51
|
Cammarata MB, Macias LA, Rosenberg J, Bolufer A, Brodbelt JS. Expanding the Scope of Cross-Link Identifications by Incorporating Collisional Activated Dissociation and Ultraviolet Photodissociation Methods. Anal Chem 2018; 90:6385-6389. [PMID: 29722964 PMCID: PMC6040644 DOI: 10.1021/acs.analchem.7b04009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the advent of new cross-linking chemistries, analytical technologies, and search algorithms, cross-linking has become an increasingly popular strategy for evaluating tertiary and quaternary structures of proteins. Collisional activated dissociation remains the primary MS/MS method for identifications of peptide cross-links in high throughput workflows. Ultraviolet photodissociation (UVPD) at 193 nm has emerged as an alternative ion activation method well-suited for characterization of peptides and has been found in some cases to identify different peptides or provide distinctive sequence information than obtained by collisional activation methods. Complementary high energy collision dissociation (HCD) and UVPD were used in the present study to characterize protein cross-linking for bovine serum albumin, hemoglobin, and E. coli ribosome. Cross-links identified by HCD and UVPD using bis(sulfosuccinimidyl)suberate (BS3), a homobifunctional amine-to-amine cross-linker, and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), a heterofunctional amine-to-carboxylic acid cross-linker, were evaluated in the present study. While more unique BS3 cross-links were identified by HCD, UVPD, and HCD provided a complementary panel of DMTMM cross-links which extended the degree of structural insight obtained for the proteins.
Collapse
Affiliation(s)
- Michael B Cammarata
- Department of Chemistry , University of Texas Austin , Texas 78712 , United States
| | - Luis A Macias
- Department of Chemistry , University of Texas Austin , Texas 78712 , United States
| | - Jake Rosenberg
- Department of Chemistry , University of Texas Austin , Texas 78712 , United States
| | - Alexander Bolufer
- Department of Chemistry , University of Texas Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas Austin , Texas 78712 , United States
| |
Collapse
|
52
|
Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods 2018; 144:64-78. [PMID: 29753003 DOI: 10.1016/j.ymeth.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
With the goal of expanding the very limited toolkit of cross-linking agents available for nucleic acids and their protein complexes, we evaluated the merits of a wide range of bifunctional agents that may be capable of reacting with the functional groups characteristic of these types of biopolymers. The survey specifically focused on the ability of test reagents to produce desirable inter-molecular conjugates, which could reveal the identity of interacting components and the position of mutual contacts, while also considering a series of practical criteria for their utilization as viable nucleic acid probes. The survey employed models consisting of DNA, RNA, and corresponding protein complexes to mimic as close as possible typical applications. Denaturing polyacrylamide gel electrophoresis (PAGE) and mass spectrometric (MS) analyses were implemented in concert to monitor the formation of the desired conjugates. In particular, the former was used as a rapid and inexpensive tool for the efficient evaluation of cross-linker activity under a broad range of experimental conditions. The latter was applied after preliminary rounds of reaction optimization to enable full-fledged product characterization and, more significantly, differentiation between mono-functional and intra- versus inter-molecular conjugates. This information provided the feedback necessary to further optimize reaction conditions and explain possible outcomes. Among the reagents tested in the study, platinum complexes and nitrogen mustards manifested the most favorable characteristics for practical cross-linking applications, whereas other compounds provided inferior yields, or produced rather unstable conjugates that did not survive the selected analytical conditions. The observed outcomes will help guide the selection of the most appropriate cross-linking reagent for a specific task, whereas the experimental conditions described here will provide an excellent starting point for approaching these types of applications. As a whole, the results of the survey clearly emphasize that finding a universal reagent, which may afford excellent performance with all types of nucleic acid substrates, will require extending the exploration beyond the traditional chemistries employed to modify the constitutive functional groups of these vital biopolymers.
Collapse
|
53
|
Fioramonte M, de Jesus HCR, Ferrari AJR, Lima DB, Drekener RL, Correia CRD, Oliveira LG, Neves-Ferreira AGDC, Carvalho PC, Gozzo FC. XPlex: An Effective, Multiplex Cross-Linking Chemistry for Acidic Residues. Anal Chem 2018; 90:6043-6050. [PMID: 29565564 DOI: 10.1021/acs.analchem.7b05135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-linking/Mass spectrometry (XLMS) is a consolidated technique for structural characterization of proteins and protein complexes. Despite its success, the cross-linking chemistry currently used is mostly based on N-hydroxysuccinimide (NHS) esters, which react primarily with lysine residues. One way to expand the current applicability of XLMS into several new areas is to increase the number of cross-links obtainable for a target protein. We introduce a multiplex chemistry (denoted XPlex) that targets Asp, Glu, Lys, and Ser residues. XPlex can generate significantly more cross-links with reactions occurring at lower temperatures and enables targeting proteins that are not possible with NHS ester-based cross-linkers. We demonstrate the effectiveness of our approach in model proteins as well as a target Lys-poor protein, SalBIII. Identification of XPlex spectra requires a search engine capable of simultaneously considering multiple cross-linkers on the same run; to achieve this, we updated the SIM-XL search algorithm with a search mode tailored toward XPlex. In summary, we present a complete chemistry/computational solution for significantly increasing the number of possible distance constraints by mass spectrometry experiments, and thus, we are convinced that XPlex poses as a real complementary approach for structural proteomics studies.
