51
|
May CM, Zwaan BJ. Relating past and present diet to phenotypic and transcriptomic variation in the fruit fly. BMC Genomics 2017; 18:640. [PMID: 28830340 PMCID: PMC5568309 DOI: 10.1186/s12864-017-3968-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Background Sub-optimal developmental diets often have adverse effects on long-term fitness and health. One hypothesis is that such effects are caused by mismatches between the developmental and adult environment, and may be mediated by persistent changes in gene expression. However, there are few experimental tests of this hypothesis. Here we address this using the fruit fly, Drosophila melanogaster. We vary diet during development and adulthood in a fully factorial design and assess the consequences for both adult life history traits and gene expression at middle and old age. Results We find no evidence that mismatches between developmental and adult diet are detrimental to either lifespan or fecundity. Rather, developmental and adult diet exert largely independent effects on both lifespan and gene expression, with adult diet having considerably more influence on both traits. Furthermore, we find effects of developmental diet on the transcriptome that persist into middle and old-age. Most of the genes affected show no correlation with the observed phenotypic effects of larval diet on lifespan. However, in each sex we identify a cluster of ribosome, transcription, and translation-related genes whose expression is altered across the lifespan and negatively correlated with lifespan. Conclusions As several recent studies have linked decreased expression of ribosomal and transcription related proteins to increased lifespan, these provide promising candidates for mediating the effects of larval diet on lifespan. We place our findings in the context of theories linking developmental conditions to late-life phenotypes and discuss the likelihood that gene expression differences caused by developmental exposure causally relate to adult ageing phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3968-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina M May
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, 6708, PB, the Netherlands.
| | - Bas J Zwaan
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, 6708, PB, the Netherlands
| |
Collapse
|
52
|
Bukhari SA, Saul MC, Seward CH, Zhang H, Bensky M, James N, Zhao SD, Chandrasekaran S, Stubbs L, Bell AM. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet 2017; 13:e1006840. [PMID: 28704398 PMCID: PMC5509087 DOI: 10.1371/journal.pgen.1006840] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/27/2017] [Indexed: 11/18/2022] Open
Abstract
Animals exhibit dramatic immediate behavioral plasticity in response to social interactions, and brief social interactions can shape the future social landscape. However, the molecular mechanisms contributing to behavioral plasticity are unclear. Here, we show that the genome dynamically responds to social interactions with multiple waves of transcription associated with distinct molecular functions in the brain of male threespined sticklebacks, a species famous for its behavioral repertoire and evolution. Some biological functions (e.g., hormone activity) peaked soon after a brief territorial challenge and then declined, while others (e.g., immune response) peaked hours afterwards. We identify transcription factors that are predicted to coordinate waves of transcription associated with different components of behavioral plasticity. Next, using H3K27Ac as a marker of chromatin accessibility, we show that a brief territorial intrusion was sufficient to cause rapid and dramatic changes in the epigenome. Finally, we integrate the time course brain gene expression data with a transcriptional regulatory network, and link gene expression to changes in chromatin accessibility. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. Social interactions provoke changes in the brain and behavior but their underlying molecular mechanisms remain obscure. Male sticklebacks are small fish whose fitness depends on their ability to defend a territory. Here, by measuring the time course of gene expression in response to a territorial challenge in two brain regions, we show that a single brief territorial intrusion provoked waves of gene expression that persisted for hours afterwards, with waves of transcription associated with distinct biological processes. Moreover, a single territorial challenge caused dramatic changes to the epigenome. Changes in chromatin accessibility corresponded to changes in gene expression, and to the activity of transcription factors operating within gene regulatory networks. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. These results suggest that meaningful social interactions (even brief ones) can provoke waves of transcription and changes to the epigenome which lead to changes in neural functioning, and those changes are a mechanism by which animals update their assessment of their social world.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Illinois Informatics Institute, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Christopher H. Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Miles Bensky
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Noelle James
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois, Urbana Champaign, Urbana, IL United States of America
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, MA, United States of America
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Cell and Developmental Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Alison M. Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
53
|
Franklin AM, Stuart-Fox D. Single and multiple mating reduces longevity of female dumpling squid (Euprymna tasmanica
). J Evol Biol 2017; 30:977-984. [DOI: 10.1111/jeb.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/27/2017] [Indexed: 12/01/2022]
Affiliation(s)
- A. M. Franklin
- School of Biosciences; The University of Melbourne; Parkville Vic. Australia
- Biology Department; Tufts University; Medford MA USA
| | - D. Stuart-Fox
- School of Biosciences; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
54
|
Casas-Vila N, Bluhm A, Sayols S, Dinges N, Dejung M, Altenhein T, Kappei D, Altenhein B, Roignant JY, Butter F. The developmental proteome of Drosophila melanogaster. Genome Res 2017; 27:1273-1285. [PMID: 28381612 PMCID: PMC5495078 DOI: 10.1101/gr.213694.116] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023]
Abstract
Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface.
Collapse
Affiliation(s)
- Nuria Casas-Vila
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Alina Bluhm
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sergi Sayols
- Bioinformatics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Nadja Dinges
- RNA Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Tina Altenhein
- Institute of Genetics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Benjamin Altenhein
- Institute of Genetics, Johannes Gutenberg University, 55128 Mainz, Germany.,Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
55
|
Smith CC, Srygley RB, Dietrich EI, Mueller UG. Partitioning the effects of mating and nuptial feeding on the microbiome in gift-giving insects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:104-112. [PMID: 27894162 DOI: 10.1111/1758-2229.12506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Mating is a ubiquitous social interaction with the potential to influence the microbiome by facilitating transmission, modifying host physiology, and in species where males donate nuptial gifts to females, altering diet. We manipulated mating and nuptial gift consumption in two insects that differ in nuptial gift size, the Mormon cricket Anabrus simplex and the decorated cricket Gryllodes sigillatus, with the expectation that larger gifts are more likely to affect the gut microbiome. Surprisingly, mating, but not nuptial gift consumption, affected the structure of bacterial communities in the gut, and only in Mormon crickets. The change in structure was due to a precipitous drop in the abundance of lactic-acid bacteria in unmated females, a taxon known for their beneficial effects on nutrition and immunity. Mating did not affect phenoloxidase or lysozyme-like antibacterial activity in either species, suggesting that any physiological response to mating on host-microbe interactions is decoupled from systemic immunity. Protein supplementation also did not affect the gut microbiome in decorated crickets, suggesting that insensitivity of gut microbes to dietary protein could contribute to the lack of an effect of nuptial gift consumption. Our study provides experimental evidence that sexual interactions can affect the microbiome and suggests mating can promote beneficial gut bacteria.
