51
|
Benesch MGK, Mannock DA, Lewis RNAH, McElhaney RN. A Calorimetric and Spectroscopic Comparison of the Effects of Lathosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biochemistry 2011; 50:9982-97. [DOI: 10.1021/bi200721j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew G. K. Benesch
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - David A. Mannock
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ronald N. McElhaney
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
52
|
Molecular aspects of the interaction between plants sterols and DPPC bilayers. J Colloid Interface Sci 2011; 358:192-201. [DOI: 10.1016/j.jcis.2011.02.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/18/2022]
|
53
|
Alves I, Staneva G, Tessier C, Salgado GF, Nuss P. The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2009-18. [PMID: 21377444 DOI: 10.1016/j.bbamem.2011.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 11/30/2022]
Abstract
The interaction of antipsychotic drugs (AP) with lipids and the subsequent lipid reorganization on model membranes was assessed using a combination of several complementary biophysical approaches (calorimetry, plasmon resonance, fluorescence microscopy, X-ray diffraction and molecular modeling). The effect of haloperidol (HAL), risperidone (RIS), and 9-OH-risperidone (9-OH-RIS) was examined on single lipid and mixtures comprising lipids of biological origin. All APs interact with lipids and induced membrane reorganization. APs showed higher affinity for sphingomyelin than for phosphatidylcholine. Cholesterol increased AP affinity for the lipid bilayer and led to the following AP ranking regarding affinity and structural changes: RIS >9-OH-RIS >HAL. Liquid-ordered domain formation and bilayer thickness were differentially altered by AP addition. Docking calculations helped understanding the observed differences between the APs and offer a representation of their conformation in the lipid bilayer. Present results indicate that AP drugs may change membrane compartmentalization which could differentially modulate the signaling cascade of the dopamine D2 receptor for which APs are ligands.
Collapse
Affiliation(s)
- Isabel Alves
- Université Pierre et Marie Curie-Paris 6, UMRS 7203 CNRS-ENS, Laboratoire des BioMolécules, 4, place Jussieu, 75252 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
54
|
Schultz ZD, Levin IW. Vibrational spectroscopy of biomembranes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:343-66. [PMID: 21456972 DOI: 10.1146/annurev-anchem-061010-114048] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.
Collapse
Affiliation(s)
- Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
55
|
Benesch MG, Mannock DA, McElhaney RN. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol. Chem Phys Lipids 2011; 164:62-9. [DOI: 10.1016/j.chemphyslip.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
56
|
Sterol chemical configuration and conformation influence the thermotropic phase behaviour of dipalmitoylphosphatidylcholine mixtures containing 5β-cholestan-3β- and -3α-ol. Chem Phys Lipids 2011; 164:70-7. [DOI: 10.1016/j.chemphyslip.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 01/27/2023]
|
57
|
Franchino HA, Johnson BC, Neeley SK, Tajhya RB, Vu MP, Wilson-Ashworth HA, Bell JD. Combined use of steady-state fluorescence emission and anisotropy of merocyanine 540 to distinguish crystalline, gel, ripple, and liquid crystalline phases in dipalmitoylphosphatidylcholine bilayers. PMC BIOPHYSICS 2010; 3:14. [PMID: 21054864 PMCID: PMC2993649 DOI: 10.1186/1757-5036-3-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/05/2010] [Indexed: 12/01/2022]
Abstract
The various lamellar phases of dipalmitoylphosphadtidylcholine bilayers with and without cholesterol were used to assess the versatility of the fluorescent probe merocyanine 540 through simultaneous measurements of emission intensity, spectral shape, and steady-state anisotropy. Induction of the crystalline phase (Lc') by pre-incubation at 4°C produced a wavelength dependence of anisotropy which was strong at 15 and 25°C, weak at 38°C, and minimal above the main transition (>~41.5°C) or after returning the temperature from 46 to 25°C. The profile of anisotropy values across this temperature range revealed the ability of the probe to detect crystalline, gel (Lβ'), and liquid crystalline (Lα) phases. The temperature dependence of fluorescence intensity was additionally able to distinguish between the ripple (Pβ') and gel phases. In contrast, the shape of the emission spectrum, quantified as the ratio of merocyanine monomer and dimer peaks (585 and 621 nm), was primarily sensitive to the crystalline and gel phases because dimer fluorescence requires a highly-ordered environment. This requirement also explained the diminution of anisotropy wavelength dependence above 25°C. Repetition of experiments with vesicles containing cholesterol allowed creation of a phase map. Superimposition of data from the three simultaneous measurements provided details about the various phase regions in the map not discernible from any one of the three alone. The results were applied to assessment of calcium-induced membrane changes in living cells. PACS Codes: 87.16.dt