Collapse
Affiliation(s)
- Mariana Fioramonte
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | | | - Diogo Borges Lima
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteu , Paris , France
| | - Roberta Lopes Drekener
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | - Luciana Gonzaga Oliveira
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering , Carlos Chagas Institute , Fiocruz , Parana , Brazil
| | - Fabio Cesar Gozzo
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| |
Collapse
|
54
|
Iacobucci C, Götze M, Piotrowski C, Arlt C, Rehkamp A, Ihling C, Hage C, Sinz A. Carboxyl-Photo-Reactive MS-Cleavable Cross-Linkers: Unveiling a Hidden Aspect of Diazirine-Based Reagents. Anal Chem 2018; 90:2805-2809. [DOI: 10.1021/acs.analchem.7b04915] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Claudio Iacobucci
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Michael Götze
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Anne Rehkamp
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Christoph Hage
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry
and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle/Saale D-06120, Germany
| |
Collapse
|
55
|
Müller F, Fischer L, Chen ZA, Auchynnikava T, Rappsilber J. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:405-412. [PMID: 29256016 PMCID: PMC5814520 DOI: 10.1007/s13361-017-1837-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Fränze Müller
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3BF, UK
| | - Lutz Fischer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3BF, UK
| | - Zhuo Angel Chen
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3BF, UK
| | - Tania Auchynnikava
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3BF, UK
| | - Juri Rappsilber
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany.
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3BF, UK.
| |
Collapse
|
56
|
Piotrowski C, Sinz A. Structural Investigation of Proteins and Protein Complexes by Chemical Cross-Linking/Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:101-121. [PMID: 30617826 DOI: 10.1007/978-981-13-2200-6_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the last two decades, cross-linking combined with mass spectrometry (MS) has evolved as a valuable tool to gain structural insights into proteins and protein assemblies. Structural information is obtained by introducing covalent connections between amino acids that are in spatial proximity in proteins and protein complexes. The distance constraints imposed by the cross-linking reagent provide information on the three-dimensional arrangement of the covalently connected amino acid residues and serve as basis for de-novo or homology modeling approaches. As cross-linking/MS allows investigating protein 3D-structures and protein-protein interactions not only in-vitro, but also in-vivo, it is especially appealing for studying protein systems in their native environment. In this chapter, we describe the principles of cross-linking/MS and illustrate its value for investigating protein 3D-structures and for unraveling protein interaction networks.
Collapse
Affiliation(s)
- Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
57
|
|
58
|
Affiliation(s)
- Hope A. Flaxman
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
59
|
Accommodating Protein Dynamics in the Modeling of Chemical Crosslinks. Structure 2017; 25:1751-1757.e5. [DOI: 10.1016/j.str.2017.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
60
|
Liu Q, Remmelzwaal S, Heck AJR, Akhmanova A, Liu F. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry. Sci Rep 2017; 7:13453. [PMID: 29044157 PMCID: PMC5647383 DOI: 10.1038/s41598-017-13663-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 10/27/2022] Open
Abstract
Characterization of protein interaction domains is crucial for understanding protein functions. Here we combine cross-linking mass spectrometry (XL-MS) with deletion analysis to accurately locate minimal protein interaction domains. As a proof of concept, we investigated in detail the binding interfaces of two protein assemblies: the complex formed by MICAL3, ELKS and Rab8A, which is involved in exocytosis, and the complex of SLAIN2, CLASP2 and ch-TOG, which controls microtubule dynamics. We found that XL-MS provides valuable information to efficiently guide the design of protein fragments that are essential for protein interaction. However, we also observed a number of cross-links between polypeptide regions that were dispensable for complex formation, especially among intrinsically disordered sequences. Collectively, our results indicate that XL-MS, which renders distance restrains of linked residue pairs, accelerates the characterization of protein binding regions in combination with other biochemical approaches.
Collapse
Affiliation(s)
- Qingyang Liu
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sanne Remmelzwaal
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands.
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
61
|
Hage C, Falvo F, Schäfer M, Sinz A. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2022-2038. [PMID: 28653243 DOI: 10.1007/s13361-017-1712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. ᅟ.
Collapse
Affiliation(s)
- Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Francesco Falvo
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
- Eurofins Umwelt West GmbH, Vorgebirgsstr. 20, 50389, Wesseling, Germany
| | - Mathias Schäfer
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.
| |
Collapse
|
62
|
Iacobucci C, Hage C, Schäfer M, Sinz A. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2039-2053. [PMID: 28717933 DOI: 10.1007/s13361-017-1744-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| | - Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstr. 4, D-50939, Kӧln, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
63
|
Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sharples D, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF. Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry. Anal Chem 2017; 89:8844-8852. [PMID: 28726379 PMCID: PMC5588088 DOI: 10.1021/acs.analchem.7b01310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Cys accessibility and quantitative intact mass spectrometry (MS) analyses have been devised to study the topological transitions of Mhp1, the membrane protein for sodium-linked transport of hydantoins from Microbacterium liquefaciens. Mhp1 has been crystallized in three forms (outward-facing open, outward-facing occluded with substrate bound, and inward-facing open). We show that one natural cysteine residue, Cys327, out of three, has an enhanced solvent accessibility in the inward-facing (relative to the outward-facing) form. Reaction of the purified protein, in detergent, with the thiol-reactive N-ethylmalemide (NEM), results in modification of Cys327, suggesting that Mhp1 adopts predominantly inward-facing conformations. Addition of either sodium ions or the substrate 5-benzyl-l-hydantoin (L-BH) does not shift this conformational equilibrium, but systematic co-addition of the two results in an attenuation of labeling, indicating a shift toward outward-facing conformations that can be interpreted using conventional enzyme kinetic analyses. Such measurements can afford the Km for each ligand as well as the stoichiometry of ion-substrate-coupled conformational changes. Mutations that perturb the substrate binding site either result in the protein being unable to adopt outward-facing conformations or in a global destabilization of structure. The methodology combines covalent labeling, mass spectrometry, and kinetic analyses in a straightforward workflow applicable to a range of systems, enabling the interrogation of changes in a protein's conformation required for function at varied concentrations of substrates, and the consequences of mutations on these conformational transitions.