Collapse
Affiliation(s)
- Chad C Smith
- Department of Integrative Biology, 1 University Station C0990, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert B Srygley
- Northern Plains Area Research Laboratory, USDA-Agricultural Research Service, 1500 N. Central Avenue, Sidney, MT, 59270, USA
| | - Emma I Dietrich
- Department of Integrative Biology, 1 University Station C0990, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ulrich G Mueller
- Department of Integrative Biology, 1 University Station C0990, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
56
|
Gabrieli P, Scolari F, Di Cosimo A, Savini G, Fumagalli M, Gomulski LM, Malacrida AR, Gasperi G. Sperm-less males modulate female behaviour in Ceratitis capitata (Diptera: Tephritidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:13-26. [PMID: 27720923 DOI: 10.1016/j.ibmb.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
In the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)(Diptera: Tephritidae), mating has a strong impact on female biology, leading to a decrease in sexual receptivity and increased oviposition and fecundity. Previous studies suggest that sperm transfer may play a role in inducing these behavioural changes. Here we report the identification of a medfly innexin gene, Cc-inx5, whose expression is limited to the germ-line of both sexes. Through RNA interference of this gene, we generated males without testes and, consequently, sperm, but apparently retaining all the other reproductive organs intact. These sperm-less males were able to mate and, like their wild-type counterparts, to induce in their partners increased oviposition rates and refractoriness to remating. Interestingly, matings to sperm-less males results in oviposition rates higher than those induced by copulation with control males. In addition, the observed female post-mating behavioural changes were congruent with changes in transcript abundance of genes known to be regulated by mating in this species. Our results suggest that sperm transfer is not necessary to reduce female sexual receptivity and to increase oviposition and fecundity. These data pave the way to a better understanding of the role/s of seminal components in modulating female post-mating responses. In the long term, this knowledge will be the basis for the development of novel approaches for the manipulation of female fertility, and, consequently, innovative tools to be applied to medfly control strategies in the field.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Di Cosimo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anna R Malacrida
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
57
|
Barribeau SM, Schmid-Hempel P. Sexual healing: mating induces a protective immune response in bumblebees. J Evol Biol 2016; 30:202-209. [PMID: 27538716 DOI: 10.1111/jeb.12964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
The prevalence of sexual, as opposed to clonal, reproduction given the many costs associated with sexual recombination has been an enduring question in evolutionary biology. In addition to these often discussed costs, there are further costs associated with mating, including the induction of a costly immune response, which leaves individuals prone to infection. Here, we test whether mating results in immune activation and susceptibility to a common, ecologically important, parasite of bumblebees. We find that mating does result in immune activation as measured by gene expression of known immune genes, but that this activation improves resistance to this parasite. We conclude that although mating can corrupt immunity in some systems, it can also enhance immunity in others.
Collapse
Affiliation(s)
- S M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - P Schmid-Hempel
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
58
|
Plakke MS, Deutsch AB, Meslin C, Clark NL, Morehouse NI. Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly. ACTA ACUST UNITED AC 2016; 218:1548-55. [PMID: 25994634 DOI: 10.1242/jeb.118323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reproductive traits experience high levels of selection because of their direct ties to fitness, often resulting in rapid adaptive evolution. Much of the work in this area has focused on male reproductive traits. However, a more comprehensive understanding of female reproductive adaptations and their relationship to male characters is crucial to uncover the relative roles of sexual cooperation and conflict in driving co-evolutionary dynamics between the sexes. We focus on the physiology of a complex female reproductive adaptation in butterflies and moths: a stomach-like organ in the female reproductive tract called the bursa copulatrix that digests the male ejaculate (spermatophore). Little is known about how the bursa digests the spermatophore. We characterized bursa proteolytic capacity in relation to female state in the polyandrous butterfly Pieris rapae. We found that the virgin bursa exhibits extremely high levels of proteolytic activity. Furthermore, in virgin females, bursal proteolytic capacity increases with time since eclosion and ambient temperature, but is not sensitive to the pre-mating social environment. Post copulation, bursal proteolytic activity decreases rapidly before rebounding toward the end of a mating cycle, suggesting active female regulation of proteolysis and/or potential quenching of proteolysis by male ejaculate constituents. Using transcriptomic and proteomic approaches, we report identities for nine proteases actively transcribed by bursal tissue and/or expressed in the bursal lumen that may contribute to observed bursal proteolysis. We discuss how these dynamic physiological characteristics may function as female adaptations resulting from sexual conflict over female remating rate in this polyandrous butterfly.
Collapse
Affiliation(s)
- Melissa S Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron B Deutsch
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
59
|
Buffering of Genetic Regulatory Networks in Drosophila melanogaster. Genetics 2016; 203:1177-90. [PMID: 27194752 DOI: 10.1534/genetics.116.188797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023] Open
Abstract
Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study. A Bayesian model for AI, with an intersection test, controls type I error. There are ∼200 genes with AI exclusively in mated or virgin flies, indicating an environmental component of expression regulation. On average 34% of genes within a cross and 54% of all genes show evidence for genetic regulation of transcription. Nearly all differentially regulated genes are affected in cis, with an average of 63% of expression variation explained by the cis-effects. Trans-effects explain 8% of the variance in AI on average and the interaction between cis and trans explains an average of 11% of the total variance in AI. In both environments cis- and trans-effects are compensatory in their overall effect, with a negative association between cis- and trans-effects in 85% of the exons examined. We hypothesize that the gene expression level perturbed by cis-regulatory mutations is compensated through trans-regulatory mechanisms, e.g., trans and cis by trans-factors buffering cis-mutations. In addition, when AI is detected in both environments, cis-mated, cis-virgin, and trans-mated-trans-virgin estimates are highly concordant with 99% of all exons positively correlated with a median correlation of 0.83 for cis and 0.95 for trans We conclude that the gene regulatory networks (GRNs) are robust and that trans-buffering explains robustness.
Collapse
|
60
|
Alfonso-Parra C, Ahmed-Braimah YH, Degner EC, Avila FW, Villarreal SM, Pleiss JA, Wolfner MF, Harrington LC. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0004451. [PMID: 26901677 PMCID: PMC4764262 DOI: 10.1371/journal.pntd.0004451] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Abstract
The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito. Female post-mating behavior has important consequences for mosquito populations and their ability to transmit diseases. Male Aedes aegypti seminal fluid substances transferred during mating cause many important changes to female behavior and physiology, including blood feeding behavior, egg development, and oviposition. In an effort to understand how males induce these responses in Ae. aegypti females, we characterized the transcriptome changes that occur in the female reproductive tract at different time points after mating. We found several RNAs that are apparently transferred by the male, and 280 genes whose mRNA abundance in the female is affected by mating. The nature of the predicted products of many of these genes suggests roles in priming the reproductive tract for egg development, protecting the female against bacterial infections or processing the blood meal. This identification of mating-responsive genes provides information potentially useful for developing tools aimed at preventing disease transmission by manipulating female mosquitoes’ post-mating responses.
Collapse
Affiliation(s)
- Catalina Alfonso-Parra
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Instituto Colombiano de Medicina Tropical - Universidad CES, Medellín, Colombia
| | - Yasir H. Ahmed-Braimah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Ethan C. Degner
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Frank W. Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Susan M. Villarreal
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey A. Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MFW); (LCH)
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MFW); (LCH)
| |
Collapse
|
61
|
Scolari F, Benoit JB, Michalkova V, Aksoy E, Takac P, Abd-Alla AMM, Malacrida AR, Aksoy S, Attardo GM. The Spermatophore in Glossina morsitans morsitans: Insights into Male Contributions to Reproduction. Sci Rep 2016; 6:20334. [PMID: 26847001 PMCID: PMC4742874 DOI: 10.1038/srep20334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
Male Seminal Fluid Proteins (SFPs) transferred during copulation modulate female reproductive physiology and behavior, impacting sperm storage/use, ovulation, oviposition, and remating receptivity. These capabilities make them ideal targets for developing novel methods of insect disease vector control. Little is known about the nature of SFPs in the viviparous tsetse flies (Diptera: Glossinidae), vectors of Human and Animal African trypanosomiasis. In tsetse, male ejaculate is assembled into a capsule-like spermatophore structure visible post-copulation in the female uterus. We applied high-throughput approaches to uncover the composition of the spermatophore in Glossina morsitans morsitans. We found that both male accessory glands and testes contribute to its formation. The male accessory glands produce a small number of abundant novel proteins with yet unknown functions, in addition to enzyme inhibitors and peptidase regulators. The testes contribute sperm in addition to a diverse array of less abundant proteins associated with binding, oxidoreductase/transferase activities, cytoskeletal and lipid/carbohydrate transporter functions. Proteins encoded by female-biased genes are also found in the spermatophore. About half of the proteins display sequence conservation relative to other Diptera, and low similarity to SFPs from other studied species, possibly reflecting both their fast evolutionary pace and the divergent nature of tsetse's viviparous biology.
