51
|
Madsen HT, Bajraktari N, Hélix-Nielsen C, Van der Bruggen B, Søgaard EG. Use of biomimetic forward osmosis membrane for trace organics removal. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
52
|
Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta Gen Subj 2014; 1840:1596-604. [DOI: 10.1016/j.bbagen.2013.09.017] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
53
|
Adelman JL, Sheng Y, Choe S, Abramson J, Wright EM, Rosenberg JM, Grabe M. Structural determinants of water permeation through the sodium-galactose transporter vSGLT. Biophys J 2014; 106:1280-9. [PMID: 24655503 PMCID: PMC3984995 DOI: 10.1016/j.bpj.2014.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 01/26/2023] Open
Abstract
Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 μs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1.
Collapse
Affiliation(s)
- Joshua L Adelman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Sheng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seungho Choe
- School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea
| | - Jeff Abramson
- Department of Physiology, University of California, Los Angeles, California
| | - Ernest M Wright
- Department of Physiology, University of California, Los Angeles, California
| | - John M Rosenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Michael Grabe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California.
| |
Collapse
|
54
|
Reale R, English NJ, Garate JA, Marracino P, Liberti M, Apollonio F. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: A molecular dynamics study of field effects and relaxation. J Chem Phys 2013; 139:205101. [DOI: 10.1063/1.4832383] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
55
|
Gravelle S, Joly L, Detcheverry F, Ybert C, Cottin-Bizonne C, Bocquet L. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci U S A 2013; 110:16367-72. [PMID: 24067650 PMCID: PMC3799357 DOI: 10.1073/pnas.1306447110] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances.
Collapse
Affiliation(s)
- Simon Gravelle
- Institut Lumière Matière, Unité Mixte de Recherche 5306, Université Lyon 1–Centre National de la Recherche Scientifique, Université de Lyon, 69622 Villeurbanne, France
| | - Laurent Joly
- Institut Lumière Matière, Unité Mixte de Recherche 5306, Université Lyon 1–Centre National de la Recherche Scientifique, Université de Lyon, 69622 Villeurbanne, France
| | - François Detcheverry
- Institut Lumière Matière, Unité Mixte de Recherche 5306, Université Lyon 1–Centre National de la Recherche Scientifique, Université de Lyon, 69622 Villeurbanne, France
| | - Christophe Ybert
- Institut Lumière Matière, Unité Mixte de Recherche 5306, Université Lyon 1–Centre National de la Recherche Scientifique, Université de Lyon, 69622 Villeurbanne, France
| | - Cécile Cottin-Bizonne
- Institut Lumière Matière, Unité Mixte de Recherche 5306, Université Lyon 1–Centre National de la Recherche Scientifique, Université de Lyon, 69622 Villeurbanne, France
| | | |
Collapse
|
56
|
Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Nat Struct Mol Biol 2013; 20:1085-92. [PMID: 23893133 PMCID: PMC3766450 DOI: 10.1038/nsmb.2630] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/05/2013] [Indexed: 11/25/2022]
Abstract
Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits.
Collapse
Affiliation(s)
- Steve L Reichow
- 1] Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA. [2]
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Hu G, Qi L, Dou X, Wang J. The influences of protonation state of histidine on aromatic/arginine region of aquaporin-1 protein. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.718438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
58
|
Chen LY. Glycerol modulates water permeation through Escherichia coli aquaglyceroporin GlpF. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1786-93. [PMID: 23506682 DOI: 10.1016/j.bbamem.2013.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
Abstract
Among aquaglyceroporins that transport both water and glycerol across the cell membrane, Escherichia coli glycerol uptake facilitator (GlpF) is the most thoroughly studied. However, one question remains: Does glycerol modulate water permeation? This study answers this fundamental question by determining the three-dimensional potential of mean force of glycerol along the permeation path through GlpF's conducting pore. There is a deep well near the Asn-Pro-Ala (NPA) motifs (6.5kcal/mol below the bulk level) and a barrier near the selectivity filter (10.1kcal/mol above the well bottom). This profile owes its existence to GlpF's perfect steric arrangement: The glycerol-protein van der Waals interactions are attractive near the NPA but repulsive elsewhere in the conducting pore. In light of the single-file nature of waters and glycerols lining up in GlpF's amphipathic pore, it leads to the following conclusion: Glycerol modulates water permeation in the μM range. At mM concentrations, GlpF is glycerol-saturated and a glycerol residing in the well occludes the conducting pore. Therefore, water permeation is fully correlated to glycerol dissociation that has an Arrhenius activation barrier of 6.5kcal/mol. Validation of this theory is based on the existent in vitro data, some of which have not been given the proper attention they deserved: The Arrhenius activation barriers were found to be 7kcal/mol for water permeation and 9.6kcal/mol for glycerol permeation; The presence of up to 100mM glycerol did not affect the kinetics of water transport with very low permeability, in apparent contradiction with the existent theories that predicted high permeability (0M glycerol).