Collapse
Affiliation(s)
| | | | | | - Oliver Beckstein
- Department of Physics, Arizona State University , Tempe, Arizona 85287-1504, United States
| | - Florian Heinkel
- Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | - Joerg Gsponer
- Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | - Maria Kokkinidou
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | | | | | | |
Collapse
|
64
|
Maes E, Dyer JM, McKerchar HJ, Deb-Choudhury S, Clerens S. Protein-protein cross-linking and human health: the challenge of elucidating with mass spectrometry. Expert Rev Proteomics 2017; 14:917-929. [PMID: 28759730 DOI: 10.1080/14789450.2017.1362336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION In several biomedical research fields, the cross-linking of peptides and proteins has an important impact on health and wellbeing. It is therefore of crucial importance to study this class of post-translational modifications in detail. The huge potential of mass spectrometric technologies in the mapping of these protein-protein cross-links is however overshadowed by the challenges that the field has to overcome. Areas covered: In this review, we summarize the different pitfalls and challenges that the protein-protein cross-linking field is confronted with when using mass spectrometry approaches. We additionally focus on native disulfide bridges as an example and provide some examples of cross-links that are important in the biomedical field. Expert commentary: The current flow of methodological improvements, mainly from the chemical cross-linking field, has delivered a significant contribution to deciphering native and insult-induced cross-links. Although an automated data analysis of proteome-wide peptide cross-linking is currently only possible in chemical cross-linking experiments, the field is well on the way towards a more automated analysis of native and insult-induced cross-links in raw mass spectrometry data that will boost its potential in biomedical applications.
Collapse
Affiliation(s)
- Evelyne Maes
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand
| | - Jolon M Dyer
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand.,c Riddet Institute, Massey University , Palmerston North , New Zealand.,d Wine, Food & Molecular Biosciences , Lincoln University , Lincoln , New Zealand
| | - Hannah J McKerchar
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| | | | - Stefan Clerens
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
65
|
Lessons on enzyme kinetics from quantitative proteomics. Curr Opin Biotechnol 2017; 46:81-89. [DOI: 10.1016/j.copbio.2017.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/15/2017] [Indexed: 11/24/2022]
|
66
|
Lindner S, Gruhle K, Schmidt R, Garamus VM, Ramsbeck D, Hause G, Meister A, Sinz A, Drescher S. Azide-Modified Membrane Lipids: Synthesis, Properties, and Reactivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4960-4973. [PMID: 28457130 DOI: 10.1021/acs.langmuir.7b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present work, we describe the synthesis and the temperature-dependent behavior of photoreactive membrane lipids as well as their capability to study peptide/lipid interactions. The modified phospholipids contain an azide group either in the middle part or at the end of an alkyl chain and also differ in the linkage (ester vs ether) of the second alkyl chain. The temperature-dependent aggregation behavior of the azidolipids was studied using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering (SAXS). Aggregate structures were visualized by stain and cryo transmission electron microscopy (TEM) and were further characterized by dynamic light scattering (DLS). We show that the position of the azide group and the type of linkage of the alkyl chain at the sn-2 position of the glycerol influences the type of aggregates formed as well as their long-term stability: P10AzSPC and r12AzSHPC show the formation of extrudable liposomes, which are stable in size during storage. In contrast, azidolipids that carry a terminal azido moiety either form extrudable liposomes, which show time-dependent vesicle fusion (P15AzPdPC), or self-assemble in large sheet-like, nonextrudable aggregates (r15AzPdHPC) where the lipid molecules are arranged in an interdigitated orientation at temperatures below Tm (LβI phase). Finally, a P10AzSPC:DMPC mixture was used for photochemically induced cross-linking experiments with a transmembrane peptide (WAL-peptide) to demonstrate the applicability of the azidolipids for the analysis of peptide/lipid interactions. The efficiency of photo-cross-linking was monitored by attenuated total reflection infrared (ATR-IR) spectroscopy and mass spectrometry (MS).
Collapse
Affiliation(s)
- Sindy Lindner
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Rico Schmidt
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Zentrum für Material und Küstenforschung GmbH (HZG), Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg , Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Annette Meister
- Institute of Chemistry and Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
67
|
Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat Commun 2017; 8:15473. [PMID: 28524877 PMCID: PMC5454533 DOI: 10.1038/ncomms15473] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
We describe optimized fragmentation schemes and data analysis strategies substantially enhancing the depth and accuracy in identifying protein cross-links using non-restricted whole proteome databases. These include a novel hybrid data acquisition strategy to sequence cross-links at both MS2 and MS3 level and a new algorithmic design XlinkX v2.0 for data analysis. As proof-of-concept we investigated proteome-wide protein interactions in E. coli and HeLa cell lysates, respectively, identifying 1,158 and 3,301 unique cross-links at ∼1% false discovery rate. These protein interaction repositories provide meaningful structural information on many endogenous macromolecular assemblies, as we showcase on several protein complexes involved in translation, protein folding and carbohydrate metabolism. Chemical cross-linking combined with mass spectrometry (XL-MS) can provide information on protein conformations and interactions in highly complex samples. Here the authors describe an improved XL-MS workflow to increase the depth and fidelity of cross-link identification using whole proteome databases.
