-0773-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, Universitaets Spital Zürich, Gloriastrasse 31, 8091, Zürich, Switzerland
| | - Jelena Krochmann
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Phil F Cheng
- Department of Dermatology, Universitaets Spital Zürich, Gloriastrasse 31, 8091, Zürich, Switzerland
| | - Kristian Ikenberg
- Institute of Clinical Pathology, University Hospital Zürich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
| | - Francisco Meraz-Torres
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Heike Niessner
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Christian Busch
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany. .,Dermateam, Bankstrasse 4, 8400, Winterthur, Switzerland.
| |
Collapse
|
79
|
Methotrexate sensitizes drug-resistant metastatic melanoma cells to BRAF V600E inhibitors dabrafenib and encorafenib. Oncotarget 2018; 9:13324-13336. [PMID: 29568360 PMCID: PMC5862581 DOI: 10.18632/oncotarget.24341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
Acquired resistance of metastatic melanoma (MM) tumors to BRAF V600E inhibitors (BRAFi’s) is commonplace in the clinic. Habitual relapse of patients contributes to <20% 5-year survival rates in MM. We previously identified serine synthesis as a critical detrminant of late-stage cancer cell resistance to BRAFi’s. Pre-treatment with DNA damaging agent gemcitabine (a nucleoside analog) re-sensitized drug-resistant cancer cells to BRAFi’s dabrafenib and vemurafenib. Importantly, the combination treatments were effective against BRAF wild type cancer cells potentially expanding the clinical reach of BRAFi’s. In this study, we identify the antifolate methotrexate (MTX) as a sensitizer of acquired- and intrinsically-resistant MM cells to BRAFi’s dabrafenib and encorafenib. We identify a novel, positive correlation between dabrafenib treatments and repair delay of MTX induced single-strand DNA (ssDNA) breaks. Cells arrest in G1 phase following simultaneous MTX + dabrafenib treatments and eventually die via apoptosis. Importantly, we identify RAS codon 12 activating mutations as prognostic markers for MTX + BRAFi treatment efficacy. We describe a method of killing drug-resistant MM cells that if translated has the potential to improve MM patient survival.
Collapse
|
80
|
Puglisi R, Bellenghi M, Pontecorvi G, Gulino A, Petrini M, Felicetti F, Bottero L, Mattia G, Carè A. SCD5 restored expression favors differentiation and epithelial-mesenchymal reversion in advanced melanoma. Oncotarget 2018; 9:7567-7581. [PMID: 29484133 PMCID: PMC5800925 DOI: 10.18632/oncotarget.24085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Our previous data supported a role for the Stearoyl-CoA desaturase (SCD5) in protection against malignancy, whereby it appears to functionally modify tumor stroma impairing tumor spread. SCD5 is significantly expressed in primary melanoma, but becomes barely detectable at tumor advanced stages. Looking for the regulatory mechanisms underlying SCD5 reduced expression during melanoma progression, we demonstrated a significantly lower stability of SCD5 protein as well as the direct targeting of SCD5 mRNA by the oncogenic miR-221&222 in metastatic cell lines. Moreover, our results indicated the existence of a negative feedback loop between SCD5 and miR-221&222, in good agreement with their opposite functions. Also, we showed how SCD5 re-expression and the direct supplementation of its main product oleic acid (OA) can drive advanced melanoma cell lines toward differentiation and reversion of the epithelial-mesenchymal (EMT)-like process, eventually inducing a less malignant phenotype. Indeed, SCD5 re-established the sensitivity to all-trans retinoic acid in A375M metastatic melanoma, associated with increased levels of Tyrosinase, melanin production and reduced proliferation. As evidenced by the correct modulation of some key transcription factors, SCD5 managed by favoring a partial mesenchymal-to-epithelial (MET) transition in in vitro studies. Interestingly, a more complete MET, including E-cadherin re-expression correctly localized at cell membranes, was obtained in in vivo xenograft models, thus indicating the requirement of direct contacts between tumor cells and the surrounding microenvironment as well as the presence of some essential factors for SCD5 complete function.