Collapse
Affiliation(s)
- Francesca Scolari
- University of Pavia, Dept of Biology and Biotechnology, 27100 Pavia, Italy
| | - Joshua B. Benoit
- University of Cincinnati, McMicken School of Arts and Sciences, Dept of Biological Sciences, 45221, Cincinnati, OH, USA
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| | - Veronika Michalkova
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06 SR, Bratislava, Slovakia
| | - Emre Aksoy
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06 SR, Bratislava, Slovakia
| | - Adly M. M. Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Anna R. Malacrida
- University of Pavia, Dept of Biology and Biotechnology, 27100 Pavia, Italy
| | - Serap Aksoy
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| | - Geoffrey M. Attardo
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| |
Collapse
|
62
|
Carmel I, Tram U, Heifetz Y. Mating induces developmental changes in the insect female reproductive tract. CURRENT OPINION IN INSECT SCIENCE 2016; 13:106-113. [PMID: 27436559 DOI: 10.1016/j.cois.2016.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 06/06/2023]
Abstract
In response to mating, the Drosophila female undergoes a series of rapid molecular, morphological, behavioral and physiological changes. Studies in Drosophila and other organisms have shown that stimuli received during courtship and copulation, sperm, and seminal fluid are needed for the full mating response and thus reproductive success. Very little is known, however, about how females respond to these male-derived stimuli/factors at the molecular level. More specifically, it is unclear what mechanisms regulate and mediate the mating response, how the signals received during mating are integrated and processed, and what network of molecules are essential for a successful mating response. Moreover, it is yet to be determined whether the rapid transition of the reproductive tract induced by mating is a general phenomenon in insects. This review highlights current knowledge and advances on the developmental switch that rapidly transitions the female from the 'unmated' to 'mated' state.
Collapse
Affiliation(s)
- I Carmel
- Department of Entomology, The Hebrew University, Rehovot, Israel
| | - U Tram
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Y Heifetz
- Department of Entomology, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
63
|
Green D, Dalmay T, Chapman T. Microguards and micromessengers of the genome. Heredity (Edinb) 2016; 116:125-34. [PMID: 26419338 PMCID: PMC4806885 DOI: 10.1038/hdy.2015.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023] Open
Abstract
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as 'transcription dynamics'. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term 'microguarding'. An additional emerging role for miRNAs is as 'micromessengers'-through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic.
Collapse
Affiliation(s)
- D Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - T Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - T Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
64
|
Bell AM, Dochtermann NA. Integrating molecular mechanisms into quantitative genetics to understand consistent individual differences in behavior. Curr Opin Behav Sci 2015; 6:111-114. [PMID: 26858967 DOI: 10.1016/j.cobeha.2015.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is now well appreciated that individual animals behave differently from one another and that individual differences in behaviors-personality differences-are maintained through time and across situations. Quantitative genetics has emerged as a conceptual basis for understanding the key ingredients of personality: (co)variation and plasticity. However, the results from quantitative genetic analyses are often divorced from underlying molecular or other proximate mechanisms. This disconnect has the potential to impede an integrated understanding of behavior and is a disconnect present throughout evolutionary ecology. Here we discuss some of the main conceptual connections between personality and quantitative genetics, the relationship of both with genomic tools, and areas that require integration. With its consideration of both trait variation and plasticity, the study of animal personality offers new opportunities to incorporate molecular mechanisms into both the trait partitioning and reaction norm frameworks provided by quantitative genetics.
Collapse
Affiliation(s)
- Alison M Bell
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Neuroscience Program and Program in Ecology, Evolution and Conservation
| | - Ned A Dochtermann
- Department of Biological Sciences, Dept. 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050
| |
Collapse
|
65
|
Hollis B, Houle D, Kawecki TJ. Evolution of reduced post-copulatory molecular interactions in Drosophila populations lacking sperm competition. J Evol Biol 2015; 29:77-85. [PMID: 26395588 DOI: 10.1111/jeb.12763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
Abstract
In many species with internal fertilization, molecules transferred in the male ejaculate trigger and interact with physiological changes in females. It is controversial to what extent these interactions between the sexes act synergistically to mediate the female switch to a reproductive state or instead reflect sexual antagonism evolved as a by product of sexual selection on males. To address this question, we eliminated sexual selection by enforcing monogamy in populations of Drosophila melanogaster for 65 generations and then measured the expression of male seminal fluid protein genes and genes involved in the female response to mating. In the absence of sperm competition, male and female reproductive interests are perfectly aligned and any antagonism should be reduced by natural selection. Consistent with this idea, males from monogamous populations showed reduced expression of seminal fluid protein genes, 16% less on average than in polygamous males. Further, we identified 428 genes that responded to mating in females. After mating, females with an evolutionary history of monogamy exhibited lower relative expression of genes that were up regulated in response to mating and higher expression of genes that were down-regulated--in other words, their post-mating transcriptome appeared more virgin-like. Surprisingly, these genes showed a similar pattern even before mating, suggesting that monogamous females evolved to be less poised for mating and the accompanying receipt of male seminal fluid proteins. This reduced investment by both monogamous males and females in molecules involved in post-copulatory interactions points to a pervasive role of sexual conflict in shaping these interactions.
Collapse
Affiliation(s)
- B Hollis
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland.,Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK
| | - D Houle
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - T J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| |
Collapse
|
66
|
Landis GN, Salomon MP, Keroles D, Brookes N, Sekimura T, Tower J. The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila. Aging (Albany NY) 2015; 7:53-69. [PMID: 25614682 PMCID: PMC4350324 DOI: 10.18632/aging.100721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mating causes decreased life span in female Drosophila. Here we report that mifepristone blocked this effect, yielding life span increases up to +68%. Drug was fed to females after mating, in the absence of males, demonstrating function in females. Mifepristone did not increase life span of virgin females or males. Mifepristone reduced progeny production but did not reduce food intake. High-throughput RNA sequencing was used to identify genes up-regulated or down-regulated upon mating, and where the change was reduced by mifepristone. Five candidate positive regulators of life span were identified, including dosage compensation regulator Unr and three X-linked genes: multi sex combs (PcG gene), Dopamine 2-like receptor and CG14215. The 37 candidate negative genes included neuropeptide CNMamide and several involved in protein mobilization and immune response. The results inform the interpretation of experiments involving mifepristone, and implicate steroid hormone signaling in regulating the trade-off between reproduction and life span.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Matthew P Salomon
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Daniel Keroles
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Nicholas Brookes
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Troy Sekimura
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
67
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Sagri E, Reczko M, Tsoumani KT, Gregoriou ME, Harokopos V, Mavridou AM, Tastsoglou S, Athanasiadis K, Ragoussis J, Mathiopoulos KD. The molecular biology of the olive fly comes of age. BMC Genet 2014; 15 Suppl 2:S8. [PMID: 25472866 PMCID: PMC4255830 DOI: 10.1186/1471-2156-15-s2-s8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970's, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information. Results Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity-α locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages. Conclusions Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly.
Collapse
|
69
|
Innocenti P, Flis I, Morrow EH. Female responses to experimental removal of sexual selection components in Drosophila melanogaster. BMC Evol Biol 2014; 14:239. [PMID: 25406540 PMCID: PMC4243381 DOI: 10.1186/s12862-014-0239-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the common assumption that multiple mating should in general be favored in males, but not in females, to date there is no consensus on the general impact of multiple mating on female fitness. Notably, very little is known about the genetic and physiological features underlying the female response to sexual selection pressures. By combining an experimental evolution approach with genomic techniques, we investigated the effects of single and multiple matings on female fecundity and gene expression. We experimentally manipulated the opportunity for mating in replicate populations of Drosophila melanogaster by removing components of sexual selection, with the aim of testing differences in short term post-mating effects of females evolved under different mating strategies. RESULTS We show that monogamous females suffer decreased fecundity, a decrease that was partially recovered by experimentally reversing the selection pressure back to the ancestral state. The post-mating gene expression profiles of monogamous females differ significantly from promiscuous females, involving 9% of the genes tested (approximately 6% of total genes in D. melanogaster). These transcripts are active in several tissues, mainly ovaries, neural tissues and midgut, and are involved in metabolic processes, reproduction and signaling pathways. CONCLUSIONS Our results demonstrate how the female post-mating response can evolve under different mating systems, and provide novel insights into the genes targeted by sexual selection in females, by identifying a list of candidate genes responsible for the decrease in female fecundity in the absence of promiscuity.