Collapse
|
68
|
Häupl B, Ihling CH, Sinz A. Combining affinity enrichment, cross-linking with photo amino acids, and mass spectrometry for probing protein kinase D2 interactions. Proteomics 2017; 17:e1600459. [DOI: 10.1002/pmic.201600459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Björn Häupl
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
69
|
Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation. PHOTOSYNTHESIS RESEARCH 2017; 132:95-106. [PMID: 28078551 PMCID: PMC5576716 DOI: 10.1007/s11120-016-0334-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Phycobilisome (PBS) complexes are massive light-harvesting apparati in cyanobacteria that capture and funnel light energy to the photosystem. PBS complexes are dynamically degraded during nutrient deprivation, which causes severe chlorosis, and resynthesized during nutrient repletion. PBS degradation occurs rapidly after nutrient step down, and is specifically triggered by non-bleaching protein A (NblA), a small proteolysis adaptor that facilitates interactions between a Clp chaperone and phycobiliproteins. Little is known about the mode of action of NblA during PBS degradation. In this study, we used chemical cross-linking coupled with LC-MS/MS to investigate the interactions between NblA and phycobiliproteins. An isotopically coded BS3 cross-linker captured a protein interaction between NblA and β-phycocyanin (PC). LC-MS/MS analysis identified the amino acid residues participating in the binding reaction, and demonstrated that K52 in NblA is cross-linked to T2 in β-PC. These results were modeled onto the existing crystal structures of NblA and PC by protein docking simulations. Our data indicate that the C-terminus of NblA fits in an open groove of β-PC, a region located inside the central hollow cavity of a PC rod. NblA may mediate PBS degradation by disrupting the structural integrity of the PC rod from within the rod. In addition, M1-K44 and M1-K52 cross-links between the N-terminus of NblA and the C-terminus of NblA are consistent with the NblA crystal structure, confirming that the purified NblA is structurally and biologically relevant. These findings provide direct evidence that NblA physically interacts with β-PC.
Collapse
Affiliation(s)
- Amelia Y Nguyen
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- US Environmental Protection Agency, 1200 Pennsylvania Ave, NW (MC-7403M), Washington, DC, 20460, USA
| | - William P Bricker
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| |
Collapse
|
70
|
Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2224-2229. [PMID: 28193857 PMCID: PMC5338524 DOI: 10.1073/pnas.1620360114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein-protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the "mass tags" selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein-protein interactions in membrane protein complexes.
Collapse
Affiliation(s)
- Daniel A Weisz
- Department of Biology, Washington University, St. Louis, MO 63130
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Sundarapandian Thangapandian
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130;
| | | |
Collapse
|
71
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
72
|
Schmidt C, Macpherson JA, Lau AM, Tan KW, Fraternali F, Politis A. Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling. Anal Chem 2017; 89:1459-1468. [PMID: 28208298 PMCID: PMC5299547 DOI: 10.1021/acs.analchem.6b02875] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 12/22/2022]
Abstract
Mass spectrometry (MS) has become an indispensable tool for investigating the architectures and dynamics of macromolecular assemblies. Here we show that covalent labeling of solvent accessible residues followed by their MS-based identification yields modeling restraints that allow mapping the location and orientation of subunits within protein assemblies. Together with complementary restraints derived from cross-linking and native MS, we built native-like models of four heterocomplexes with known subunit structures and compared them with available X-ray crystal structures. The results demonstrated that covalent labeling followed by MS markedly increased the predictive power of the integrative modeling strategy enabling more accurate protein assembly models. We applied this strategy to the F-type ATP synthase from spinach chloroplasts (cATPase) providing a structural basis for its function as a nanomotor. By subjecting the models generated by our restraint-based strategy to molecular dynamics (MD) simulations, we revealed the conformational states of the peripheral stalk and assigned flexible regions in the enzyme. Our strategy can readily incorporate complementary chemical labeling strategies and we anticipate that it will be applicable to many other systems providing new insights into the structure and function of protein complexes.
Collapse
Affiliation(s)
- Carla Schmidt
- Interdisciplinary
Research Center HALOmem, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Jamie A. Macpherson
- Division
of Cell & Molecular Biophysics, King’s
College London, New Hunt’s
House, SE1 1UL, London, United Kingdom
| | - Andy M. Lau
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Ken Wei Tan
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Franca Fraternali
- Division
of Cell & Molecular Biophysics, King’s
College London, New Hunt’s
House, SE1 1UL, London, United Kingdom
| | - Argyris Politis
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| |
Collapse
|
73
|
Hage C, Ihling CH, Götze M, Schäfer M, Sinz A. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:56-68. [PMID: 27418170 DOI: 10.1007/s13361-016-1426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle, Saale, Germany
| | - Christian H Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle, Saale, Germany
| | - Michael Götze
- Institute of Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle, Saale, Germany
| | - Mathias Schäfer
- Department of Chemistry, University Cologne, Greinstr. 4, D-50939, Köln, Germany.