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| | - Giada Pontecorvi
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| | - Alessandro Gulino
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Marina Petrini
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Lisabianca Bottero
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| | - Alessandra Carè
- Center for Gender-Specific Medicine, Oncology Unit-Istituto Superiore di Sanita', Rome, Italy
| |
Collapse
|
81
|
Caramel J, Ligier M, Puisieux A. Pleiotropic Roles for ZEB1 in Cancer. Cancer Res 2017; 78:30-35. [PMID: 29254997 DOI: 10.1158/0008-5472.can-17-2476] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
ZEB1 is a prime element of a network of transcription factors that controls epithelial-to-mesenchymal transition (EMT), a reversible embryonic transdifferentiation program that allows partial or complete transition from an epithelial to a mesenchymal state. Aberrant expression of ZEB1 has been reported in a variety of human cancers, where it is generally believed to foster migration, invasion, and metastasis. Over the past few years, in vitro and in vivo observations have highlighted unsuspected intrinsic oncogenic functions of ZEB1 that impact tumorigenesis from its earliest stages. Located downstream of regulatory processes that integrate microenvironmental signals and directly implicated in feedback loops controlled by miRNAs, ZEB1 appears to be a central switch that determines cell fate. Its expression fosters malignant transformation through the mitigation of critical oncosuppressive pathways and through the conferment of stemness properties. ZEB1 is also a key determinant of cell plasticity, endowing cells with the capacity to withstand an aberrant mitogenic activity, with a profound impact on the genetic history of tumorigenesis, and to adapt to the multiple constraints encountered over the course of tumor development. Cancer Res; 78(1); 30-35. ©2017 AACR.
Collapse
Affiliation(s)
- Julie Caramel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Maud Ligier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Alain Puisieux
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France. .,LabEx DEVweCAN, Université de Lyon, Lyon, France
| |
Collapse
|
82
|
low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017; 8:1988. [PMID: 29215016 PMCID: PMC5719420 DOI: 10.1038/s41467-017-01573-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the “phenotype switching” model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival. The aggressive nature of melanoma cells relies on their ability to switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state; however, the mechanisms governing this switch are unclear. Here, using in vivo models of human melanoma, the authors show that CD271 is a key regulator of phenotype switching and metastasis formation.
Collapse
|
83
|
Cohen-Solal KA, Kaufman HL, Lasfar A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res 2017; 31:241-252. [DOI: 10.1111/pcmr.12666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Karine A. Cohen-Solal
- Rutgers Cancer Institute of New Jersey; New Brunswick NJ USA
- Section of Surgical Oncology Research; Department of Surgery; Rutgers Robert Wood Johnson Medical School; Rutgers, The State University of New Jersey; New Brunswick NJ USA