Collapse
Affiliation(s)
- Hannabeth A Franchino
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Bolean M, Simão A, Favarin B, Millán J, Ciancaglini P. The effect of cholesterol on the reconstitution of alkaline phosphatase into liposomes. Biophys Chem 2010; 152:74-9. [DOI: 10.1016/j.bpc.2010.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/28/2010] [Accepted: 08/06/2010] [Indexed: 11/16/2022]
|
59
|
Mannock DA, Lewis RN, McMullen TP, McElhaney RN. The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 2010; 163:403-48. [DOI: 10.1016/j.chemphyslip.2010.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/13/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023]
|
60
|
Mannock DA, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:376-88. [DOI: 10.1016/j.bbamem.2009.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/06/2009] [Accepted: 09/06/2009] [Indexed: 11/16/2022]
|
61
|
Hermida LG, Sabés-Xamaní M, Barnadas-Rodríguez R. Combined strategies for liposome characterization during in vitro digestion. J Liposome Res 2009; 19:207-19. [PMID: 19548842 DOI: 10.1080/08982100902740847] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Three types of pyranine (HPTS)-containing liposomes were prepared by high-pressure homogenization under optimized conditions. At 37 degrees C, they were 1) fluid-state vesicles made from soybean phosphatidylcholine (SPC), 2) gel-state liposomes made from hydrogenated SPC (HSPC), and 3) solid-disordered membranes obtained from HSPC and cholesterol (HSPC-Chol). These liposome formulations were characterized before, during, and after in vitro digestion, which involved the presence of pH gradients, enzymes, and bile salts. Mean sizes and size distributions of the vesicles were determined by DLS; (31)P-NMR (nuclear magnetic resonance) was used to quantify lyso-PC forms; internal pH was monitored throughout digestion with two different fluorescent pH probes; and changes in bilayer permeability and HPTS encapsulation were determined by size-exclusion chromatography and fluorimetry. Differential scanning calorimetry analysis was also performed in order to study the effect of digestion on HSPC vesicles. SPC liposomes were physically stable during digestion; they presented 8% lyso-forms and an HPTS encapsulation around 85% after in vitro digestion. However, they were extremely permeable to ions, so that the internal pH immediately equilibrated with the bulk pH. HSPC liposomes were the most affected by the digestive process. Even though they were chemically stable, as inferred from the low lyso-PC content, very important changes in their size distribution were observed. A final 50% HPTS leakage was quantified after in vitro digestion. Nevertheless, they were the least permeable to protons under pH gradients. HSPC-Chol vesicles presented intermediate permeability to protons, having their internal pH decreased from approximately 6.8 to 4.6 after 1 hour of incubation at pH 2. This was the most chemically stable formulation and showed the highest encapsulation, even after in vitro digestion. Therefore, HSPC-Chol liposomes would be the most adequate choice for the design of lipid products for oral administration.
Collapse
Affiliation(s)
- Laura G Hermida
- Centro de Investigación y Desarrollo en Química, Instituto Nacional de Tecnología Industrial, Buenos Aires, Argentina
| | | | | |
Collapse
|
62
|
Differential scanning calorimetry (DSC) analysis of isolated liver and heart mitochondria. ACTA ACUST UNITED AC 2009. [DOI: 10.2478/v10054-008-0034-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
63
|
Macroscopic domain formation during cooling in the platelet plasma membrane: an issue of low cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1229-37. [PMID: 19341703 DOI: 10.1016/j.bbamem.2009.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/24/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
Abstract
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24 degrees C, but not at 37 degrees C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets ( approximately 15 mol%), appears to be crucial for the formation of large domains during cooling.