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle, Saale, Germany.
| |
Collapse
|
74
|
Arlt C, Flegler V, Ihling CH, Schäfer M, Thondorf I, Sinz A. An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Full‐Length Wild‐Type Tetrameric p53 Tumor Suppressor. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics Institute of Pharmacy Martin-Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Vanessa Flegler
- Department of Pharmaceutical Chemistry and Bioanalytics Institute of Pharmacy Martin-Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics Institute of Pharmacy Martin-Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Mathias Schäfer
- Department Mass Spectrometry Institute of Organic Chemistry University of Cologne Greinstraße 4 50939 Cologne Germany
| | - Iris Thondorf
- Department of Technical Biochemistry Institute of Biochemistry and Biotechnology Martin-Luther University Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle/Saale Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics Institute of Pharmacy Martin-Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| |
Collapse
|
75
|
Arlt C, Flegler V, Ihling CH, Schäfer M, Thondorf I, Sinz A. An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Full-Length Wild-Type Tetrameric p53 Tumor Suppressor. Angew Chem Int Ed Engl 2016; 56:275-279. [PMID: 27897373 DOI: 10.1002/anie.201609826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/10/2016] [Indexed: 12/31/2022]
Abstract
We present an integrated approach for investigating the topology of proteins through native mass spectrometry (MS) and cross-linking/MS, which we applied to the full-length wild-type p53 tetramer. For the first time, the two techniques were combined in one workflow to obtain not only structural insight in the p53 tetramer, but also information on the cross-linking efficiency and the impact of cross-linker modification on the conformation of an intrinsically disordered protein (IDP). P53 cross-linking was monitored by native MS and as such, our strategy serves as a quality control for different cross-linking reagents. Our approach can be applied to the structural investigation of various protein systems, including IDPs and large protein assemblies, which are challenging to study by the conventional methods used for protein structure characterization.
Collapse
Affiliation(s)
- Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany
| | - Vanessa Flegler
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany
| | - Mathias Schäfer
- Department Mass Spectrometry, Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Iris Thondorf
- Department of Technical Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany
| |
Collapse
|
76
|
Hoopmann MR, Mendoza L, Deutsch EW, Shteynberg D, Moritz RL. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1728-1734. [PMID: 27469004 PMCID: PMC5061604 DOI: 10.1007/s13361-016-1435-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, Washington, 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109, USA
| | | | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington, 98109, USA
| |
Collapse
|
77
|
Sinz A. Divide and conquer: cleavable cross-linkers to study protein conformation and protein–protein interactions. Anal Bioanal Chem 2016; 409:33-44. [DOI: 10.1007/s00216-016-9941-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 01/28/2023]
|
78
|
Bosse K, Haneder S, Arlt C, Ihling CH, Seufferlein T, Sinz A. Mass spectrometry-based secretome analysis of non-small cell lung cancer cell lines. Proteomics 2016; 16:2801-2814. [DOI: 10.1002/pmic.201600297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Konstanze Bosse
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| | | | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| | | | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
79
|
Häupl B, Ihling CH, Sinz A. Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry. J Proteome Res 2016; 15:3686-3699. [PMID: 27559607 DOI: 10.1021/acs.jproteome.6b00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the interaction network of human PKD2 in the cytosol and in Golgi-enriched subcellular protein fractions by an affinity enrichment strategy combined with chemical cross-linking/mass spectrometry (MS). Analysis of the subproteomes revealed the presence of distinct proteins in the cytosolic and Golgi fractions. The covalent fixation of transient or weak interactors by chemical cross-linking allowed capturing interaction partners that might otherwise disappear during conventional pull-down experiments. In total, 31 interaction partners were identified for PKD2, including glycogen synthase kinase-3 beta (GSK3B), 14-3-3 protein gamma (YWHAG), and the alpha isoform of 55 kDa regulatory subunit B of protein phosphatase 2A (PPP2R2A). Remarkably, the entire seven-subunit Arp2/3 complex (ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5, ACTR3, ACTR2) as well as ARPC1A and ARPC5L, which are putative substitutes of ARPC1B and ARPC5, were identified. We provide evidence of a direct protein-protein interaction between PKD2 and Arp2/3. Our findings will pave the way for further structural and functional studies of PKD2 complexes, especially the PKD2/Arp2/3 interaction, to elucidate the role of PKD2 for transport processes at the trans-Golgi network. Data are available via ProteomeXchange with identifiers PXD003909 (enrichment from cytosolic fractions), PXD003913 (enrichment from Golgi fractions), and PXD003917 (subcellular fractionation).
Collapse
Affiliation(s)
- Björn Häupl
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
80
|
Birolo L, Sacchi S, Smaldone G, Molla G, Leo G, Caldinelli L, Pirone L, Eliometri P, Di Gaetano S, Orefice I, Pedone E, Pucci P, Pollegioni L. Regulating levels of the neuromodulatord-serine in human brain: structural insight into pLG72 andd-amino acid oxidase interaction. FEBS J 2016; 283:3353-70. [DOI: 10.1111/febs.13809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Leila Birolo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| | | | - Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| | - Gabriella Leo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| | - Luciano Pirone
- Italian Research National Council; Institute of Biostructures and Bioimaging; Napoli Italy
| | - Patrick Eliometri
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
| | - Sonia Di Gaetano
- Italian Research National Council; Institute of Biostructures and Bioimaging; Napoli Italy
| | - Ida Orefice
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Emilia Pedone
- Italian Research National Council; Institute of Biostructures and Bioimaging; Napoli Italy
| | - Piero Pucci
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Napoli Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- Centro Interuniversitario di Ricerca in Biotecnologie Proteiche “The Protein Factory”; Politecnico di Milano and Università degli studi dell'Insubria; Milano Italy
| |
Collapse
|
81
|
Leitner A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci 2016; 7:4792-4803. [PMID: 30155128 PMCID: PMC6016523 DOI: 10.1039/c5sc04196a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
The biological function of proteins is heavily influenced by their structures and their organization into assemblies such as protein complexes and regulatory networks. Mass spectrometry (MS) has been a key enabling technology for high-throughput and comprehensive protein identification and quantification on a proteome-wide scale. Besides these essential contributions, MS can also be used to study higher-order structures of biomacromolecules in a variety of ways. In one approach, intact proteins or protein complexes may be directly probed in the mass spectrometer. Alternatively, various forms of solution-phase chemistry are used to introduce modifications in intact proteins and localizing these modifications by MS analysis at the peptide level is used to derive structural information. Here, I will put a spotlight on the central role of chemistry in such mass spectrometry-based methods that bridge proteomics and structural biology, with a particular emphasis on chemical cross-linking of protein complexes.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology , Institute of Molecular Systems Biology , ETH Zurich , Auguste-Piccard-Hof 1 , 8093 Zurich , Switzerland .