| | - Howard L. Kaufman
- Department of Surgery; Rutgers University; New Brunswick NJ USA
- Department of Medicine; Rutgers University; New Brunswick NJ USA
| | - Ahmed Lasfar
- Rutgers Cancer Institute of New Jersey; New Brunswick NJ USA
- Department of Pharmacology and Toxicology; Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
84
|
Romano G, Kwong LN. miRNAs, Melanoma and Microenvironment: An Intricate Network. Int J Mol Sci 2017; 18:ijms18112354. [PMID: 29112174 PMCID: PMC5713323 DOI: 10.3390/ijms18112354] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
miRNAs are central players in cancer biology and they play a pivotal role in mediating the network communication between tumor cells and their microenvironment. In melanoma, miRNAs can impair or facilitate a wide array of processes, and here we will focus on: the epithelial to mesenchymal transition (EMT), the immune milieu, and metabolism. Multiple miRNAs can affect the EMT process, even at a distance, for example through exosome-mediated mechanisms. miRNAs also strongly act on some components of the immune system, regulating the activity of key elements such as antigen presenting cells, and can facilitate an immune evasive/suppressive phenotype. miRNAs are also involved in the regulation of metabolic processes, specifically in response to hypoxic stimuli where they can mediate the metabolic switch from an oxidative to a glycolytic metabolism. Overall, this review discusses and summarizes recent findings on miRNA regulation in the melanoma tumor microenvironment, analyzing their potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
85
|
Guo C, Ma J, Deng G, Qu Y, Yin L, Li Y, Han Y, Cai C, Shen H, Zeng S. ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial - Mesenchymal Transition in Colon Cancer Cells. J Cancer 2017; 8:3555-3566. [PMID: 29151941 PMCID: PMC5687171 DOI: 10.7150/jca.20952] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Oxaliplatin (OXA) chemotherapy is widely used in the clinical treatment of colon cancer. However, chemo-resistance is still a barrier to effective chemotherapy in cases of colon cancer. Accumulated evidence suggests that the epithelial mesenchymal transition (EMT) may be a critical factor in chemo-sensitivity. The present study investigated the effects of Zinc finger E-box binding homeobox 1 (ZEB1) on OXA-sensitivity in colon cancer cells. Method: ZEB1expression and its correlation with clinicopathological characteristics were analyzed using tumor tissue from an independent cohort consisting of 118 colon cancer (CC) patients who receiving OXA-based chemotherapy. ZEB1 modulation of OXA-sensitivity in colon cancer cells was investigated in a OXA-resistant subline of HCT116/OXA cells and the parental colon cancer cell line: HCT116. A CCK8 assay was carried out to determine OXA-sensitivity. qRT-PCR, Western blot, Scratch wound healing and transwell assays were used to determine EMT phenotype of colon cells. ZEB1 knockdown using small interfering RNA (siRNA) was used to determine the ZEB1 contribution to OXA-sensitivity in vitro and in vivo (in a nude mice xenograft model). Result: ZEB1 expression was significantly increased in colon tumor tissue, and was correlated with lymph node metastasis and the depth of invasion. Compared with the parental colon cancer cells (HCT116), HCT116/OXA cells exhibited an EMT phenotype characterized by up-regulated expression of ZEB1, Vimentin, MMP2 and MMP9, but down-regulated expression of E-cadherin. Transfection of Si-ZEB1 into HCT116/OXA cells significantly reversed the EMT phenotype and enhanced OXA-sensitivity in vitro and in vivo. Conclusion: HCT116/OXA cells acquired an EMT phenotype. ZEB1 knockdown effectively restored OXA-sensitivity by reversing EMT. ZEB1 is a potential therapeutic target for the prevention of OXA-resistance in colon cancer.