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
59
|
Chen LY. Glycerol inhibits water permeation through Plasmodium falciparum aquaglyceroporin. J Struct Biol 2013; 181:71-6. [PMID: 23108237 PMCID: PMC3525719 DOI: 10.1016/j.jsb.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum aquaglyceroporin (PfAQP) is a multifunctional membrane protein in the plasma membrane of P. falciparum, the parasite that causes the most severe form of malaria. The current literature has established the science of PfAQP's structure, functions, and hydrogen-bonding interactions but left unanswered the following fundamental question: does glycerol modulate water permeation through aquaglyceroporin that conducts both glycerol and water? This paper provides an affirmative answer to this question of essential importance to the protein's functions. On the basis of the chemical-potential profile of glycerol from the extracellular bulk region, throughout PfAQP's conducting channel, to the cytoplasmic bulk region, this study shows the existence of a bound state of glycerol inside aquaglyceroporin's permeation pore, from which the dissociation constant is approximately 14μM. A glycerol molecule occupying the bound state occludes the conducting pore through which permeating molecules line up in single file by hydrogen-bonding with one another and with the luminal residues of aquaglyceroporin. In this way, glycerol inhibits permeation of water and other permeants through aquaglyceroporin. The biological implications of this theory are discussed and shown to agree with the existent in vitro data. It turns out that the structure of aquaglyceroporin is perfect for the van der Waals interactions between the protein and glycerol to cause the existence of the bound state deep inside the conducting pore and, thus to play an unexpected but significant role in aquaglyceroporin's functions.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
60
|
Molecular dynamics of water in the neighborhood of aquaporins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:223-39. [DOI: 10.1007/s00249-012-0880-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 12/19/2022]
|
61
|
Hu G, Chen LY, Wang J. Insights into the mechanisms of the selectivity filter of Escherichia coli aquaporin Z. J Mol Model 2012; 18:3731-41. [PMID: 22392432 DOI: 10.1007/s00894-012-1379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Aquaporin Z (AQPZ) is a tetrameric protein that forms water channels in the cell membrane of Escherichia coli. The histidine residue (residue 174) in the selectivity filter (SF) region plays an important role in the transport of water across the membrane. In this work, we perform equilibrium molecular dynamics (MD) simulations to illustrate the gating mechanism of the SF and the influences of residue 174 in two different protonation states: Hsd174 with the proton at Nδ, and Hse174 with the proton at Nε. We calculate the pore radii in the SF region versus the simulation time. We perform steered MD to compute the free-energy profile, i.e., the potential of mean force (PMF) of a water molecule through the SF region. We conduct a quantum mechanics calculation of the binding energy of one water molecule with the residues in the SF region. The hydrogen bonds formed between the side chain of Hsd174 and the side chain of residue 189 (Arg189) play important roles in the selectivity mechanism of AQPZ. The radii of the pores, the hydrogen-bond analysis, and the free energies show that it is easier for water molecules to permeate through the SF region of AQPZ with residue 174 in the Hse state than in the Hsd state.