| |
Collapse
|
82
|
Arlt C, Götze M, Ihling CH, Hage C, Schäfer M, Sinz A. Integrated Workflow for Structural Proteomics Studies Based on Cross-Linking/Mass Spectrometry with an MS/MS Cleavable Cross-Linker. Anal Chem 2016; 88:7930-7. [DOI: 10.1021/acs.analchem.5b04853] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Christian Arlt
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| | - Michael Götze
- Institute
of Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str.
3, D-06120 Halle
(Saale), Germany
| | - Christian H. Ihling
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| | - Christoph Hage
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| | - Mathias Schäfer
- Institute
for Organic Chemistry, Department of Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany
| | - Andrea Sinz
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
83
|
Lössl P, Brunner AM, Liu F, Leney AC, Yamashita M, Scheltema RA, Heck AJR. Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System. ACS CENTRAL SCIENCE 2016; 2:445-55. [PMID: 27504491 PMCID: PMC4965854 DOI: 10.1021/acscentsci.6b00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 05/11/2023]
Abstract
Multisite phosphorylation is a common pathway to regulate protein function, activity, and interaction pattern in vivo, but routine biochemical analysis is often insufficient to identify the number and order of individual phosphorylation reactions and their mechanistic impact on the protein behavior. Here, we integrate complementary mass spectrometry (MS)-based approaches to characterize a multisite phosphorylation-regulated protein system comprising Polo-like kinase 1 (Plk1) and its coactivators Aurora kinase A (Aur-A) and Bora, the interplay of which is essential for mitotic entry after DNA damage-induced cell cycle arrest. Native MS and cross-linking-MS revealed that Aur-A/Bora-mediated Plk1 activation is accompanied by the formation of Aur-A/Bora and Plk1/Bora heterodimers. We found that the Aur-A/Bora interaction is independent of the Bora phosphorylation state, whereas the Plk1/Bora interaction is dependent on extensive Bora multisite phosphorylation. Bottom-up and top-down proteomics analyses showed that Bora multisite phosphorylation proceeds via a well-ordered sequence of site-specific phosphorylation reactions, whereby we could reveal the involvement of up to 16 phosphorylated Bora residues. Ion mobility spectrometry-MS demonstrated that this multisite phosphorylation primes a substantial structural rearrangement of Bora, explaining the interdependence between extensive Bora multisite phosphorylation and Plk1/Bora complex formation. These results represent a first benchmark of our multipronged MS strategy, highlighting its potential to elucidate the mechanistic and structural implications of multisite protein phosphorylation.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Andrea M. Brunner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Fan Liu
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Aneika C. Leney
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Masami Yamashita
- Department
of Structural Cell Biology, Max Planck Institute
of Biochemistry, Am Klopferspitz
18, 82152 Martinsried, Germany
| | - Richard A. Scheltema
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584CH Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
84
|
Al-Eryani Y, Ib Rasmussen M, Kjellström S, Højrup P, Emanuelsson C, von Wachenfeldt C. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry. Proteins 2016; 84:1234-45. [DOI: 10.1002/prot.25072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Yusra Al-Eryani
- Department of Biochemistry and Structural Biology; Lund University; PO Box 124 Lund SE-221 00 Sweden
- Department of Biology; Lund University; Sölvegatan 35 Lund SE-223 62 Sweden
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Campusvej 55 Odense M DK-5230 Denmark
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology; Lund University; PO Box 124 Lund SE-221 00 Sweden
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Campusvej 55 Odense M DK-5230 Denmark
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology; Lund University; PO Box 124 Lund SE-221 00 Sweden
| | | |
Collapse
|
85
|
Faini M, Stengel F, Aebersold R. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:966-974. [PMID: 27056566 PMCID: PMC4867889 DOI: 10.1007/s13361-016-1382-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland.
- Faculty of Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
86
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
87
|
Tuncbag N, Gursoy A, Keskin O, Nussinov R. The potential impact of recent developments in three-dimensional quantitative interaction proteomics on structural biology. Expert Rev Proteomics 2016; 13:447-9. [PMID: 27104235 PMCID: PMC4938151 DOI: 10.1080/14789450.2016.1182023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nurcan Tuncbag
- Middle East Technical University, Graduate School of Informatics, Department of Health Informatics, Ankara, Turkey
| | - Attila Gursoy
- Koc University, Center for Computational Biology and Bioinformatics, Istanbul, Turkey
- Koc University, Computer Engineering, College of Engineering, Istanbul, Turkey
| | - Ozlem Keskin
- Koc University, Center for Computational Biology and Bioinformatics, Istanbul, Turkey
- Koc University, Computer Engineering, College of Engineering, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, Maryland, United States
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
88
|
Schwarz R, Tänzler D, Ihling CH, Sinz A. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding. PLoS One 2016; 11:e0151412. [PMID: 26992147 PMCID: PMC4798536 DOI: 10.1371/journal.pone.0151412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors.