Collapse
Affiliation(s)
- Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Junli Ma
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Ganlu Deng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Yanlin Qu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Ling Yin
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Yiyi Li
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Ying Han
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Changjing Cai
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Shan Zeng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| |
Collapse
|
86
|
Ennen M, Keime C, Gambi G, Kieny A, Coassolo S, Thibault-Carpentier C, Margerin-Schaller F, Davidson G, Vagne C, Lipsker D, Davidson I. MITF-High and MITF-Low Cells and a Novel Subpopulation Expressing Genes of Both Cell States Contribute to Intra- and Intertumoral Heterogeneity of Primary Melanoma. Clin Cancer Res 2017; 23:7097-7107. [PMID: 28855355 DOI: 10.1158/1078-0432.ccr-17-0010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/21/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Understanding tumor heterogeneity is an important challenge in current cancer research. Transcription and epigenetic profiling of cultured melanoma cells have defined at least two distinct cell phenotypes characterized by distinctive gene expression signatures associated with high or low/absent expression of microphthalmia-associated transcription factor (MITF). Nevertheless, heterogeneity of cell populations and gene expression in primary human tumors is much less well characterized.Experimental Design: We performed single-cell gene expression analyses on 472 cells isolated from needle biopsies of 5 primary human melanomas, 4 superficial spreading, and one acral melanoma. The expression of MITF-high and MITF-low signature genes was assessed and compared to investigate intra- and intertumoral heterogeneity and correlated gene expression profiles.Results: Single-cell gene expression analyses revealed varying degrees of intra- and intertumor heterogeneity conferred by the variable expression of distinct sets of genes in different tumors. Expression of MITF partially correlated with that of its known target genes, while SOX10 expression correlated best with PAX3 and ZEB2 Nevertheless, cells simultaneously expressing MITF-high and MITF-low signature genes were observed both by single-cell analyses and RNAscope.Conclusions: Single-cell analyses can be performed on limiting numbers of cells from primary human melanomas revealing their heterogeneity. Although tumors comprised variable proportions of cells with the MITF-high and MITF-low gene expression signatures characteristic of melanoma cultures, primary tumors also comprised cells expressing markers of both signatures defining a novel cell state in tumors in vivoClin Cancer Res; 23(22); 7097-107. ©2017 AACR.
Collapse
Affiliation(s)
- Marie Ennen
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Giovanni Gambi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Alice Kieny
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France.,Faculté de Médecine and Service de Dermatologie, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sebastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Christelle Thibault-Carpentier
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Fanny Margerin-Schaller
- Faculté de Médecine and Service de Dermatologie, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Constance Vagne
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Dan Lipsker
- Faculté de Médecine and Service de Dermatologie, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France. .,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| |
Collapse
|
87
|
Gunarta IK, Li R, Nakazato R, Suzuki R, Boldbaatar J, Suzuki T, Yoshioka K. Critical role of glioma-associated oncogene homolog 1 in maintaining invasive and mesenchymal-like properties of melanoma cells. Cancer Sci 2017; 108:1602-1611. [PMID: 28635133 PMCID: PMC5543504 DOI: 10.1111/cas.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is the most aggressive form of skin cancer. This aggressiveness appears to be due to the cancer cells' ability to reversibly switch between phenotypes with non-invasive and invasive potential, and microphthalmia-associated transcription factor (MITF) is known to play a central role in this process. The transcription factor glioma-associated oncogene homolog 1 (GLI1) is a component of the canonical and noncanonical sonic hedgehog pathways. Although GLI1 has been suggested to be involved in melanoma progression, its precise role and the mechanism underlying invasion remain unclear. Here we investigated whether and how GLI1 is involved in the invasive ability of melanoma cells. Gli1 knockdown (KD) melanoma cell lines, established by using Gli1-targeting lentiviral short hairpin RNA, exhibited a markedly reduced invasion ability, but their MITF expression and activity were the same as controls. Gli1 KD melanoma cells also led to less lung metastasis in mice compared with control melanoma cells. Furthermore, the Gli1 KD melanoma cells underwent a mesenchymal-to-epithelial-like transition, accompanied by downregulation of the epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (EMT-TF) Snail1, Zeb1 and Twist1, but not Snail2 or Zeb2. Collectively, these results indicate that GLI1 is important for maintaining the invasive and mesenchymal-like properties of melanoma cells independent of MITF, most likely by modulating a subset of EMT-TF. Our findings provide new insight into how heterogeneity and plasticity are achieved and regulated in melanoma.