Collapse
Affiliation(s)
- Guodong Hu
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
62
|
Li X, Wang R, Tang C, Vararattanavech A, Zhao Y, Torres J, Fane T. Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf B Biointerfaces 2012; 94:333-40. [PMID: 22386862 DOI: 10.1016/j.colsurfb.2012.02.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/18/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
There has been a recent surge of interest to mimic the performance of natural cellular membranes by incorporating water channel proteins-aquaporins (AQPs) into various ultrathin films for water filtration applications. To make biomimetic membranes one of the most crucial steps is preparing a defect-free platform for AQPs incorporation on a suitable substrate. In this study two methods were used to prepare supported lipid membranes on NF membrane surfaces under a benign pH condition of 7.8. One method was direct vesicle fusion on a hydrophilic membrane NF-270; the other was vesicle fusion facilitated by hydraulic pressure on a modified hydrophilic NF-270 membrane whose surface has been spin-coated with positively charged lipids. Experiments revealed that the supported lipid membrane without AQPs prepared by the spin coating plus vesicle fusion had a much lower defect density than that prepared by vesicle fusion alone. It appears that the surface roughness and charge are the main factors determining the quality of the supported lipid membrane. Aquaporin Z (AqpZ) proteins were successfully incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes and its permeability was measured by the stopped-flow experimental procedure. However, after the proteoliposomes have been fused onto the modified substrate, the AqpZ function in the resultant membrane was not observed and AFM images showed distinct aggregations of unfused proteoliposomes or AqpZ proteins on the substrate surface. It is speculated that the inhibition of AqpZ function may be caused by the low lipid mobility on the NF membrane surface. Further investigations to evaluate and optimize the structure-performance relationship are required.
Collapse
Affiliation(s)
- Xuesong Li
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
63
|
Vestergaard CL, Flyvbjerg H, Møller IM. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells? FRONTIERS IN PLANT SCIENCE 2012; 3:295. [PMID: 23293647 PMCID: PMC3533182 DOI: 10.3389/fpls.2012.00295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/10/2012] [Indexed: 05/21/2023]
Abstract
Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits on such signals as regards signal origin, frequency, amplitude, and distance. Then we establish the impact of ROS-removing enzymes on the ability of H(2)O(2) to transmit signals. Finally, we consider to what extent cytoplasmic streaming distorts signals. This modeling allows us to predict the conditions under which diffusion-mediated signaling is possible. We show that purely diffusive transmission of intracellular information by H(2)O(2) over a distance of 1 μm (typical distance between organelles, which may function as relay stations) is possible at frequencies well above 1 Hz, which is the highest frequency observed experimentally. This allows both frequency and amplitude modulation of the signal. Signaling over a distance of 10 μm (typical distance between the PM and the nucleus) may be possible, but requires high signal amplitudes or, equivalently, a very low detection threshold. Furthermore, at this longer distance a high rate of enzymatic degradation is required to make signaling at frequencies above 0.1 Hz possible. In either case, cytoplasmic streaming does not seriously disturb signals. We conclude that although purely diffusion-mediated signaling without relaying stations is theoretically possible, it is unlikely to work in practice, since it requires a much faster enzymatic degradation and a much lower cellular background concentration of H(2)O(2) than observed experimentally.
Collapse
Affiliation(s)
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of DenmarkKongens Lyngby, Denmark
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus UniversitySlagelse, Denmark
- *Correspondence: Ian Max Møller, Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark. e-mail:
| |
Collapse
|
64
|
Araya-Secchi R, Garate JA, Holmes DS, Perez-Acle T. Molecular dynamics study of the archaeal aquaporin AqpM. BMC Genomics 2011; 12 Suppl 4:S8. [PMID: 22369250 PMCID: PMC3287591 DOI: 10.1186/1471-2164-12-s4-s8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Aquaporins are a large family of transmembrane channel proteins that are present throughout all domains of life and are implicated in human disorders. These channels, allow the passive but selective movement of water and other small neutral solutes across cell membranes. Aquaporins have been classified into two sub-families: i) strict aquaporins that only allow the passage of water and ii) the less selective aquaglyceroporins that transport water and other neutral solutes, such as glycerol, CO2 or urea. Recently, the identification and characterization of a number of archaeal and bacterial aquaporins suggested the existence of a third sub-family; one that is neither a strict aquaporin nor an aquaglyceroporin. The function and phylogeny of this third family is still a matter of debate. Results Twenty nanosecond molecular dynamics (MD) simulation of a fully hydrated tetramer of AqpM embedded in a lipid bilayer permitted predictions to be made of key biophysical parameters including: single channel osmotic permeability constant (pf), single channel diffusive permeability constant (pd), channel radius, potential water occupancy of the channel and water orientation inside the pore. These properties were compared with those of well characterized representatives of the two main aquaporin sub-families. Results show that changes in the amino acid composition of the aromatic/arginine region affect the size and polarity of the selectivity filter (SF) and could help explain the difference in water permeability between aquaporins. In addition, MD simulation results suggest that AqpM combines characteristics of strict aquaporins, such as the narrow SF and channel radius, with those of aquaglyceroporins, such as a more hydrophobic and less polar SF. Conclusions MD simulations of AqpM extend previous evidence that this archaeal aquaporin exhibits hybrid features intermediate between the two known aquaporin sub-families, supporting the idea that it may constitute a member of a novel class of aquaporins.