Collapse
Affiliation(s)
- Rico Schwarz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Dirk Tänzler
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
- * E-mail:
| |
Collapse
|
89
|
Liu H, Zhang H, Orf GS, Lu Y, Jiang J, King JD, Wolf NR, Gross ML, Blankenship RE. Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation. Biochemistry 2016; 55:1003-9. [PMID: 26848988 PMCID: PMC5201194 DOI: 10.1021/acs.biochem.6b00013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photosynthetic cyanobacteria make important contributions to global carbon and nitrogen budgets. A protein known as the orange carotenoid protein (OCP) protects the photosynthetic apparatus from damage by dissipating excess energy absorbed by the phycobilisome, the major light-harvesting complex in many cyanobacteria. OCP binds one carotenoid pigment, but the color of this pigment depends on conditions. It is orange in the dark and red when exposed to light. We modified the orange and red forms of OCP by using isotopically coded cross-linking agents and then analyzed the structural features by using liquid chromatography and tandem mass spectrometry. Unequivocal cross-linking pairs uniquely detected in red OCP indicate that, upon photoactivation, the OCP N-terminal domain (NTD) and C-terminal domain (CTD) reorient relative to each other. Our data also indicate that the intrinsically unstructured loop connecting the NTD and CTD not only is involved in the interaction between the two domains in orange OCP but also, together with the N-terminal extension, provides a structural buffer system facilitating an intramolecular breathing motion of the OCP, thus helping conversion back and forth from the orange to red form during the OCP photocycle. These results have important implications for understanding the molecular mechanism of action of cyanobacterial photoprotection.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, MO, 63130, United Sates
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
| | - Hao Zhang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Gregory S. Orf
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Yue Lu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Jing Jiang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
| | - Jeremy D. King
- Department of Biology, Washington University in St. Louis, MO, 63130, United Sates
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
| | - Nathan R. Wolf
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Michael L. Gross
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, MO, 63130, United Sates
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| |
Collapse
|
90
|
Itri F, Monti DM, Della Ventura B, Vinciguerra R, Chino M, Gesuele F, Lombardi A, Velotta R, Altucci C, Birolo L, Piccoli R, Arciello A. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells. Cell Mol Life Sci 2016; 73:637-48. [PMID: 26265182 PMCID: PMC11108384 DOI: 10.1007/s00018-015-2015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.
Collapse
Affiliation(s)
- Francesco Itri
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Daria M Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | | | - Roberto Vinciguerra
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Felice Gesuele
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy
| | - Angelina Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Raffaele Velotta
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR, Naples, Italy
| | - Carlo Altucci
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR, Naples, Italy.
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy.
| |
Collapse
|
91
|
Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends Biochem Sci 2016; 41:20-32. [DOI: 10.1016/j.tibs.2015.10.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/18/2015] [Accepted: 10/29/2015] [Indexed: 01/30/2023]
|
92
|
Lössl P, Sinz A. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes. Methods Mol Biol 2016; 1394:109-127. [PMID: 26700045 DOI: 10.1007/978-1-4939-3341-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.
Collapse
Affiliation(s)
- Philip Lössl
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany
- Biomolecular Mass Spectrometry and Proteomics, Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany.
| |
Collapse
|
93
|
Heinz S, Liauw P, Nickelsen J, Nowaczyk M. Analysis of photosystem II biogenesis in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:274-87. [PMID: 26592144 DOI: 10.1016/j.bbabio.2015.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 11/25/2022]
Abstract
Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Steffen Heinz
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Pasqual Liauw
- Biochemie der Pflanzen, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Marc Nowaczyk
- Biochemie der Pflanzen, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
94
|
Liu F, Heck AJR. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol 2015; 35:100-8. [DOI: 10.1016/j.sbi.2015.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 01/28/2023]
|
95
|
Rampler E, Stranzl T, Orban-Nemeth Z, Hollenstein DM, Hudecz O, Schlögelhofer P, Mechtler K. Comprehensive Cross-Linking Mass Spectrometry Reveals Parallel Orientation and Flexible Conformations of Plant HOP2-MND1. J Proteome Res 2015; 14:5048-62. [PMID: 26535604 DOI: 10.1021/acs.jproteome.5b00903] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HOP2-MND1 heterodimer is essential for meiotic homologous recombination in plants and other eukaryotes and promotes the repair of DNA double-strand breaks. We investigated the conformational flexibility of HOP2-MND1, important for understanding the mechanistic details of the heterodimer, with chemical cross-linking in combination with mass spectrometry (XL-MS). The final XL-MS workflow encompassed the use of complementary cross-linkers, quenching, digestion, size exclusion enrichment, and HCD-based LC-MS/MS detection prior to data evaluation. We applied two different homobifunctional amine-reactive cross-linkers (DSS and BS(2)G) and one zero-length heterobifunctional cross-linker (EDC). Cross-linked peptides of four biological replicates were analyzed prior to 3D structure prediction by protein threading and protein-protein docking for cross-link-guided molecular modeling. Miniaturization of the size-exclusion enrichment step reduced the required starting material, led to a high amount of cross-linked peptides, and allowed the analysis of replicates. The major interaction site of HOP2-MND1 was identified in the central coiled-coil domains, and an open colinear parallel arrangement of HOP2 and MND1 within the complex was predicted. Moreover, flexibility of the C-terminal capping helices of both complex partners was observed, suggesting the coexistence of a closed complex conformation in solution.