Collapse
Affiliation(s)
- I Ketut Gunarta
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Rong Li
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Ryota Nakazato
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Ryusuke Suzuki
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Jambaldorj Boldbaatar
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Takeshi Suzuki
- Division of Functional GenomicCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Katsuji Yoshioka
- Division of Molecular Cell SignalingCancer Research InstituteKanazawa UniversityKanazawaJapan
| |
Collapse
|
88
|
Sakata J, Kajiyama H, Suzuki S, Utsumi F, Niimi K, Sekiya R, Shibata K, Senga T, Kikkawa F. Impact of positive ZEB1 expression in patients with epithelial ovarian carcinoma as an oncologic outcome-predicting indicator. Oncol Lett 2017; 14:4287-4293. [PMID: 28943941 DOI: 10.3892/ol.2017.6658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Several previous studies have revealed that the expression of zinc finger E-box binding homeobox 1 (ZEB1) in solid malignancies has an important significance on the clinical outcome of patients. However, the association between ZEB1 expression and survival in patients with epithelial ovarian carcinoma (EOC) remains unclear. The objective of the present study was to examine the extent of ZEB1 expression in EOC using immunohistochemical staining and investigate its association with patient outcome. A total of 40 patients with EOC initially treated with cytoreductive surgery and systematic chemotherapy were enrolled. ZEB1 expression was immunohistochemically categorized as negative, weak, moderate and strong according to the size of the staining area, and intensity. Subsequently, the associations between ZEB1 expression and recurrence/progression-free survival (RFS) rate were examined. The median age of patients in the current study was 54 years old (range, 22-72 years old). Among these patients, 15 (37.5%) exhibited International Federation of Gynecology and Obstetrics stage I disease, and 10 (25.0%), 13 (32.5%), and 2 (5%) had stage II, III, and IV disease, respectively. No patients with negative expression of ZEB1 experienced recurrence. In addition, ZEB1 expression was identified to be a significant predictor of a poorer RFS rate compared with negative expression (negative vs. weak, moderate and strong, P=0.0126). Furthermore, multivariate analyses revealed that moderate and strong ZEB1 expression levels were significant prognostic indicators of a poorer RFS rate in patients with EOC (hazard ratio, 2.265; 95% confidence interval, 1.072-8.021; P=0.0349). Confining analysis to patients with the clear-cell/mucinous histological type, those with moderate/strong ZEB1 expression demonstrated a significantly poorer RFS rate (P=0.0025). Positive ZEB1 expression may be an indicator to predict unfavorable RFS in patients with EOC.
Collapse
Affiliation(s)
- Jun Sakata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Ryuichiro Sekiya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Takeshi Senga
- Division of Tumor Biology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
89
|
Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol 2017; 44:10-24. [DOI: 10.1016/j.semcancer.2017.02.011] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
|
90
|
Noguchi K, Dalton AC, Howley BV, McCall BJ, Yoshida A, Diehl JA, Howe PH. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines. PLoS One 2017; 12:e0177830. [PMID: 28545079 PMCID: PMC5435346 DOI: 10.1371/journal.pone.0177830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023] Open
Abstract
ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Breege V. Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Buckley J. McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Akihiro Yoshida
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
- Hollings Cancer Center, Charleston, SC, United States of America
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
- Hollings Cancer Center, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
91
|
Abl kinase regulation by BRAF/ERK and cooperation with Akt in melanoma. Oncogene 2017; 36:4585-4596. [PMID: 28368422 PMCID: PMC5552414 DOI: 10.1038/onc.2017.76] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/08/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
The melanoma incidence continues to increase, and the disease remains incurable for many due to its metastatic nature and high rate of therapeutic resistance. In particular, melanomas harboring BRAFV600E and PTEN mutations often are resistant to current therapies, including BRAF inhibitors (BRAFi) and immune checkpoint inhibitors. Abl kinases (Abl/Arg) are activated in melanomas and drive progression; however, their mechanism of activation has not been established. Here we elucidate a novel link between BRAFV600E/ERK signaling and Abl kinases. We demonstrate that BRAFV600E/ERK play a critical role in binding, phosphorylating and regulating Abl localization and Abl/Arg activation by Src family kinases. Importantly, Abl/Arg activation downstream of BRAFV600E has functional and biological significance, driving proliferation, invasion, as well as switch in epithelial-mesenchymal-transition transcription factor expression, which is known to be critical for melanoma cells to shift between differentiated and invasive states. Finally, we describe findings of high translational significance by demonstrating that Abl/Arg cooperate with PI3K/Akt/PTEN, a parallel pathway that is associated with intrinsic resistance to BRAFi and immunotherapy, as Abl/Arg and Akt inhibitors cooperate to prevent viability, cell cycle progression and in vivo growth of melanomas harboring mutant BRAF/PTEN. Thus, these data not only provide mechanistic insight into Abl/Arg regulation during melanoma development, but also pave the way for the development of new strategies for treating patients with melanomas harboring mutant BRAF/PTEN, which often are refractory to current therapies.