Collapse
Affiliation(s)
- Paolo Innocenti
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden.
| | - Ilona Flis
- Ecology, Behaviour and Environment Group, University of Sussex, Brighton, BN1 9QG, UK.
| | - Edward H Morrow
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden. .,Ecology, Behaviour and Environment Group, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
70
|
Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A 2014; 111:16353-8. [PMID: 25368171 DOI: 10.1073/pnas.1410488111] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.
Collapse
|
71
|
Zhou S, Mackay TFC, Anholt RRH. Transcriptional and epigenetic responses to mating and aging in Drosophila melanogaster. BMC Genomics 2014; 15:927. [PMID: 25344338 PMCID: PMC4221674 DOI: 10.1186/1471-2164-15-927] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phenotypic plasticity allows organisms to respond rapidly to changing environmental circumstances, and understanding its genomic basis can yield insights regarding the underlying genes and genetic networks affecting complex phenotypes. Female Drosophila melanogaster undergo dramatic physiological changes mediated by seminal fluid components transferred upon mating, including decreased longevity. Their physiological and behavioral effects have been well characterized, but little is known about resulting changes in regulation of gene expression or the extent to which mating-induced changes in gene expression are the same as those occurring during aging. RESULTS We assessed genome-wide mRNA, microRNA, and three common histone modifications implicated in gene activation for young and aged virgin and mated female D. melanogaster in a factorial design. We identified phenotypically plastic transcripts and epigenetic modifications associated with mating and aging. We used these data to derive phenotypically plastic regulatory networks associated with mating of young flies, and aging of virgin and mated flies. Many of the mRNAs, microRNAs and epigenetic modifications associated with mating of young flies also occur with age in virgin flies, which may reflect mating-induced accelerated aging. We functionally tested the plastic regulatory networks by overexpressing environmentally sensitive microRNAs. Overexpression resulted in altered expression of ~70% of candidate target genes, and in all cases affected oviposition. CONCLUSIONS Our results implicate microRNAs as mediators of phenotypic plasticity associated with mating and provide a comprehensive documentation of the genomic and epigenomic changes that accompany mating- and aging-induced physiological changes in female D. melanogaster.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7617 USA
| | - Trudy FC Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7617 USA
| | - Robert RH Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7617 USA
| |
Collapse
|
72
|
Abstract
Across taxa, female behavior and physiology change significantly following the receipt of ejaculate molecules during mating. For example, receipt of sex peptide (SP) in female Drosophila melanogaster significantly alters female receptivity, egg production, lifespan, hormone levels, immunity, sleep, and feeding patterns. These changes are underpinned by distinct tissue- and time-specific changes in diverse sets of mRNAs. However, little is yet known about the regulation of these gene expression changes, and hence the potential role of microRNAs (miRNAs), in female postmating responses. A preliminary screen of genomic responses in females to receipt of SP suggested that there were changes in the expression of several miRNAs. Here we tested directly whether females lacking four of the candidate miRNAs highlighted (miR-279, miR-317, miR-278, and miR-184) showed altered fecundity, receptivity, and lifespan responses to receipt of SP, when mated once or continually to SP null or control males. The results showed that miRNA-lacking females mated to SP null males exhibited altered receptivity, but not reproductive output, in comparison to controls. However, these effects interacted significantly with the genetic background of the miRNA-lacking females. No significant survival effects were observed in miRNA-lacking females housed continually with SP null or control males. However, continual exposure to control males that transferred SP resulted in significantly higher variation in miRNA-lacking female lifespan than did continual exposure to SP null males. The results provide the first insight into the effects and importance of miRNAs in regulating postmating responses in females.
Collapse
|
73
|
Immonen E, Snook RR, Ritchie MG. Mating system variation drives rapid evolution of the female transcriptome in Drosophila pseudoobscura. Ecol Evol 2014; 4:2186-201. [PMID: 25360260 PMCID: PMC4201433 DOI: 10.1002/ece3.1098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/31/2022] Open
Abstract
Interactions between the sexes are believed to be a potent source of selection on sex-specific evolution. The way in which sexual interactions influence male investment is much studied, but effects on females are more poorly understood. To address this deficiency, we examined gene expression in virgin female Drosophila pseudoobscura following 100 generations of mating system manipulations in which we either elevated polyandry or enforced monandry. Gene expression evolution following mating system manipulation resulted in 14% of the transcriptome of virgin females being altered. Polyandrous females elevated expression of a greater number of genes normally enriched in ovaries and associated with mitosis and meiosis, which might reflect female investment into reproductive functions. Monandrous females showed a greater number of genes normally enriched for expression in somatic tissues, including the head and gut and associated with visual perception and metabolism, respectively. By comparing our data with a previous study of sex differences in gene expression in this species, we found that the majority of the genes that are differentially expressed between females of the selection treatments show female-biased expression in the wild-type population. A striking exception is genes associated with male-specific reproductive tissues (in D. melanogaster), which are upregulated in polyandrous females. Our results provide experimental evidence for a role of sex-specific selection arising from differing sexual interactions with males in promoting rapid evolution of the female transcriptome.
Collapse
Affiliation(s)
- Elina Immonen
- School of Biology, University of St Andrews Dyers Brae House, St Andrews, Fife, KY16 9TH, U.K ; Department of Ecology and Genetics (Animal Ecology), Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, Uppsala, 752 36, Sweden
| | - Rhonda R Snook
- Animal & Plant Sciences, University of Sheffield Alfred Denny Building, Sheffield, S10 2TN, U.K
| | - Michael G Ritchie
- School of Biology, University of St Andrews Dyers Brae House, St Andrews, Fife, KY16 9TH, U.K
| |
Collapse
|
74
|
A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients. PLoS Genet 2014; 10:e1003874. [PMID: 24763277 PMCID: PMC3998918 DOI: 10.1371/journal.pgen.1003874] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.
Collapse
|
75
|
Obiero GFO, Mireji PO, Nyanjom SRG, Christoffels A, Robertson HM, Masiga DK. Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans. PLoS Negl Trop Dis 2014; 8:e2663. [PMID: 24763191 PMCID: PMC3998910 DOI: 10.1371/journal.pntd.0002663] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/12/2013] [Indexed: 12/29/2022] Open
Abstract
Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse. Tsetse flies navigate their environments using chemosensory receptors, which permit them to locate hosts, mating partners, and resting and larviposition sites. The genome of G. m. morsitans was interrogated for coding genes of odorant receptors (ORs) and gustatory receptors (GRs) that express in antennae and maxillary palp, and detect the volatile and soluble chemical signals. The signals are then transmitted to the central nervous system and translated to phenotypes. Majority of these genes in G. m. morsitans were spread across different scaffolds, but a few were found to occur in clusters, which suggested possible co-regulation of their expression. The number of ORs and GRs were much reduced in the G. m. morsitans genome, including the apparent loss of receptors for sugar when compared to selected Diptera. There was also an apparent numerical expansion of some receptors, presumably to maximize on their restricted blood-meal diet. The annotation of the chemoreceptor package of G. m. morsitans provides a resource for investigating key activities of tsetse flies that could be exploited for their control.
