51
|
Comparison of chromosome centromere topology in differentiating cells with myogenic potential. Folia Histochem Cytobiol 2010; 47:377-83. [PMID: 20164021 DOI: 10.2478/v10042-009-0037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome territories (CT's) constitute the critical element of the intranuclear architecture. Position of these compartmentalized structures plays an important role in functioning of entire genome. Present study was to examine whether the centromeres position of chromosomes 4, X and Y can be changed during differentiation from myoblasts to myotubes. Topological analysis of these centromeres was based on two-dimensional fluorescent hybridization in situ (2D-FISH). During differentiation process the majority of X chromosome centromeres analyzed shifted to the peripheral part of a nucleus and similar phenomenon was observed with one of the chromosome 4 centromeres. Completely different tendency was noticed when investigating the location of the chromosome Y centromeres. Centromeres of this chromosome migrated to the centre of a nucleus. The results obtained demonstrated visible changes in chromosome topology along the myogenic stem cells differentiation.
Collapse
|
52
|
Gaudin V, Andrey P, Devinoy E, Kress C, Kieu K, Beaujean N, Maurin Y, Debey P. Modeling the 3D functional architecture of the nucleus in animal and plant kingdoms. C R Biol 2009; 332:937-46. [PMID: 19909917 DOI: 10.1016/j.crvi.2009.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Compartmentalization is one of the fundamental principles which underly nuclear function. Numerous studies describe complex and sometimes conflicting relationships between nuclear gene positioning and transcription regulation. Therefore the question is whether topological landmarks and/or organization principles exist to describe the nuclear architecture and, if existing, whether these principles are identical in the animal and plant kingdoms. In the frame of an agroBI-INRA program on nuclear architecture, we set up a multidisciplinary approach combining biological studies, spatial statistics and 3D modeling to investigate spatial organization of a nuclear compartment in both plant and animal cells in their physiological contexts. In this article, we review the questions addressed in this program and the methodology of our work.
Collapse
Affiliation(s)
- Valérie Gaudin
- Laboratoire de biologie cellulaire, UR501, IJPB, route de Saint-Cyr, INRA, 78026 Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Tirichine L, Andrey P, Biot E, Maurin Y, Gaudin V. 3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei. PLANT METHODS 2009; 5:11. [PMID: 19650905 PMCID: PMC2731090 DOI: 10.1186/1746-4811-5-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/03/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fluorescent hybridization techniques are widely used to study the functional organization of different compartments within the mammalian nucleus. However, few examples of such studies are known in the plant kingdom. Indeed, preservation of nuclei 3D structure, which is required for nuclear organization studies, is difficult to fulfill. RESULTS We report a rapid protocol for fluorescent in situ hybridization (FISH) performed on 3D isolated nuclei and thin cryosectioned leaves of Arabidopsis thaliana. The use of direct labeling minimized treatment steps, shortening the overall procedure. Using image analysis, we measured different parameters related to nucleus morphology and overall 3D structure. CONCLUSION Our work describes a 3D-FISH protocol that preserves the 3D structure of Arabidopsis interphase nuclei. Moreover, we report for the first time FISH using cryosections of Arabidopsis leaves. This protocol is a valuable tool to investigate nuclear architecture and chromatin organization.
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
- Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Philippe Andrey
- Neurobiologie de l'Olfaction et de la Prise Alimentaire, INRA UMR 1197, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France
- IFR 144 Neuro-Sud, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Eric Biot
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
| | - Yves Maurin
- Neurobiologie de l'Olfaction et de la Prise Alimentaire, INRA UMR 1197, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France
- IFR 144 Neuro-Sud, Paris, France
| | - Valérie Gaudin
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
| |
Collapse
|
54
|
de Nooijer S, Wellink J, Mulder B, Bisseling T. Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 2009; 37:3558-68. [PMID: 19359359 PMCID: PMC2699506 DOI: 10.1093/nar/gkp219] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The organization of the eukaryote nucleus into functional compartments arises by self-organization both through specific protein-protein and protein-DNA interactions and non-specific interactions that lead to entropic effects, such as e.g. depletion attraction. While many specific interactions have so far been demonstrated, the contributions of non-specific interactions are still unclear. We used coarse-grained molecular dynamics simulations of previously published models for Arabidopsis thaliana chromatin organization to show that non-specific interactions can explain the in vivo localization of nucleoli and chromocenters. Also, we quantitatively demonstrate that chromatin looping contributes to the formation of chromosome territories. Our results are consistent with the previously published Rosette model for Arabidopsis chromatin organization and suggest that chromocenter-associated loops play a role in suppressing chromocenter clustering.