Collapse
|
92
|
Niu J, Chu Y, Huang YF, Chong YS, Jiang ZH, Mao ZW, Peng LH, Gao JQ. Transdermal Gene Delivery by Functional Peptide-Conjugated Cationic Gold Nanoparticle Reverses the Progression and Metastasis of Cutaneous Melanoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9388-9401. [PMID: 28252938 DOI: 10.1021/acsami.6b16378] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Permeability barrier imposed by stratum corneum makes an extreme challenge for the topical delivery of plasmid DNA (pDNA), which is widely used in gene therapy. Existing techniques to overcome the skin barrier for bio-macromolecules delivery rely on sophisticated mechanical devices. It is still a big challenge to treat the skin cancer, for example, melanoma, that initiates in the dermal layer by topical gene therapy. To facilitate the skin penetration of pDNA deeply into the melanoma tissues, we here present a cell-penetrating peptide and cationic poly(ethyleneimine) conjugated gold nanoparticle (AuPT) that can compact the pDNAs into cationic nanocomplexes and penetrate through the intact stratum corneum without any additional enhancement used. Moreover, the AuPT is highly efficient in stimulating the intracellular uptake and nuclear targeting of the pDNAs in cells, which guarantees the effective transfection. This study provides evidence that penetrating peptide conjugated cationic gold nanoparticle offers a promising vehicle for both the skin penetration and transfection of pDNAs, possessing great potential in topical gene therapy.
Collapse
Affiliation(s)
- Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yang Chu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yan-Fen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yee-Song Chong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| |
Collapse
|
93
|
Amoroso MR, Matassa DS, Agliarulo I, Avolio R, Maddalena F, Condelli V, Landriscina M, Esposito F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:163-198. [PMID: 28427560 DOI: 10.1016/bs.apcsb.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts. In recent years, oxidative phosphorylation has been linked to a remodeling of inflammatory response due to autocrine or paracrine secretion of interleukines that, in turn, induces a regulation of gene expression involving, among others, molecules responsible for the onset of drug resistance. This process is especially relevant in ovarian cancer, characterized by low survival, high frequency of disease relapse and chemoresistance. Recently, the molecular chaperone TRAP1 (tumor necrosis factor-associated protein 1) has been identified as a key junction molecule in these processes in ovarian cancer: in fact, TRAP1 mediates a metabolic switch toward oxidative phosphorylation that, in turn, triggers cytokines secretion, with consequent gene expression remodeling, finally leading to cisplatin resistance and epithelial-to-mesenchymal transition in ovarian cancer models. This review summarizes how metabolism, chemoresistance, inflammation, and epithelial-to-mesenchymal transition are strictly interconnected, and how TRAP1 stays at the crossroads of these processes, thus shedding new lights on molecular networks at the basis of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Maddalena
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Matteo Landriscina
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy; Università degli Studi di Foggia, Foggia, Italy.