Collapse
Affiliation(s)
- George F. O. Obiero
- Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- South African Bioinformatics Institute (SANBI), South African MRC Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Paul O. Mireji
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Steven R. G. Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Alan Christoffels
- South African Bioinformatics Institute (SANBI), South African MRC Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daniel K. Masiga
- Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- * E-mail:
| |
Collapse
|
76
|
Al-Wathiqui N, Lewis SM, Dopman EB. Using RNA sequencing to characterize female reproductive genes between Z and E Strains of European Corn Borer moth (Ostrinia nubilalis). BMC Genomics 2014; 15:189. [PMID: 24621199 PMCID: PMC4007636 DOI: 10.1186/1471-2164-15-189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 11/29/2022] Open
Abstract
Background Reproductive proteins often evolve rapidly and are thought to be subject to strong sexual selection, and thus may play a key role in reproductive isolation and species divergence. However, our knowledge of reproductive proteins has been largely limited to males and model organisms with sequenced genomes. With advances in sequencing technology, Lepidoptera are emerging models for studies of sexual selection and speciation. By profiling the transcriptomes of the bursa copulatrix and bursal gland from females of two incipient species of moth, we characterize reproductive genes expressed in the primary reproductive tissues of female Lepidoptera and identify candidate genes contributing to a one-way gametic incompatibility between Z and E strains of the European corn borer (Ostrinia nubilalis). Results Using RNA sequencing we identified transcripts from ~37,000 and ~36,000 loci that were expressed in the bursa copulatrix or the bursal gland respectively. Of bursa copulatrix genes, 8% were significantly differentially expressed compared to the female thorax, and those that were up-regulated or specific to the bursa copulatrix showed functional biases toward muscle activity and/or organization. In the bursal gland, 9% of genes were differentially expressed compared to the thorax, with many showing reproduction or gamete production functions. Of up-regulated bursal gland genes, 46% contained a transmembrane region and 16% possessed secretion signal peptides. Divergently expressed genes in the bursa copulatrix were exclusively biased toward protease-like functions and 51 proteases or protease inhibitors were divergently expressed overall. Conclusions This is the first comprehensive characterization of female reproductive genes in any lepidopteran system. The transcriptome of the bursa copulatrix supports its role as a muscular sac that is the primary site for disruption of the male ejaculate. We find that the bursal gland acts as a reproductive secretory body that might also interact with male ejaculate. In addition, differential expression of proteases between strains supports a potential role for these tissues in contributing to reproductive isolation. Our study provides new insight into how male ejaculate is processed by female Lepidoptera, and paves the way for future work on interactions between post-mating sexual selection and speciation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-189) contains supplementary material, which is available to authorized users.
Collapse
|
77
|
Zhong W, McClure CD, Evans CR, Mlynski DT, Immonen E, Ritchie MG, Priest NK. Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections. Proc Biol Sci 2013; 280:20132018. [PMID: 24174107 PMCID: PMC3826220 DOI: 10.1098/rspb.2013.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although it is well known that mating increases the risk of infection, we do not know how females mitigate the fitness costs of sexually transmitted infections (STIs). It has recently been shown that female fruitflies, Drosophila melanogaster, specifically upregulate two members of the Turandot family of immune and stress response genes, Turandot M and Turandot C (TotM and TotC), when they hear male courtship song. Here, we use the Gal4/UAS RNAi gene knockdown system to test whether the expression of these genes provides fitness benefits for females infected with the entomopathogenic fungus, Metarhizium robertsii under sexual transmission. As a control, we also examined the immunity conferred by Dorsal-related immunity factor (Dif), a central component of the Toll signalling pathway thought to provide immunity against fungal infections. We show that TotM, but not TotC or Dif, provides survival benefits to females following STIs, but not after direct topical infections. We also show that though the expression of TotM provides fecundity benefits for healthy females, it comes at a cost to their survival, which helps to explain why TotM is not constitutively expressed. Together, these results show that the anticipatory expression of TotM promotes specific immunity against fungal STIs and suggest that immune anticipation is more common than currently appreciated.
Collapse
Affiliation(s)
- Weihao Zhong
- Department of Biology and Biochemistry, University of Bath, , Bath BA2 7SW, UK, Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, , Norbyvägen 18 D, Uppsala 75236, Sweden, School of Biology, Biomedical Sciences Research Complex, University of St Andrews, , St Andrews, Fife KY16 9ST, UK
| | | | | | | | | | | | | |
Collapse
|
78
|
Garcia C, Avila V, Quesada H, Caballero A. Candidate transcriptomic sources of inbreeding depression in Drosophila melanogaster. PLoS One 2013; 8:e70067. [PMID: 23922905 PMCID: PMC3726430 DOI: 10.1371/journal.pone.0070067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/14/2013] [Indexed: 12/02/2022] Open
Abstract
The genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress induced by increased homozygosity due to inbreeding. Attempting to differentiate causes from responses, we made a c-DNA microarray analysis of inbreeding depression in Drosophila melanogaster. The rationale of the experiment was that, while depression is a general phenomenon involving reductions in fitness in different inbred lines, its first genetic causes would be different for each inbred line, as they are expected to be caused by the fixation of rare deleterious genes. We took four sets of inbred sublines, each set descending from a different founding pair obtained from a large outbred stock, and compared the expression of the three most depressed sublines and the three least depressed sublines from each set. Many changes in expression were common to all sets, but fourteen genes, grouped in four expression clusters, showed strong set-specific changes, and were therefore possible candidates to be sources of the inbreeding depression observed.
Collapse
Affiliation(s)
- Carlos Garcia
- Departamento de Xenética, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain.
| | | | | | | |
Collapse
|
79
|
Pannebakker BA, Trivedi U, Blaxter ML, Watt R, Shuker DM. The transcriptomic basis of oviposition behaviour in the parasitoid wasp Nasonia vitripennis. PLoS One 2013; 8:e68608. [PMID: 23894324 PMCID: PMC3716692 DOI: 10.1371/journal.pone.0068608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/29/2013] [Indexed: 01/26/2023] Open
Abstract
Linking behavioural phenotypes to their underlying genotypes is crucial for uncovering the mechanisms that underpin behaviour and for understanding the origins and maintenance of genetic variation in behaviour. Recently, interest has begun to focus on the transcriptome as a route for identifying genes and gene pathways associated with behaviour. For many behavioural traits studied at the phenotypic level, we have little or no idea of where to start searching for "candidate" genes: the transcriptome provides such a starting point. Here we consider transcriptomic changes associated with oviposition in the parasitoid wasp Nasonia vitripennis. Oviposition is a key behaviour for parasitoids, as females are faced with a variety of decisions that will impact offspring fitness. These include choosing between hosts of differing quality, as well as making decisions regarding clutch size and offspring sex ratio. We compared the whole-body transcriptomes of resting or ovipositing female Nasonia using a "DeepSAGE" gene expression approach on the Illumina sequencing platform. We identified 332 tags that were significantly differentially expressed between the two treatments, with 77% of the changes associated with greater expression in resting females. Oviposition therefore appears to focus gene expression away from a number of physiological processes, with gene ontologies suggesting that aspects of metabolism may be down-regulated during egg-laying. Nine of the most abundant differentially expressed tags showed greater expression in ovipositing females though, including the genes purity-of-essence (associated with behavioural phenotypes in Drosophila) and glucose dehydrogenase (GLD). The GLD protein has been implicated in sperm storage and release in Drosophila and so provides a possible candidate for the control of sex allocation by female Nasonia during oviposition. Oviposition in Nasonia therefore clearly modifies the transcriptome, providing a starting point for the genetic dissection of oviposition.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
80
|
Gerrard DT, Fricke C, Edward DA, Edwards DR, Chapman T. Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes. PLoS One 2013; 8:e68136. [PMID: 23826372 PMCID: PMC3694895 DOI: 10.1371/journal.pone.0068136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Elevated rates of mating and reproduction cause decreased female survival and lifetime reproductive success across a wide range of taxa from flies to humans. These costs are fundamentally important to the evolution of life histories. Here we investigate the potential mechanistic basis of this classic life history component. We conducted 4 independent replicated experiments in which female Drosophila melanogaster were subjected to ‘high’ and ‘low’ mating regimes, resulting in highly significant differences in lifespan. We sampled females for transcriptomic analysis at day 10 of life, before the visible onset of ageing, and used Tiling expression arrays to detect differential gene expression in two body parts (abdomen versus head+thorax). The divergent mating regimes were associated with significant differential expression in a network of genes showing evidence for interactions with ecdysone receptor. Preliminary experimental manipulation of two genes in that network with roles in post-transcriptional modification (CG11486, eyegone) tended to enhance sensitivity to mating costs. However, the subtle nature of those effects suggests substantial functional redundancy or parallelism in this gene network, which could buffer females against excessive responses. There was also evidence for differential expression in genes involved in germline maintenance, cell proliferation and in gustation / odorant reception. Interestingly, we detected differential expression in three specific genes (EcR, keap1, lbk1) and one class of genes (gustation / odorant receptors) with previously reported roles in determining lifespan. Our results suggest that high and low mating regimes that lead to divergence in lifespan are associated with changes in the expression of genes such as reproductive hormones, that influence resource allocation to the germ line, and that may modify post-translational gene expression. This predicts that the correct signalling of nutrient levels to the reproductive system is important for maintaining organismal integrity.