Collapse
|
64
|
Efrat R, Kesselman E, Aserin A, Garti N, Danino D. Solubilization of hydrophobic guest molecules in the monoolein discontinuous QL cubic mesophase and its soft nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1316-1326. [PMID: 18781793 DOI: 10.1021/la8016084] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrophobic bioactive guest molecules were solubilized in the discontinuous cubic mesophase (QL) of monoolein. Their effects on the mesophase structure and thermal behavior, and on the formation of soft nanoparticles upon dispersion of the bulk mesophase were studied. Four additives were analyzed. They were classified into two types based on their presumed location within the lipid bilayer and their influence on the phase behavior and structure. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), polarized light microscopy, cryogenic-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) were used for the analysis. We found that carbamazepine and cholesterol (type I molecules) likely localize in the hydrophobic domains, but close to the hydrophobic-hydrophilic region. They induce strong perturbation to the mesophase packing by influencing both the order of the lipid acyl chains and interactions between lipid headgroups. This results in significant reduction of the phase transition enthalpy, and phase separation into lamellar and cubic mesophases above the maximum loading capacity. The inclusion of type I molecules in the mesophase also prevents the formation of soft nanoparticles with long-range internal order upon dispersion. In their presence, only vesicles or sponge-like nanoparticles form. Phytosterols and coenzyme Q10 (type II molecules) present only moderate effects. These molecules reside in the hydrophobic domains, where they cannot alter the lipid curvature or transform the QL mesophase into another phase. Therefore, above maximum loading, excess solubilizate precipitates in crystal forms. Moreover, when type II-loaded QL is dispersed, nanoparticles with long-range order and cubic symmetry (i.e., cubosomes) do form. A model for the growth of the ordered nanoparticles was developed from a series of intermediate structures identified by cryo-TEM. It proposes the development of the internal structure by fusion events between bilayer segments.
Collapse
Affiliation(s)
- Rivka Efrat
- Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
65
|
Vallejo AA, Fernández MS. FRET between non-substrate probes detects lateral lipid domain formation during phospholipase A2 interfacial catalysis. Arch Biochem Biophys 2008; 480:1-10. [DOI: 10.1016/j.abb.2008.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/19/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
66
|
Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett 2008; 582:3230-6. [PMID: 18755187 DOI: 10.1016/j.febslet.2008.08.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Fluorescence confocal microscopy and differential scanning calorimetry are used in combination to study the phase behaviour of bilayers composed of PC:PE:SM:Chol equimolecular mixtures, in the presence or absence of 10 mol% egg ceramide. In the absence of ceramide, separate liquid-ordered and liquid-disordered domains are observed in giant unilamellar vesicles. In the presence of ceramide, gel-like domains appear within the liquid-ordered regions. The melting properties of these gel-like domains resemble those of SM:ceramide binary mixtures, suggesting Chol displacement by ceramide from SM:Chol-rich liquid-ordered regions. Thus three kinds of domains coexist within a single vesicle in the presence of ceramide: gel, liquid-ordered, and liquid-disordered. In contrast, when 10 mol% egg diacylglycerol is added instead of ceramide, homogeneous vesicles, consisting only of liquid-disordered bilayers, are observed.
Collapse
Affiliation(s)
- Jesús Sot
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
67
|
Sood R, Kinnunen PK. Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and temporin L. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1460-6. [DOI: 10.1016/j.bbamem.2008.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/12/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
|
68
|
Interfacial behavior of cholesterol, ergosterol, and lanosterol in mixtures with DPPC and DMPC. Biophys J 2008; 95:2340-55. [PMID: 18515391 DOI: 10.1529/biophysj.108.132076] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binary mixtures of cholesterol, ergosterol, and lanosterol with phosphatidylcholines differing in the length of the saturated acyl chains, viz 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-myristoyl-sn-glycero-3-phosphocholine (DMPC), were analyzed using a Langmuir balance for recording force-area (pi-A) and surface potential-area (psi-A) isotherms. A progressive disappearance of the liquid expanded-liquid condensed transition was observed in mixed monolayers with DPPC after the increase in the content of all three sterols. For fluid DMPC matrix, no modulation of the monolayer phase behavior due to the sterols was evident with the exception of lanosterol, for which a pronounced discontinuity between mole fractions of X = 0.3 and X = 0.75 was discernible in the compression isotherms. Condensing and expanding effects in force-area (pi-A) isotherms due to varying X(sterols) and differences in the monolayer physical state were assessed from the values for the interfacial compression moduli. Surface potential measurements support the notion that cholesterol and ergosterol, but not lanosterol, reduce the penetration of water into the lipid monolayers. Examination of the excess free energy of mixing revealed an enhanced stability of binary monolayers containing cholesterol compared to those with ergosterol or lanosterol; the differences are emphasized in the range of surface pressure values found in natural membranes.