| | | |
Collapse
|
94
|
David JM, Dominguez C, Palena C. Pharmacological and immunological targeting of tumor mesenchymalization. Pharmacol Ther 2016; 170:212-225. [PMID: 27916651 DOI: 10.1016/j.pharmthera.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells. There are now a variety of innovative pharmacological approaches to preferentially target tumor cells that have acquired mesenchymal features, including cytotoxic agents that directly kill these cells, and inhibitors that block or revert the process of mesenchymalization. Furthermore, novel immunological strategies have been developed to engage the immune system in seeking out and destroying mesenchymalized tumor cells. This review highlights the relevance of phenotypic plasticity in tumor biology, and discusses recently developed pharmacological and immunological means of targeting this phenomenon.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
95
|
Richard G, Dalle S, Monet MA, Ligier M, Boespflug A, Pommier RM, de la Fouchardière A, Perier-Muzet M, Depaepe L, Barnault R, Tondeur G, Ansieau S, Thomas E, Bertolotto C, Ballotti R, Mourah S, Battistella M, Lebbé C, Thomas L, Puisieux A, Caramel J. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol Med 2016; 8:1143-1161. [PMID: 27596438 PMCID: PMC5048365 DOI: 10.15252/emmm.201505971] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas. Here, we show that high levels of ZEB1 expression are associated with inherent resistance to MAPKi in BRAFV600-mutated cell lines and tumors. ZEB1 levels are also elevated in melanoma cells with acquired resistance and in biopsies from patients relapsing while under treatment. ZEB1 overexpression is sufficient to drive the emergence of resistance to MAPKi by promoting a reversible transition toward a MITFlow/p75high stem-like and tumorigenic phenotype. ZEB1 inhibition promotes cell differentiation, prevents tumorigenic growth in vivo, sensitizes naive melanoma cells to MAPKi, and induces cell death in resistant cells. Overall, our results demonstrate that ZEB1 is a major driver of melanoma cell plasticity, driving drug adaptation and phenotypic resistance to MAPKi.
Collapse
Affiliation(s)
- Geoffrey Richard
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Marie-Ambre Monet
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Maud Ligier
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Amélie Boespflug
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Roxane M Pommier
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Arnaud de la Fouchardière
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Department of Biopathology, Centre Léon Bérard, Lyon, France
| | - Marie Perier-Muzet
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Lauriane Depaepe
- Department of Biopathology, Hospices Civils de Lyon CH Lyon Sud, Pierre-Bénite Cedex, France
| | - Romain Barnault
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Garance Tondeur
- Department of Biopathology, Hospices Civils de Lyon CH Lyon Sud, Pierre-Bénite Cedex, France
| | - Stéphane Ansieau
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Corine Bertolotto
- INSERM U1065 Equipe 1 Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome Equipe labellisée Ligue 2013 Centre Méditerranéen de Médecine Moléculaire, Nice, France Université de Nice Sophia-Antipolis UFR Médecine, Nice, France CHU Nice Service de Dermatologie, Nice, France
| | - Robert Ballotti
- INSERM U1065 Equipe 1 Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome Equipe labellisée Ligue 2013 Centre Méditerranéen de Médecine Moléculaire, Nice, France Université de Nice Sophia-Antipolis UFR Médecine, Nice, France CHU Nice Service de Dermatologie, Nice, France
| | - Samia Mourah
- APHP INSERM U976 Saint Louis Hospital Pharmacology-Genetic Laboratory Paris, Paris, France
| | - Maxime Battistella
- Department of Pathology, INSERM U1165 Université Paris Diderot AP-HP Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbé
- Department of Dermatology, APHP Saint Louis Hospital, Paris, France INSERM U976 University Paris 7 Diderot, Paris, France
| | - Luc Thomas
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Dermatology Unit, Hospices Civils de Lyon CH Lyon Sud, Pierre Bénite Cedex, France
| | - Alain Puisieux
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France Institut Universitaire de France, Paris, France
| | - Julie Caramel
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France Cancer Research Center of Lyon, CNRS UMR 5286, Lyon, France Université de Lyon, Lyon, France ISPB Université Lyon 1, Lyon, France Centre Léon Bérard, Lyon, France
| |
Collapse
|