Collapse
Affiliation(s)
- Dave T. Gerrard
- Faculty of Life Sciences and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Claudia Fricke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Institute for Evolution and Biodiversity, Westfaelische Wilhelms-University, Muenster, Germany
| | - Dominic A. Edward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Mammalian Behaviour & Evolution, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Dylan R. Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
81
|
Reproductive status alters transcriptomic response to infection in female Drosophila melanogaster. G3-GENES GENOMES GENETICS 2013; 3:827-40. [PMID: 23550122 PMCID: PMC3656730 DOI: 10.1534/g3.112.005306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mating and consequent reproduction significantly reduce the ability of female Drosophila melanogaster to defend against systemic bacterial infection. The goal of the present study was to identify genes likely to inform the mechanism of this post-mating immunosuppression. We used microarrays to contrast genome-wide transcript levels in virgin vs. mated females before and after infection. Because the immunosuppressive effect of mating is contingent on the presence of a germline in females, we repeated the entire experiment by using female mutants that do not form a germline. We found that multiple genes involved in egg production show reduced expression in response to infection, and that this reduction is stronger in virgins than it is in mated females. In germline-less females, expression of egg-production genes was predictably low and not differentially affected by infection. We also identified several immune responsive genes that are differentially induced after infection in virgins vs. mated females. Immune genes affected by mating status and egg production genes altered by infection are candidates to inform the mechanism of the trade-off between mating and immune defense.
Collapse
|
82
|
Mank JE, Wedell N, Hosken DJ. Polyandry and sex-specific gene expression. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120047. [PMID: 23339238 DOI: 10.1098/rstb.2012.0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, The Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
83
|
Laflamme BA, Wolfner MF. Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 2012; 80:80-101. [PMID: 23109270 DOI: 10.1002/mrd.22130] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/20/2012] [Indexed: 01/17/2023]
Abstract
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post-mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen.
Collapse
Affiliation(s)
- Brooke A Laflamme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
84
|
Xu J, Baulding J, Palli SR. Proteomics of Tribolium castaneum seminal fluid proteins: identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J Proteomics 2012. [PMID: 23195916 DOI: 10.1016/j.jprot.2012.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Seminal fluid proteins (SFPs) play important roles in regulation of reproduction and behavior. Proteomics approaches were used to identify 13 SFPs, including 3 new proteins in the red flour beetle, Tribolium castaneum. The 13 SFP genes identified code for Serpin, cysteine-rich protein, odorant binding protein-like (OBPL, G10064 and G10065), Kunitz-like protease inhibitor precursor, and WD 40 family protein and are predominantly expressed in the male accessory glands. The genes coding for 13 putative SFPs were knocked down in males; the RNAi males were mated with virgin females, and the number of eggs produced by the mated females was quantified. Knockdown in the expression of the gene coding for a protein similar to angiotensin-converting enzyme 9 (G15465, TcACE) in the males caused a decrease in egg production by the females when compared to the eggs produced by the females mated with control males. In addition, knockdown in the expression of the gene coding for heat shock cognate 70 led to a reduction in the amount of proteins produced by the male accessory glands by 55%. These data suggest that angiotensin-converting enzyme produced in the male seminal vesicles plays important roles in sperm protection during and after transfer to females.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
85
|
Large neurological component to genetic differences underlying biased sperm use in Drosophila. Genetics 2012; 193:177-85. [PMID: 23105014 DOI: 10.1534/genetics.112.146357] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sperm competition arises as a result of complex interactions among male and female factors. While the roles of some male factors are known, little is known of the molecules or mechanisms that underlie the female contribution to sperm competition. The genetic tools available for Drosophila allow us to identify, in an unbiased manner, candidate female genes that are critical for mediating sperm competition outcomes. We first screened for differences in female sperm storage and use patterns by characterizing the natural variation in sperm competition in a set of 39 lines from the sequenced Drosophila Genetic Reference Panel (DGRP) of wild-derived inbred lines. We found extensive female variation in sperm competition outcomes. To generate a list of candidate female genes for functional studies, we performed a genome-wide association mapping, utilizing the common single-nucleotide polymorphisms (SNPs) segregating in the DGRP lines. Surprisingly, SNPs within ion channel genes and other genes with roles in the nervous system were among the top associated SNPs. Knockdown studies of three candidate genes (para, Rab2, and Rim) in sensory neurons innervating the female reproductive tract indicate that some of these candidate female genes may affect sperm competition by modulating the neural input of these sensory neurons to the female reproductive tract. More extensive functional studies are needed to elucidate the exact role of all these candidate female genes in sperm competition. Nevertheless, the female nervous system appears to have a previously unappreciated role in sperm competition. Our results indicate that the study of female control of sperm competition should not be limited to female reproductive tract-specific genes, but should focus also on diverse biological pathways.
Collapse
|
86
|
Dottorini T, Persampieri T, Palladino P, Baker DA, Spaccapelo R, Senin N, Crisanti A. Regulation of Anopheles gambiae male accessory gland genes influences postmating response in female. FASEB J 2012; 27:86-97. [PMID: 22997226 DOI: 10.1096/fj.12-219444] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Drosophila, the accessory gland proteins (Acps) secreted from the male accessory glands (MAGs) and transferred along with sperm into the female reproductive tract have been implicated in triggering postmating behavioral changes, including refractoriness to subsequent mating and propensity to egg laying. Recently, Acps have been found also in Anopheles, suggesting similar functions. Understanding the mechanisms underlying transcriptional regulation of Acps and their functional role in modulating Anopheles postmating behavior may lead to the identification of novel vector control strategies to reduce mosquito populations. We identified heat-shock factor (HSF) binding sites within the Acp promoters of male Anopheles gambiae and discovered three distinct Hsf isoforms; one being significantly up-regulated in the MAGs after mating. Through genome-wide transcription analysis of Hsf-silenced males, we observed significant down-regulation in 50% of the Acp genes if compared to control males treated with a construct directed against an unrelated bacterial sequence. Treated males retained normal life span and reproductive behavior compared to control males. However, mated wild-type females showed a ∼46% reduction of egg deposition rate and a ∼23% reduction of hatching rate (∼58% combined reduction of progeny). Our results highlight an unsuspected role of HSF in regulating Acp transcription in A. gambiae and provide evidence that Acp down-regulation in males leads a significant reduction of progeny, thus opening new avenues toward the development of novel vector control strategies.