Collapse
Affiliation(s)
- Raul Araya-Secchi
- Computational Biology Laboratory, Centro de Modelamiento Matematico, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
65
|
Wood ML, Schow EV, Freites JA, White SH, Tombola F, Tobias DJ. Water wires in atomistic models of the Hv1 proton channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:286-93. [PMID: 21843503 DOI: 10.1016/j.bbamem.2011.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/06/2023]
Abstract
The voltage-gated proton channel (Hv1) is homologous to the voltage-sensing domain (VSD) of voltage-gated potassium (Kv) channels but lacks a separate pore domain. The Hv1 monomer has dual functions: it gates the proton current and also serves as the proton conduction pathway. To gain insight into the structure and dynamics of the yet unresolved proton permeation pathway, we performed all-atom molecular dynamics simulations of two different Hv1 homology models in a lipid bilayer in excess water. The structure of the Kv1.2-Kv2.1 paddle-chimera VSD was used as template to generate both models, but they differ in the sequence alignment of the S4 segment. In both models, we observe a water wire that extends through the membrane, whereas the corresponding region is dry in simulations of the Kv1.2-Kv2.1 paddle-chimera. We find that the kinetic stability of the water wire is dependent upon the identity and location of the residues lining the permeation pathway, in particular, the S4 arginines. A measurement of water transport kinetics indicates that the water wire is a relatively static feature of the permeation pathway. Taken together, our results suggest that proton conduction in Hv1 may occur via Grotthuss hopping along a robust water wire, with exchange of water molecules between inner and outer ends of the permeation pathway minimized by specific water-protein interactions. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Mona L Wood
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | | | |
Collapse
|
66
|
Mercury inhibits the L170C mutant of aquaporin Z by making waters clog the water channel. Biophys Chem 2011; 160:69-74. [PMID: 21963041 DOI: 10.1016/j.bpc.2011.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
We conduct in silico experiments of the L170C mutant of the Escherichia coli aquaporin Z (AQPZ) with and without mercury bonded to residue Cys 170. We find that bonding mercury to Cys 170 does not induce consequential structural changes to the protein. We further find that mercury does not stick in the middle of the water channel to simply occlude water permeation, but resides on the wall of the water pore. However, we observe that the water permeation coefficient of L170C-Hg(+) (with one mercury ion bonded to Cys 170) is approximately half of that of the mercury-free L170C. We examine the interactions between the mercury ion and the waters in its vicinity and find that five to six waters are strongly attracted by the mercury ion, occluding the space of the water channel. Therefore we conclude that mercury, at low concentration, inhibits AQPZ-L170C mutant by making water molecules clog the water channel.
Collapse
|
67
|
Xin L, Su H, Nielsen CH, Tang C, Torres J, Mu Y. Water permeation dynamics of AqpZ: A tale of two states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1581-6. [DOI: 10.1016/j.bbamem.2011.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/27/2011] [Accepted: 02/01/2011] [Indexed: 11/30/2022]
|
68
|
Garate JA, English NJ, MacElroy JMD. Human aquaporin 4 gating dynamics in dc and ac electric fields: A molecular dynamics study. J Chem Phys 2011; 134:055110. [DOI: 10.1063/1.3529428] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
69
|
Wang Y, Shaikh SA, Tajkhorshid E. Exploring transmembrane diffusion pathways with molecular dynamics. Physiology (Bethesda) 2010; 25:142-54. [PMID: 20551228 DOI: 10.1152/physiol.00046.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transmembrane exchange of materials is a fundamental process in biology. Molecular dynamics provides a powerful method to investigate in great detail various aspects of the phenomenon, particularly the permeation of small uncharged molecules, which continues to pose a challenge to experimental studies. We will discuss some of the recent simulation studies investigating the role of lipid-mediated and protein-mediated mechanisms in permeation of water and gas molecules across the membrane.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
70
|