Collapse
Affiliation(s)
- Evelyn Rampler
- Institute of Molecular Pathology , Dr.-Bohr-Gasse 7, 1030 Vienna, Austria.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Währingerstr. 42, 1090 Vienna, Austria
| | - Thomas Stranzl
- Institute of Molecular Pathology , Dr.-Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | - Otto Hudecz
- Institute of Molecular Biotechnology, Austrian Academy of Sciences , Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | | | - Karl Mechtler
- Institute of Molecular Pathology , Dr.-Bohr-Gasse 7, 1030 Vienna, Austria.,Institute of Molecular Biotechnology, Austrian Academy of Sciences , Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
96
|
Kukacka Z, Rosulek M, Strohalm M, Kavan D, Novak P. Mapping protein structural changes by quantitative cross-linking. Methods 2015; 89:112-20. [DOI: 10.1016/j.ymeth.2015.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 11/24/2022] Open
|
97
|
Schmidt C, Beilsten-Edmands V, Robinson CV. Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. J Mol Biol 2015; 428:344-356. [PMID: 26497764 DOI: 10.1016/j.jmb.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
Translation initiation in eukaryotes requires the interplay of at least 10 initiation factors that interact at the different steps of this phase of gene expression. The interactions of initiation factors and related proteins are in general controlled by phosphorylation, which serves as a regulatory switch to turn protein translation on or off. The structures of initiation factors and a complete description of their post-translational modification (PTM) status are therefore required in order to fully understand these processes. In recent years, mass spectrometry has contributed considerably to provide this information and nowadays is proving to be indispensable when studying dynamic heterogeneous protein complexes such as the eukaryotic initiation factors. Herein, we highlight mass spectrometric approaches commonly applied to identify interacting subunits and their PTMs and the structural techniques that allow the architecture of protein complexes to be assessed. We present recent structural investigations of initiation factors and their interactions with other factors and with ribosomes and we assess the models generated. These models allow us to locate PTMs within initiation factor complexes and to highlight possible roles for phosphorylation sites in regulating interaction interfaces.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Victoria Beilsten-Edmands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
98
|
Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods 2015; 12:1179-84. [PMID: 26414014 DOI: 10.1038/nmeth.3603] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
We describe an integrated workflow that robustly identifies cross-links from endogenous protein complexes in human cellular lysates. Our approach is based on the application of mass spectrometry (MS)-cleavable cross-linkers, sequential collision-induced dissociation (CID)-tandem MS (MS/MS) and electron-transfer dissociation (ETD)-MS/MS acquisitions, and a dedicated search engine, XlinkX, which allows rapid cross-link identification against a complete human proteome database. This approach allowed us to detect 2,179 unique cross-links (1,665 intraprotein cross-links at a 5% false discovery rate (FDR) and 514 interprotein cross-links at 1% FDR) in HeLa cell lysates. We validated the confidence of our cross-linking results by using a target-decoy strategy and mapping the observed cross-link distances onto existing high-resolution structures. Our data provided new structural information about many protein assemblies and captured dynamic interactions of the ribosome in contact with different elongation factors.
Collapse
|
99
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
100
|
Ječmen T, Ptáčková R, Černá V, Dračínská H, Hodek P, Stiborová M, Hudeček J, Šulc M. Photo-initiated crosslinking extends mapping of the protein-protein interface to membrane-embedded portions of cytochromes P450 2B4 and b₅. Methods 2015; 89:128-37. [PMID: 26235815 DOI: 10.1016/j.ymeth.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023] Open
Abstract
Protein-protein interactions play a central role in the regulation of many biochemical processes (e.g. the system participating in enzyme catalysis). Therefore, a deeper understanding of protein-protein interactions may contribute to the elucidation of many biologically important mechanisms. For this purpose, it is necessary to establish the composition and stoichiometry of supramolecular complexes and to identify the crucial portions of the interacting molecules. This study is devoted to structure-functional relationships in the microsomal Mixed Function Oxidase (MFO) complex, which is responsible for biotransformation of many hydrophobic endogenous compounds and xenobiotics. In particular, the cytochrome b5 interaction with MFO terminal oxygenase cytochrome P-450 (P450) was studied. To create photolabile probes suitable for this purpose, we prepared cytochrome b5 which had a photolabile diazirine analog of methionine (pMet) incorporated into the protein sequence, employing recombinant expression in Escherichia coli. In addition to wild-type cytochrome b5, where three methionines (Met) are located at positions 96, 126, and 131, six mutants containing only one Met in the sequence were designed and expressed (see Table 1). In these mutants, a single Met was engineered into the catalytic domain (at positions 23, 41, or 46), into the linker between the protein domains (at position 96), or into the membrane region (at positions 126 or 131). These mutants should confirm or exclude these portions of cytochrome b5 which are involved in the interaction with P450. After UV irradiation, the pMet group(s) in the photolabile cytochrome b5 probe was(were) activated, producing covalent crosslinks with the interacting parts of P450 2B4 in the close vicinity. The covalent complexes were analyzed by the "bottom up" approach with high-accuracy mass spectrometry. The analysis provided an identification of the contacts in the supramolecular complex with low structural resolution. We found that all the above-mentioned cytochrome b5 Met residues can form intermolecular crosslinks and thus participate in the interaction. In addition, our results indicate the existence of at least two P450:cytochrome b5 complexes which differ in the orientation of individual proteins. The results demonstrate the advantages of the photo-initiated crosslinking technique which is able to map the protein-protein interfaces not only in the solvent exposed regions, but also in the membrane-embedded segments (compared to a typical crosslinking approach which generally only identifies crosslinks in solvent exposed regions).
Collapse
Affiliation(s)
- Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic; Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Renata Ptáčková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic; Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Jiří Hudeček
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Miroslav Šulc
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic; Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|