Collapse
Affiliation(s)
- Tania Dottorini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
87
|
Gioti A, Wigby S, Wertheim B, Schuster E, Martinez P, Pennington CJ, Partridge L, Chapman T. Sex peptide of Drosophila melanogaster males is a global regulator of reproductive processes in females. Proc Biol Sci 2012; 279:4423-32. [PMID: 22977156 DOI: 10.1098/rspb.2012.1634] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seminal fluid proteins (Sfps) alter female behaviour and physiology and can mediate sexual conflict. In Drosophila melanogaster, a single Sfp, the sex peptide (SP), triggers remarkable post-mating responses in females, including altered fecundity, feeding, immunity and sexual receptivity. These effects can favour the evolutionary interests of males while generating costs in females. We tested the hypothesis that SP is an upstream master-regulator able to induce diverse phenotypes through efficient induction of widespread transcriptional changes in females. We profiled mRNA responses to SP in adult female abdomen (Abd) and head+thorax (HT) tissues using microarrays at 3 and 6 h following mating. SP elicited a rich, subtle signature of temporally and spatially controlled mRNAs. There were significant alterations to genes linked to egg development, early embryogenesis, immunity, nutrient sensing, behaviour and, unexpectedly, phototransduction. There was substantially more variation in the direction of differential expression across time points in the HT versus Abd. The results support the idea that SP is an important regulator of gene expression in females. The expression of many genes in one sex can therefore be under the influence of a regulator expressed in the other. This could influence the extent of sexual conflict both within and between loci.
Collapse
Affiliation(s)
- A Gioti
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Neville M, Goodwin SF. Genome-wide approaches to understanding behaviour in Drosophila melanogaster. Brief Funct Genomics 2012; 11:395-404. [PMID: 22843979 DOI: 10.1093/bfgp/els031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.
Collapse
Affiliation(s)
- Megan Neville
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
89
|
Immonen E, Ritchie MG. The genomic response to courtship song stimulation in female Drosophila melanogaster. Proc Biol Sci 2012; 279:1359-65. [PMID: 21976688 PMCID: PMC3282362 DOI: 10.1098/rspb.2011.1644] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/12/2011] [Indexed: 11/12/2022] Open
Abstract
Courtship behaviour involves a complex exchange of signals and responses. These are usually studied at the phenotypic level, and genetic or transcriptional responses to courtship are still poorly understood. Here, we examine the gene-expression changes in Drosophila melanogaster females in response to one of the key male courtship signals in mate recognition, song produced by male wing vibration. Using long oligonucleotide microarrays, we identified several genes that responded differentially to the presence or absence of acoustic courtship stimulus. These changes were modest in both the number of genes involved and fold-changes, but notably dominated by antennal signalling genes involved in olfaction as well as neuropeptides and immune response genes. Second, we compared the expression patterns of females stimulated with synthetic song typical of either conspecific or heterospecific (Drosophila simulans) males. In this case, antennal olfactory signalling and innate immunity genes were also enriched among the differentially expressed genes. We confirmed and investigated the time course of expression differences of two identified immunity genes using real-time quantitative PCR. Our results provide novel insight into specific molecular changes in females in response to courtship song stimulation. These may be involved in both signal perception and interpretation and some may anticipate molecular interactions that occur between the sexes after mating.
Collapse
Affiliation(s)
| | - Michael G. Ritchie
- Centre for Evolution, Genes and Genomics, School of Biology, Dyers Brae House, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
90
|
Gomulski LM, Dimopoulos G, Xi Z, Scolari F, Gabrieli P, Siciliano P, Clarke AR, Malacrida AR, Gasperi G. Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS One 2012; 7:e30857. [PMID: 22303464 PMCID: PMC3267753 DOI: 10.1371/journal.pone.0030857] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022] Open
Abstract
Sexual maturation and mating in insects are generally accompanied by major physiological and behavioural changes. Many of these changes are related to the need to locate a mate and subsequently, in the case of females, to switch from mate searching to oviposition behaviour. The prodigious reproductive capacity of the Mediterranean fruit fly, Ceratitis capitata, is one of the factors that has led to its success as an invasive pest species. To identify the molecular changes related to maturation and mating status in male and female medfly, a microarray-based gene expression approach was used to compare the head transcriptomes of sexually immature, mature virgin, and mated individuals. Attention was focused on the changes in abundance of transcripts related to reproduction, behaviour, sensory perception of chemical stimulus, and immune system processes. Broad transcriptional changes were recorded during female maturation, while post-mating transcriptional changes in females were, by contrast, modest. In male medfly, transcriptional changes were consistent both during maturation and as a consequence of mating. Of particular note was the lack of the mating-induced immune responses that have been recorded for Drosophila melanogaster, that may be due to the different reproductive strategies of these species. This study, in addition to increasing our understanding of the molecular machinery behind maturation and mating in the medfly, has identified important gene targets that might be useful in the future management of this pest.
Collapse
Affiliation(s)
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Paolo Gabrieli
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Paolo Siciliano
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Anthony R. Clarke
- Discipline of Biogeosciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Giuliano Gasperi
- Department of Animal Biology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
91
|
Morrow EH, Innocenti P. Female postmating immune responses, immune system evolution and immunogenic males. Biol Rev Camb Philos Soc 2011; 87:631-8. [PMID: 22188485 DOI: 10.1111/j.1469-185x.2011.00214.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Females in many taxa experience postmating activation of their immune system, independently of any genital trauma or pathogenic attack arising from male-female genital contact. This response has always been interpreted as a product of natural selection as it either prepares the female immune system for antigens arising from an implanted embryo (in the case of placental mammals), or is a "pre-emptive strike" against infection or injury acquired during mating. While the first hypothesis has empirical support, the second is not entirely satisfactory. Recently, studies that have experimentally dissected the postmating responses of Drosophila melanogaster females point to a different explanation: male reproductive peptides/proteins that have evolved in response to postmating male-male competition are directly responsible for activating particular elements of the female immune system. Thus, in a broad sense, males may be said to be immunogenic to females. Here, we discuss a possible direct role of sexual selection/sexual conflict in immune system evolution, in contrast to indirect trade-offs with other life-history traits, presenting the available evidence from a range of taxa and proposing ways in which the competing hypotheses could be tested. The major implication of this review is that immune system evolution is not only a product of natural selection but also that sexual selection and potentially sexual conflict enforces a direct selective pressure. This is a significant shift, and will compel researchers studying immune system evolution and ecological immunity to look beyond the forces generated by parasites and pathogens to those generated by the male ejaculate.
Collapse
Affiliation(s)
- Edward H Morrow
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| | | |
Collapse
|
92
|
Giardina TJ, Beavis A, Clark AG, Fiumera AC. Female influence on pre- and post-copulatory sexual selection and its genetic basis in Drosophila melanogaster. Mol Ecol 2011; 20:4098-108. [PMID: 21902747 DOI: 10.1111/j.1365-294x.2011.05253.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic variation among females is likely to influence the outcome of both pre- and post-copulatory sexual selection in Drosophila melanogaster. Here we use association testing to survey natural variation in 10 candidate female genes for their effects on female reproduction. Females from 91 chromosome two substitution lines were scored for phenotypes affecting pre- and post-copulatory sexual selection such as mating and remating rate, propensity to use sperm from the second male to mate, and measures of fertility. There were significant genetic contributions to phenotypic variation for all the traits measured. Resequencing of the 10 candidate genes in the 91 lines yielded 68 non-synonymous polymorphisms which were tested for associations with the measured phenotypes. Twelve significant associations (markerwise P<0.01) were identified. Polymorphisms in the putative serine protease homolog CG9897 and the putative odorant binding protein CG11797 associated with female propensity to remate and met an experimentwise significance of P<0.05. Several other associations, including those impacting both fertility and female remating rate suggest that sperm storage might be an important factor mitigating female influence on sexual selection.