Savage DF, O’Connell JD, Miercke LJW, Finer-Moore J, Stroud RM. Structural context shapes the aquaporin selectivity filter. Proc Natl Acad Sci U S A 2010; 107:17164-9. [PMID: 20855585 PMCID: PMC2951435 DOI: 10.1073/pnas.1009864107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquaporins are transmembrane channels that facilitate the permeation of water and small, uncharged amphipathic molecules across cellular membranes. One distinct aquaporin subfamily contains pure water channels, whereas a second subfamily contains channels that conduct small alditols such as glycerol, in addition to water. Distinction between these substrates is central to aquaporin function, though the contributions of protein structural motifs required for selectivity are not yet fully characterized. To address this question, we sequentially engineered three signature amino acids of the glycerol-conducting subfamily into the Escherichia coli water channel aquaporin Z (AqpZ). Functional analysis of these mutant channels showed a decrease in water permeability but not the expected increase in glycerol conduction. Using X-ray crystallography, we determined the atomic resolution structures of the mutant channels. The structures revealed a channel surprisingly similar in size to the wild-type AqpZ pore. Comparison with measured rates of transport showed that, as the size of the selectivity filter region of the channel approaches that of water, channel hydrophilicity dominated water conduction energetics. In contrast, the major determinant of selectivity for larger amphipathic molecules such as glycerol was channel cross-section size. Finally, we find that, although the selectivity filter region is indeed central to substrate transport, other structural elements that do not directly interact with the substrates, such as the loop connecting helices M6 and M7, and the C loop between helices C4 and C5, play an essential role in facilitating selectivity.
Collapse
Affiliation(s)
- David F. Savage
- Graduate Group in Biophysics, and
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517
| | - Joseph D. O’Connell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517
| | - Larry J. W. Miercke
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517
| | - Janet Finer-Moore
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517
| | - Robert M. Stroud
- Graduate Group in Biophysics, and
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517
| |
Collapse
|
71
|
Liu J, Fan J, Tang M, Cen M, Yan J, Liu Z, Zhou W. Water Diffusion Behaviors and Transportation Properties in Transmembrane Cyclic Hexa-, Octa- and Decapeptide Nanotubes. J Phys Chem B 2010; 114:12183-92. [DOI: 10.1021/jp1039207] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian Liu
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| | - Jianfen Fan
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| | - Min Tang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| | - Min Cen
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| | - Jianfeng Yan
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| | - Zhao Liu
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| | - Weiqun Zhou
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China, and School of Computer Science & Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
72
|
Qiu H, Ma S, Shen R, Guo W. Dynamic and energetic mechanisms for the distinct permeation rate in AQP1 and AQP0. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:318-26. [DOI: 10.1016/j.bbamem.2009.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/27/2009] [Accepted: 11/14/2009] [Indexed: 10/20/2022]
|
73
|
Aponte-Santamaría C, Hub JS, de Groot BL. Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin. Phys Chem Chem Phys 2010; 12:10246-54. [DOI: 10.1039/c004384m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Ludewig U, Dynowski M. Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Cell Mol Life Sci 2009; 66:3161-75. [PMID: 19565186 PMCID: PMC11115745 DOI: 10.1007/s00018-009-0075-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Plants contain a large number of aquaporins with different selectivity. These channels generally conduct water, but some additionally conduct NH(3), CO(2) and/or H(2)O(2). The experimental evidence and molecular basis for the transport of a given solute, the validation with molecular dynamics simulations and the physiological impact of the selectivity are reviewed here. The aromatic/arginine (ar/R) constriction is most important for solute selection, but the exact pore requirements for efficient conduction of small solutes remain difficult to predict. Yeast growth assays are valuable for screening substrate selectivity and are explicitly shown for hydrogen peroxide and methylamine, a transport analog of ammonia. Independent assays need to address the relevance of different substrates for each channel in its physiological context. This is emphasized by the fact that several plant NIP channels, which conduct several solutes, are specifically involved in the transport of metalloids, such as silicic acid, arsenite, or boric acid in planta.