Collapse
Affiliation(s)
- S de Nooijer
- Laboratory for Molecular Biology, Wageningen University, Drovendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | | | | | | |
Collapse
|
55
|
Cvačková Z, Mašata M, Staněk D, Fidlerová H, Raška I. Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells. J Struct Biol 2009; 165:107-17. [PMID: 19056497 PMCID: PMC2658736 DOI: 10.1016/j.jsb.2008.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 12/22/2022]
Abstract
Mammalian chromosomes occupy chromosome territories within nuclear space the positions of which are generally accepted as non-random. However, it is still controversial whether position of chromosome territories/chromatin is maintained in daughter cells. We addressed this issue and investigated maintenance of various chromatin regions of unknown composition as well as nucleolus-associated chromatin, a significant part of which is composed of nucleolus organizer region-bearing chromosomes. The photoconvertible histone H4-Dendra2 was used to label such regions in transfected HepG2 cells, and its position was followed up to next interphase. The distribution of labeled chromatin in daughter cells exhibited a non-random character. However, its distribution in a vast majority of daughter cells extensively differed from the original ones and the labeled nucleolus-associated chromatin differently located into the vicinity of different nucleoli. Therefore, our results were not consistent with a concept of preservation chromatin position. This conclusion was supported by the finding that the numbers of nucleoli significantly differed between the two daughter cells. Our results support a view that while the transfected daughter HepG2 cells maintain some features of the parental cell chromosome organization, there is also a significant stochastic component associated with reassortment of chromosome territories/chromatin that results in their positional rearrangements.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Raška
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, 128 00 Prague 2, Czech Republic
| |
Collapse
|
56
|
Naranjo T, Corredor E. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants. Cytogenet Genome Res 2008; 120:320-30. [PMID: 18504361 DOI: 10.1159/000121081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2007] [Indexed: 10/22/2022] Open
Abstract
The formation of haploid gametes in organisms with sexual reproduction requires regular bivalent chromosome pairing in meiosis. In many species, homologous chromosomes occupy separate territories at the onset of meiosis. To be paired at metaphase I, they need to be brought into a close proximity for interactions that include homology recognition and the establishment of some form of bonds. How homologues find each other is one of the least understood meiotic events. Plant species with large or medium sized genomes, such as wheat or maize, are excellent materials for the cytological analysis of chromosome dynamics at early meiosis, but genes that control meiosis have been identified mainly in small genome species such as Arabidopsis thaliana. This review is focused on the contribution studies on plants are providing to the knowledge of the initial steps of the meiotic process.
Collapse
Affiliation(s)
- T Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| | | |
Collapse
|
57
|
Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. THE PLANT CELL 2007; 19:2793-803. [PMID: 17873096 PMCID: PMC2048703 DOI: 10.1105/tpc.107.053231] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Efforts to understand nuclear organization in plant cells have received little assistance from the better-studied animal nuclei, because plant proteomes do not contain recognizable counterparts to the key animal proteins involved in nuclear organization, such as lamin nuclear intermediate filament proteins. Previous studies identified a plant-specific insoluble nuclear protein in carrot (Daucus carota), called Nuclear Matrix Constituent Protein1 (NMCP1), which contains extensive coiled-coil domains and localizes to the nuclear periphery. Here, we describe a genetic characterization of two NMCP1-related nuclear proteins in Arabidopsis thaliana, LITTLE NUCLEI1 (LINC1) and LINC2. Disruption of either gene caused a reduction in nuclear size and altered nuclear morphology. Moreover, combining linc1 and linc2 mutations had an additive effect on nuclear size and morphology but a synergistic effect on chromocenter number (reduction) and whole-plant morphology (dwarfing). The reduction in nuclear size in the linc1 linc2 double mutant was not accompanied by a corresponding change in endopolyploidy. Rather, the density of DNA packaging at all endopolyploid levels in the linc1 linc2 mutants was increased significantly. Our results indicate that the LINC coiled-coil proteins are important determinants of plant nuclear structure.
Collapse
Affiliation(s)
- Travis A Dittmer
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | |
Collapse
|
58
|
Schubert V, Kim YM, Berr A, Fuchs J, Meister A, Marschner S, Schubert I. Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei. Mol Genet Genomics 2007; 278:167-76. [PMID: 17522894 DOI: 10.1007/s00438-007-0242-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 01/07/2023]
Abstract
The chromosome arrangement in interphase nuclei is of growing interest, e.g., the spatial vicinity of homologous sequences is decisive for efficient repair of DNA damage by homologous recombination, and close alignment of sister chromatids is considered as a prerequisite for their bipolar orientation and subsequent segregation during nuclear division. To study the degree of homologous pairing and of sister chromatid alignment in plants, we applied fluorescent in situ hybridisation with specific bacterial artificial chromosome inserts to interphase nuclei. Previously we found in Arabidopsis thaliana and in A. lyrata positional homologous pairing at random, and, except for centromere regions, sister chromatids were frequently not aligned. To test whether these features are typical for higher plants or depend on genome size, chromosome organisation and/or phylogenetic affiliation, we investigated distinct individual loci in other species. The positional pairing of these loci was mainly random. The highest frequency of sister alignment (in >93% of homologues) was found for centromeres, some rDNA and a few other high copy loci. Apparently, somatic homologous pairing is not a typical feature of angiosperms, and sister chromatid aligment is not obligatory along chromosome arms. Thus, the high frequency of chromatid exchanges at homologous positions after mutagen treatment needs another explanation than regular somatic pairing of homologues (possibly an active search of damaged sites for homology). For sister chromatid exchanges a continuous sister chromatid alignment is not required. For correct segregation, permanent alignment of sister centromeres is sufficient.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|