Collapse
|
69
|
Mannock DA, Lee MYT, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2191-202. [PMID: 18539134 DOI: 10.1016/j.bbamem.2008.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/26/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
We carried out comparative differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol (Chol) and epicholesterol (EChol) on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine (DPPC) bilayers. EChol is an epimer of Chol in which the axially oriented hydroxyl group of C3 of Chol is replaced by an equatorially oriented hydroxyl group, resulting in a different orientation of the hydroxyl group relative to sterol fused ring system. Our calorimetric studies indicate that the incorporation of EChol is more effective than Chol is in reducing the enthalpy of the pretransition of DPPC. EChol is also initially more effective than Chol in reducing the enthalpies of both the sharp and broad components of the main phase transition of DPPC. However, at higher EChol concentrations (~30-50 mol%), EChol becomes less effective than Chol in reducing the enthalpy and cooperativity of the main phase transition, such that at sterol concentrations of 50 mol%, EChol does not completely abolish the cooperative hydrocarbon chain-melting phase transition of DPPC, while Chol does. However, EChol does not appear to form a calorimetrically detectable crystallite phase at higher sterol concentrations, suggesting that EChol, unlike Chol, may form dimers or lower order aggregates at higher sterol concentrations. Our spectroscopic studies demonstrate that EChol incorporation produces more ordered gel and comparably ordered liquid-crystalline bilayers compared to Chol, which are characterized by increased hydrogen bonding in the glycerol backbone region of the DPPC bilayer. These and other results indicate that monomeric EChol is less miscible in DPPC bilayers than is Chol at higher sterol concentrations, but perturbs their organization to a greater extent at lower sterol concentrations, probably due primarily to the larger effective cross-sectional area of the EChol molecule. Nevertheless, EChol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
70
|
Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophys J 2008; 94:3538-48. [PMID: 18199673 DOI: 10.1529/biophysj.107.122549] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although sterol-phospholipid interactions have been of interest for many years now, a complete thermodynamic profile of these systems is still missing. To contribute to a better understanding of the thermodynamic functions of these systems, we determined isothermal compressibility coefficient data for dipalmitoylphosphocholine (DPPC) and DPPC-containing cholesterol and ergosterol vesicles by means of molecular acoustics (ultrasound velocimetry and densimetry) and differential scanning and pressure perturbation calorimetric techniques. A particular focus was on the influence of the differential structural properties of the two sterols on the thermodynamic properties of lipid bilayers, and on the nature of the critical point region of phospholipid-sterol systems by determining thermodynamic fluctuation parameters. Contrary to significant changes in conformational and dynamical properties of the DPPC-sterol membranes, no marked differences were found in the various thermodynamic properties studied, including the adiabatic (beta(S)(lipid)) and isothermal (beta(T)(lipid)) compressibility, as well as the volume fluctuations. Differences in beta(T)(lipid) and beta(S)(lipid) become dramatic in the gel-fluid transition region only, due to a significant degree of slow relaxational processes in the microsecond time range in the transition region. Our data show no evidence for the existence of a typical critical point phenomenon in the concentration and temperature range where a critical point in the DPPC-sterol phase diagram is expected to appear. Hence, on a macroscopic level, it seems more appropriate to describe the sterol-phospholipid binary mixtures in the liquid-ordered/liquid-disordered coexistence region as a phase region consisting essentially of small nanodomains only. Such small-domain dimensions, with a series of particular properties such as increased line energy, spontaneous curvature, and limited lifetime, seem also to be typical of raftlike domains in cell membranes.