Collapse
Affiliation(s)
- Thomas J Giardina
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | | | | | | |
Collapse
|
93
|
Postmating transcriptional changes in reproductive tracts of con- and heterospecifically mated Drosophila mojavensis females. Proc Natl Acad Sci U S A 2011; 108:7878-83. [PMID: 21518862 DOI: 10.1073/pnas.1100388108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In internally fertilizing organisms, mating involves a series of highly coordinated molecular interactions between the sexes that occur within the female reproductive tract. In species where females mate multiply, traits involved in postcopulatory interactions are expected to evolve rapidly, potentially leading to postmating-prezygotic (PMPZ) reproductive isolation between diverging populations. Here, we investigate the postmating transcriptional response of the lower reproductive tract of Drosophila mojavensis females following copulation with either conspecific or heterospecific (Drosophila arizonae) males at three time points postmating. Relatively few genes (15 total) were differentially regulated in the female lower reproductive tract in response to conspecific mating. Heterospecifically mated females exhibited significant perturbations in the expression of the majority of these genes, and also down-regulated transcription of a number of others, including several involved in mitochondrial function. These striking regulatory differences indicate failed postcopulatory molecular interactions between the sexes consistent with the strong PMPZ isolation observed for this cross. We also report the transfer of male accessory-gland protein (Acp) transcripts from males to females during copulation, a finding with potentially broad implications for understanding postcopulatory molecular interactions between the sexes.
Collapse
|
94
|
Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF. Insect seminal fluid proteins: identification and function. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:21-40. [PMID: 20868282 PMCID: PMC3925971 DOI: 10.1146/annurev-ento-120709-144823] [Citation(s) in RCA: 575] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral postmating changes in females. These changes include decreasing receptivity to remating; affecting sperm storage parameters; increasing egg production; and modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have antimicrobial functions and induce expression of antimicrobial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the postmating processes of female insects.
Collapse
Affiliation(s)
- Frank W. Avila
- Dept. of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Laura K. Sirot
- Dept. of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | | | - Mariana F. Wolfner
- Dept. of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
95
|
Mating alters gene expression patterns in Drosophila melanogaster male heads. BMC Genomics 2010; 11:558. [PMID: 20937114 PMCID: PMC3091707 DOI: 10.1186/1471-2164-11-558] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/11/2010] [Indexed: 11/28/2022] Open
Abstract
Background Behavior is a complex process resulting from the integration of genetic and environmental information. Drosophila melanogaster rely on multiple sensory modalities for reproductive success, and mating causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not known how mating affects male gene expression. Results We used Drosophila genome arrays to identify changes in gene expression profiles that occur in mated male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body. One fat body-enriched gene, female-specific independent of transformer (fit), is a downstream target of the somatic sex-determination hierarchy, a genetic pathway that regulates Drosophila reproductive behaviors as well as expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of this pathway. Another mating-responsive gene expressed in fat, Juvenile hormone esterase (Jhe), is necessary for robust male courtship behavior and mating success. Conclusions Our study demonstrates that mating causes changes in male head gene expression profiles and supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be downstream components of this pathway as well.
Collapse
|
96
|
Dalton JE, Kacheria TS, Knott SR, Lebo MS, Nishitani A, Sanders LE, Stirling EJ, Winbush A, Arbeitman MN. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster. BMC Genomics 2010; 11:541. [PMID: 20925960 PMCID: PMC3091690 DOI: 10.1186/1471-2164-11-541] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/06/2010] [Indexed: 11/10/2022] Open
Abstract
Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.
Collapse
Affiliation(s)
- Justin E Dalton
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kocher SD, Tarpy DR, Grozinger CM. The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. INSECT MOLECULAR BIOLOGY 2010; 19:153-62. [PMID: 20002808 PMCID: PMC2989600 DOI: 10.1111/j.1365-2583.2009.00965.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mating is fundamental to most organisms, although the physiological and transcriptional changes associated with this process have been largely characterized only in Drosophila melanogaster. In this study, we use honey bees as a model system because their queens undergo massive and permanent physiological and behavioural changes following mating. Previous studies have identified changes associated with the transition from a virgin queen to a fully mated, egg-laying queen. Here, we further uncouple the mating process to examine the effects of natural mating vs. instrumental insemination and saline vs. semen insemination. We observed effects on flight behaviour, vitellogenin expression and significant overlap in transcriptional profiles between our study and analogous studies in D. melanogaster, suggesting that some post-mating mechanisms are conserved across insect orders.
Collapse
Affiliation(s)
- S D Kocher
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
98
|
Abstract
Individual animals differ in their propensity to engage in dangerous situations, or in their risk-taking behavior. There is a heritable basis to some of this variation, but the environment plays an important role in shaping individuals' risk-taking propensity as well. This chapter describes some of the challenges in studying the genetic basis of individual differences in risk-taking behavior, arguing new insights will emerge from studies which take a whole-genome approach and which simultaneously consider both genetic and environmental influences on the behavior. The availability of genomic tools for three-spined stickleback, a small fish renowned for its variable behavior, opens up new possibilities for studying the genetic basis of natural, adaptive variation in risk-taking behavior. After introducing the general biology of sticklebacks, the chapter summarizes the existing literature on the genetic and environmental influences on risk-taking behavior, and describes the overall strategy that our group is taking to identify inherited and environmentally responsive genes related to risk-taking behavior in this species. Insights gleaned from such studies will be relevant to our understanding of similar behaviors in other organisms, including ourselves.
Collapse
|
99
|
Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF. Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. ADVANCES IN GENETICS 2010; 68:23-56. [PMID: 20109658 PMCID: PMC3925388 DOI: 10.1016/s0065-2660(09)68002-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of social behavior generally focus on interactions between two or more individual animals. However, these interactions are not simply between whole animals, but also occur between molecules that were produced by the interacting individuals. Such "molecular social interactions" can both influence and be influenced by the organismal-level social interactions. We illustrate this by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by males and transferred to females during mating, are involved in inherently social interactions with female-derived molecules, and they influence social interactions between males and females and between a female's past and potential future mates. Here, we explore four examples of molecular social interactions involving D. melanogaster Sfps: processes that influence mating, sperm storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players involved in each interaction and the consequences of their interplay for the reproductive success of both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana F. Wolfner
- Corresponding author: Department of Molecular Biology & Genetics, 421 Biotechnology Building, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
100
|
Wyman MJ, Agrawal AF, Rowe L. Condition-dependence of the sexually dimorphic transcriptome in Drosophila melanogaster. Evolution 2010; 64:1836-48. [PMID: 20059540 DOI: 10.1111/j.1558-5646.2009.00938.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sexually dimorphic traits are by definition exaggerated in one sex, which may arise from a history of sex-specific selection-in males, females, or both. If this exaggeration comes at a cost, exaggeration is expected to be greater in higher condition individuals (condition-dependent). Although studies using small numbers of morphological traits are generally supportive, this prediction has not been examined at a larger scale. We test this prediction across the transcriptome by determining the condition-dependence of sex-biased (dimorphic) gene expression. We find that high-condition populations are more sexually dimorphic in transcription than low-condition populations. High-condition populations have more male-biased genes and more female-biased genes, and a greater degree of sexually dimorphic expression in these genes. Also, condition-dependence in male-biased genes was greater than in a set of unbiased genes. Interestingly, male-biased genes expressed in the testes were not more condition-dependent than those in the soma. By contrast, increased female-biased expression under high condition may have occurred because of the greater contribution of the ovary-specific transcripts to the entire mRNA pool. We did not find any genomic signatures distinguishing the condition-dependent sex-biased genes. The degree of condition-dependent sexual dimorphism (CDSD) did not differ between the autosomes and the X chromosome. There was only weak evidence that rates of evolution correlated with CDSD. We suggest that the sensitivity of both female-biased genes and male-biased genes to condition may be akin to the overall heightened sensitivity to condition that life-history and sexually selected traits tend to exhibit. Our results demonstrate that through condition-dependence, early life experience has dramatic effects on sexual dimorphism in the adult transcriptome.
Collapse
Affiliation(s)
- Minyoung J Wyman
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.
| | | | | |
Collapse
|