Collapse
Affiliation(s)
- Uwe Ludewig
- Institute of Botany, Darmstadt University of Technology, Schnittspahnstr. 10, 64287, Darmstadt, Germany.
| | | |
Collapse
|
75
|
Hovijitra NT, Wuu JJ, Peaker B, Swartz JR. Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol Bioeng 2009; 104:40-9. [PMID: 19557835 DOI: 10.1002/bit.22385] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The challenges involved in producing sufficient quantities of aquaporins for precise biophysical characterization have limited our knowledge of this important class of molecules. This article describes a cell-free protein synthesis method for producing high concentrations of the E. coli water transporter, aquaporin Z (AqpZ), in synthetic liposomes. To our knowledge, this is the first report of in vitro synthesis of a membrane protein directly into synthetic liposomes with verified function, (i.e., transport activity and selectivity). Titration of DOPC lipid vesicles added to the cell-free reaction show that production yields of active AqpZ are dependent on the concentration of DOPC lipid vesicles added to the cell-free reaction, with 224 +/- 24 lipids required per aquaporin monomer. Supplementation of the signal recognition particle receptor (FtsY) to the cell-free reaction increases production of vesicle-associated AqpZ but not active AqpZ. Cell-free reactions using 7 mg/mL lipids that were not supplemented with FtsY produced 507 +/- 11 microg/mL of vesicle-associated AqpZ that exhibited a specific water transport activity of (2.2 +/- 0.3) x 10(-14) cm(3) s(-1) monomer(-1). Proteinase K protection, activation energy determination, and selectivity against glycerol and urea transport also confirmed the production of correctly folded AqpZ. This technique is capable of producing milligram quantities of aquaporin that can be readily assayed for function, facilitating biophysical characterization and high-throughput analysis.
Collapse
Affiliation(s)
- Norman T Hovijitra
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
76
|
Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem 2009; 395:697-718. [DOI: 10.1007/s00216-009-2960-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/04/2023]
|
77
|
Khandelia H, Jensen MØ, Mouritsen OG. To Gate or Not To Gate: Using Molecular Dynamics Simulations To Morph Gated Plant Aquaporins into Constitutively Open Conformations. J Phys Chem B 2009; 113:5239-44. [DOI: 10.1021/jp809152c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Himanshu Khandelia
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Morten Ø. Jensen
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ole G. Mouritsen
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
78
|
Portella G, de Groot BL. Determinants of water permeability through nanoscopic hydrophilic channels. Biophys J 2009; 96:925-38. [PMID: 19186131 DOI: 10.1016/j.bpj.2008.09.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/22/2008] [Indexed: 11/17/2022] Open
Abstract
Naturally occurring pores show a variety of polarities and sizes that are presumably directly linked to their biological function. Many biological channels are selective toward permeants similar or smaller in size than water molecules, and therefore their pores operate in the regime of single-file water pores. Intrinsic factors affecting water permeability through such pores include the channel-membrane match, the structural stability of the channel, the channel geometry and channel-water affinity. We present an extensive molecular dynamics study on the role of the channel geometry and polarity on the water osmotic and diffusive permeability coefficients. We show that the polarity of the naturally occurring peptidic channels is close to optimal for water permeation, and that the water mobility for a wide range of channel polarities is essentially length independent. By systematically varying the geometry and polarity of model hydrophilic pores, based on the fold of gramicidin A, the water density, occupancy, and permeability are studied. Our focus is on the characterization of the transition between different permeation regimes in terms of the structure of water in the pores, the average pore occupancy and the dynamics of the permeating water molecules. We show that a general relationship between osmotic and diffusive water permeability coefficients in the single-file regime accounts for the time averaged pore occupancy, and that the dynamics of the permeating water molecules through narrow non single file channels effectively behaves like independent single-file columns.
Collapse
Affiliation(s)
- Guillem Portella
- Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
79
|
Hub JS, Grubmüller H, de Groot BL. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol 2009:57-76. [PMID: 19096772 DOI: 10.1007/978-3-540-79885-9_3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aquaporins (AQPs) are a family of integral membrane proteins, which facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Molecular dynamics (MD) simulations contributed substantially to the understanding of the molecular mechanisms that underlie this remarkable efficiency and selectivity of aquaporin channels. This chapter reviews the current state of MD simulations of aquaporins and related aquaglyceroporins as well as the insights these simulations have provided. The mechanism of water permeation through AQPs and methods to determine channel permeabilities from simulations are described. Protons are strictly excluded from AQPs by a large electrostatic barrier and not by an interruption of the Grotthuss mechanism inside the pore. Both the protein's electric field and desolvation effects contribute to this barrier. Permeation of apolar gas molecules such as CO(2) through AQPs is accompanied by a large energetic barrier and thus can only be expected in membranes with a low intrinsic gas permeability. Additionally, the insights from simulations into the mechanism of glycerol permeation through the glycerol facilitator GlpF from E. coli are summarized. Finally, MD simulations are discussed that revealed that the aro-matic/arginine constriction region is generally the filter for uncharged solutes, and that AQP selectivity is controlled by a hydrophobic effect and steric restraints.