Collapse
|
71
|
Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J 2008; 94:3084-93. [PMID: 18192373 DOI: 10.1529/biophysj.107.118356] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of secretory phospholipase A(2) (sPLA(2)) to hydrolyze cell membranes is highly dependent on the physical properties of the membrane. The effects of cholesterol on these properties have been characterized in artificial bilayers and found to alter sPLA(2) activity significantly. It is hypothesized that the natural difference in cholesterol content between erythrocytes and leukocytes is in part responsible for their differing susceptibility to hydrolysis by sPLA(2). To test this hypothesis, defined amounts of cholesterol were removed from erythrocyte membranes using methyl-beta-cyclodextrin. Treatment of cells with methyl-beta-cyclodextrin increased the hydrolysis rate and total substrate hydrolyzed by sPLA(2). In general, this effect of cholesterol removal was more pronounced at higher temperatures. Comparison of the level of membrane order (assessed with the fluorescent probe laurdan) with hydrolysis rate revealed that sPLA(2) activity was greatly enhanced upon significant reductions in lipid order. Additional treatment of the cells with calcium ionophore further enhanced the hydrolysis rate and altered the relationship with membrane order. These data demonstrated that interactions with sPLA(2) observed in artificial bilayers apply to biological membranes. It is also proposed that the high level of cholesterol in erythrocyte membranes is a protective mechanism to guard against hydrolytic enzymes.
Collapse
|
72
|
Cinelli S, Onori G, Zuzzi S, Bordi F, Cametti C, Sennato S, Diociaiuti M. Properties of Mixed DOTAP−DPPC Bilayer Membranes as Reported by Differential Scanning Calorimetry and Dynamic Light Scattering Measurements. J Phys Chem B 2007; 111:10032-9. [PMID: 17663578 DOI: 10.1021/jp071722g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the effect of a cationic lipid [DOTAP] on both the thermotropic phase behavior and the structural organization of aqueous dispersions of dipalmitoyl-phosphatidylcholine [DPPC] by means of high-sensitivity differential scanning calorimetry and dynamic light scattering measurements. We find that the incorporation of increasing quantities of DOTAP progressively reduces the temperature and the enthalpy of the gel-to-liquid crystalline transition. We are further showing that, in mixed DOTAP-DPPC systems, the reduction of the phase transition temperature is accompanied by a reduction of the average size of the structures present in the aqueous mixtures, whatever the DOTAP concentration is. These results, which extend a previous investigation by Campbell et al. (Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M.; Biochim. Biosphys. Acta 2001, 27, 1512.) limited to a DOTAP concentration below 20 mol %, confirm that the insertion of cationic head groups in zwitterionic phosphatidylcholine bilayers facilitates the formation of stable, relatively small, unilamellar vesicles. This self-assembling restructuring from an aqueous multilamellar structure toward a liposomal phase is favored by decreasing the phospholipid phase transition temperature and by increasing the temperature of the system. This reduction of the average size and the appearance of a stable liposomal phase is also promoted by a heating and cooling thermal treatment.
Collapse
Affiliation(s)
- S Cinelli
- Dipartimento di Fisica, UniversitA di Perugia and CEMIN (Centro Eccellenza Materiali Innovativi Nanostrutturati) Via A. Pascoli, I-06123, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
73
|
Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P, Huang G, Costanza G, Feigenson GW. Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2764-76. [PMID: 17825247 PMCID: PMC2701629 DOI: 10.1016/j.bbamem.2007.07.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/11/2007] [Accepted: 07/13/2007] [Indexed: 11/20/2022]
Abstract
We have undertaken a series of experiments to examine the behavior of individual components of cell membranes. Here we report an initial stage of these experiments, in which the properties of a chemically simple lipid mixture are carefully mapped onto a phase diagram. Four different experimental methods were used to establish the phase behavior of the 3-component mixture DSPC/DOPC/chol: (1) confocal fluorescence microscopy observation of giant unilamellar vesicles, GUVs; (2) FRET from perylene to C20:0-DiI; (3) fluorescence of dilute dyes C18:2-DiO and C20:0-DiI; and (4) wide angle X-ray diffraction. This particular 3-component mixture was chosen, in part, for a high level of immiscibility of the components in order to facilitate solving the phase behavior at all compositions. At 23 degrees C, a large fraction of the possible compositions for this mixture give rise to a solid phase. A region of 3-phase coexistence of {Lalpha+Lbeta+Lo} was detected and defined based on a combination of fluorescence microscopy of GUVs, FRET, and dilute C20:0-DiI fluorescence. At very low cholesterol concentrations, the solid phase is the tilted-chain phase Lbeta'. Most of the phase boundaries have been determined to be within a few percent of the composition. Measurements of the perturbations of the boundaries of this accurate phase diagram could serve as a means to understand the behaviors of a range of added lipids and proteins.
Collapse
Affiliation(s)
| | | | | | - Thalia T. Mills
- Department of Physics, Cornell University, Ithaca, NewYork 14853
| | | | | | | | | |
Collapse
|