Collapse
Affiliation(s)
- Jochen S Hub
- Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | | | | |
Collapse
|
80
|
Gumbart J, Schulten K. The roles of pore ring and plug in the SecY protein-conducting channel. ACTA ACUST UNITED AC 2008; 132:709-19. [PMID: 19001142 PMCID: PMC2585858 DOI: 10.1085/jgp.200810062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein-conducting channel, or translocon, is an evolutionarily conserved complex that allows nascent proteins to cross a cellular membrane or integrate into it. The crystal structure of an archaeal translocon, the SecY complex, revealed that two elements contribute to sealing the channel: a small "plug" domain blocking the periplasmic region of the channel, and a pore ring composed of six hydrophobic residues acting as a constriction point at the channel's center. To determine the independent functions of these two elements, we have performed molecular dynamics simulations of the native channel as well as of two recently structurally resolved mutants in which portions of their plugs were deleted. We find that in the mutants, the instability in the plug region leads to a concomitant increase in flexibility of the pore ring. The instability is quantified by the rate of water permeation in each system as well as by the force required for oligopeptide translocation. Through a novel simulation in which the interactions between the plug and water were independently controlled, we find that the role of the plug in stabilizing the pore ring is significantly more important than its role as a purely steric barrier.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
81
|
Dynamic control of slow water transport by aquaporin 0: implications for hydration and junction stability in the eye lens. Proc Natl Acad Sci U S A 2008; 105:14430-5. [PMID: 18787121 DOI: 10.1073/pnas.0802401105] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquaporin 0 (AQP0), the most abundant membrane protein in mammalian lens fiber cells, not only serves as the primary water channel in this tissue but also appears to mediate the formation of thin junctions between fiber cells. AQP0 is remarkably less water permeable than other aquaporins, but the structural basis and biological significance of this low permeability remain uncertain, as does the permeability of the protein in a reported junctional form. To address these issues, we performed molecular dynamics (MD) simulations of water transport through membrane-embedded AQP0 in both its (octameric) junctional and (tetrameric) nonjunctional forms. From our simulations, we measured an osmotic permeability for the nonjunctional form that agrees with experiment and found that the distinct dynamics of the conserved, lumen-protruding side chains of Tyr-23 and Tyr-149 modulate water passage, accounting for the slow permeation. The junctional and nonjunctional forms conducted water equivalently, in contrast to a previous suggestion based on static crystal structures that water conduction is lost on junction formation. Our analysis suggests that the low water permeability of AQP0 may help maintain the mechanical stability of the junction. We hypothesize that the structural features leading to low permeability may have evolved in part to allow AQP0 to form junctions that both conduct water and contribute to the organizational structure of the fiber cell tissue and microcirculation within it, as required to maintain transparency of the lens.
Collapse
|
82
|
Khandelia H, Ipsen JH, Mouritsen OG. The impact of peptides on lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1528-36. [PMID: 18358231 DOI: 10.1016/j.bbamem.2008.02.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/22/2008] [Accepted: 02/24/2008] [Indexed: 11/26/2022]
Abstract
We review the fundamental strategies used by small peptides to associate with lipid membranes and how the different strategies impact on the structure and dynamics of the lipids. In particular we focus on the binding of amphiphilic peptides by electrostatic and hydrophobic forces, on the anchoring of peptides to the bilayer by acylation and prenylation, and on the incorporation of small peptides that form well-defined channels. The effect of lipid-peptide interactions on the lipids is characterized in terms of lipid acyl-chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation, as well as acyl-chain dynamics. The different situations are illustrated by specific cases for which experimental observations can be interpreted and supplemented by theoretical modeling and simulations. A comparison is made with the effect on lipids of trans-membrane proteins. The various cases are discussed in the context of the possible roles played by lipid-peptide interactions for the biological, physiological, and pharmacological function of peptides.
Collapse
Affiliation(s)
- Himanshu Khandelia
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | | | | |
Collapse
|
83
|
|
84
|
Hashido M, Kidera A, Ikeguchi M. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 2007; 93:373-85. [PMID: 17449664 PMCID: PMC1896254 DOI: 10.1529/biophysj.106.101170] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
Single-channel osmotic water permeability (p(f)) is a key quantity for investigating the transport capability of the water channel protein, aquaporin. However, the direct connection between the single scalar quantity p(f) and the channel structure remains unclear. In this study, based on molecular dynamics simulations, we propose a p(f)-matrix method, in which p(f) is decomposed into contributions from each local region of the channel. Diagonal elements of the p(f) matrix are equivalent to the local permeability at each region of the channel, and off-diagonal elements represent correlated motions of water molecules in different regions. Averaging both diagonal and off-diagonal elements of the p(f) matrix recovers p(f) for the entire channel; this implies that correlated motions between distantly-separated water molecules, as well as adjacent water molecules, influence the osmotic permeability. The p(f) matrices from molecular dynamics simulations of five aquaporins (AQP0, AQP1, AQP4, AqpZ, and GlpF) indicated that the reduction in the water correlation across the Asn-Pro-Ala region, and the small local permeability around the ar/R region, characterize the transport efficiency of water. These structural determinants in water permeation were confirmed in molecular dynamics simulations of three mutants of AqpZ, which mimic AQP1.
Collapse
Affiliation(s)
- Masanori Hashido
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | | | | |
Collapse
|
85
|
Davis I, Shachar-Hill B, Curry M, Kim K, Pedley T, Hill A. Osmosis in semi-permeable pores: an examination of the basic flow equations based on an experimental and molecular dynamics study. Proc Math Phys Eng Sci 2007. [DOI: 10.1098/rspa.2006.1803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Classically ‘semi-permeable’ pores are generally considered to mediate osmotic flow at a rate dependent upon the hydraulic conductance of the pore and the difference in water potential. The shape or size of the solute molecules is not considered to exert a first-order effect on the flow rate nor is the hydraulic conductance thought to be solute dependent. By the experimental measurement of osmosis in the biological pore AQP (aquaporin) and hard-sphere molecular dynamics simulation of a model pore, we show here that the solute radius can have a profound effect on the osmotic flow rate, causing it to decline steeply with decreasing solute radius.Using a simple non-equilibrium thermodynamic theory, we propose that an additional ‘osmotic flow coefficient’ is required to describe flows in semi-permeable structures such as AQPs, and that the fall in flow rate with radius represents a conversion from hydraulic to diffusive water flow due to increasing penetration of the pore by the solute. The interaction between the pore geometry and the solute size cannot, therefore, be overlooked, although for every solute the system obeys the criterion for semi-permeability required by basic thermodynamics. The osmotic pore theory therefore reveals a novel and potentially rich structure that remains to be explored in full.
Collapse
Affiliation(s)
- I.S Davis
- Physiological Laboratory, University of CambridgeCambridge CB2 3EG, UK
| | - B Shachar-Hill
- Physiological Laboratory, University of CambridgeCambridge CB2 3EG, UK
| | - M.R Curry
- Biological Sciences, University of LincolnRiseholme LN2 2LG, UK
| | - K.S Kim
- Lawrence Livermore National LaboratoryLivermore, CA 94550, USA
| | - T.J Pedley
- Department of Applied Mathematics and Theoretical Physics, University of CambridgeCambridge CB3 0WA, UK
| | - A.E Hill
- Physiological Laboratory, University of CambridgeCambridge CB2 3EG, UK
| |
Collapse
|
86
|
Abstract
Aquaporins facilitate water permeation across biological membranes. Additionally, glycerol and other small neutral solutes are permeated by related aquaglyceroporins. The role of aquaporins in gas permeation has been a long-standing and controversially discussed issue. We present an extensive set of atomistic molecular dynamics simulations that address the question of CO(2) permeation through human aquaporin-1. Free energy profiles derived from the simulations display a barrier of approximately 23 kJ/mol in the aromatic/arginine constriction region of the water pore, whereas a barrier of approximately 4 kJ/mol was observed for a palmitoyloleoylphosphatidylethanolamine lipid bilayer membrane. The results indicate that significant aquaporin-1-mediated CO(2) permeation is to be expected only in membranes with a low intrinsic CO(2) permeability.
Collapse
Affiliation(s)
- Jochen S Hub
- Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|