51
|
Min M, Lin P, Liney G, Lee M, Forstner D, Fowler A, Holloway L. A review of the predictive role of functional imaging in patients with mucosal primary head and neck cancer treated with radiation therapy. J Med Imaging Radiat Oncol 2016; 61:99-123. [DOI: 10.1111/1754-9485.12496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Myo Min
- Cancer Therapy Centre; Liverpool Hospital; Liverpool New South Wales Australia
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
| | - Peter Lin
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
- Department of Nuclear Medicine and Positron Emission Tomography; Liverpool Hospital; Liverpool New South Wales Australia
- University of Western Sydney; Sydney New South Wales Australia
| | - Gary Liney
- Cancer Therapy Centre; Liverpool Hospital; Liverpool New South Wales Australia
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong New South Wales Australia
| | - Mark Lee
- Cancer Therapy Centre; Liverpool Hospital; Liverpool New South Wales Australia
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
| | - Dion Forstner
- Cancer Therapy Centre; Liverpool Hospital; Liverpool New South Wales Australia
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
| | - Allan Fowler
- Cancer Therapy Centre; Liverpool Hospital; Liverpool New South Wales Australia
| | - Lois Holloway
- Cancer Therapy Centre; Liverpool Hospital; Liverpool New South Wales Australia
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong New South Wales Australia
- Institute of Medical Physics; School of Physics; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
52
|
Luker GD, Nguyen HM, Hoff BA, Galbán CJ, Hernando D, Chenevert TL, Talpaz M, Ross BD. A Pilot Study of Quantitative MRI Parametric Response Mapping of Bone Marrow Fat for Treatment Assessment in Myelofibrosis. ACTA ACUST UNITED AC 2016; 2:67-78. [PMID: 27213182 PMCID: PMC4872873 DOI: 10.18383/j.tom.2016.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myelofibrosis (MF) is a hematologic neoplasm arising as a primary disease or secondary to other myeloproliferative neoplasms (MPNs). Both primary and secondary MF are uniquely associated with progressive bone marrow fibrosis, displacing normal hematopoietic cells from the marrow space and disrupting normal production of mature blood cells. Activation of the JAK2 signaling pathway in hematopoietic stem cells commonly causes MF, and ruxolitinib, a drug targeting this pathway, is the treatment of choice for many patients. However, current measures of disease status in MF do not necessarily predict response to treatment with ruxolitinib or other drugs in MF. Bone marrow biopsies are invasive and prone to sampling error, while measurements of spleen volume only indirectly reflect bone marrow status. Toward the goal of developing an imaging biomarker for treatment response in MF, we present preliminary results from a prospective clinical study evaluating parametric response mapping (PRM) of quantitative Dixon MRI bone marrow fat fraction maps in four MF patients treated with ruxolitinib. PRM allows for the voxel-wise identification of significant change in quantitative imaging readouts over time, in this case the bone marrow fat content. We identified heterogeneous response patterns of bone marrow fat among patients and within different bone marrow sites in the same patient. We also observed discordance between changes in bone marrow fat fraction and reductions in spleen volume, the standard imaging metric for treatment efficacy. This study provides initial support for PRM analysis of quantitative MRI of bone marrow fat to monitor response to therapy in MF, setting the stage for larger studies to further develop and validate this method as a complementary imaging biomarker for this disease.
Collapse
Affiliation(s)
- Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Huong Marie Nguyen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A Hoff
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Craig J Galbán
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas L Chenevert
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brian D Ross
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
53
|
Hoff BA, Toole M, Yablon C, Ross BD, Luker GD, VanPoznak C, Galbán CJ. Potential for Early Fracture Risk Assessment in Patients with Metastatic Bone Disease using Parametric Response Mapping of CT Images. ACTA ACUST UNITED AC 2015; 1:98-104. [PMID: 26771006 PMCID: PMC4710140 DOI: 10.18383/j.tom.2015.00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pathologic vertebral compression fractures (PVCFs) cause significant morbidity in patients with metastatic bone disease. Limitations in existing clinical biomarkers leave clinicians without reliable metrics for predicting PVCF, thus impeding efforts to prevent this severe complication. To establish the feasibility of a new method for defining the risk of a PVCF, we retrospectively analyzed serial computed tomography (CT) scans from 5 breast cancer patients using parametric response mapping (PRM) to quantify dynamic bone miniral density (BMD) changes that preceded an event. Vertebrae segmented from each scan were registered to the same spatial frame and voxel classification was accomplished using a predetermined threshold of change in Hounsfield units (HU), resulting in relative volumes of increased (PRMHU+), decreased (PRMHU−), or unchanged (PRMHU0) attenuation. A total of 7 PVCFs were compared to undiseased vertebrae in each patient serving as controls. A receiver operator curve (ROC) analysis identified optimal imaging times for group stratification. BMD changes were apparent by an elevated PRMHU+ as early as 1 year before fracture. ROC analysis showed poor performance of PRMHU− in stratifying PVCFs versus controls. As early as 6 months before PVCF, PRMHU+ was significantly larger (12.9 ± 11.6%) than control vertebrae (2.3 ± 2.5%), with an area under the curve of 0.918 from an ROC analysis. Mean HU changes were also significant between PVCF (26.8 ± 26.9%) and control (−2.2 ± 22.0%) over the same period. A PRM analysis of BMD changes using standard CT imaging was sensitive for spatially resolving changes that preceded structural failure in these patients.
Collapse
Affiliation(s)
- Benjamin A Hoff
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Michael Toole
- Department of Internal Medicine, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Corrie Yablon
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Brian D Ross
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Catherine VanPoznak
- Department of Internal Medicine, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| |
Collapse
|
54
|
Malyarenko DI, Ross BD, Chenevert TL. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements. Magn Reson Med 2015; 71:1312-23. [PMID: 23794533 DOI: 10.1002/mrm.24773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PURPOSE Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. METHODS All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. RESULTS Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. CONCLUSIONS The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients.
Collapse
|
55
|
Xu QG, Xian JF. Role of quantitative magnetic resonance imaging parameters in the evaluation of treatment response in malignant tumors. Chin Med J (Engl) 2015; 128:1128-33. [PMID: 25881611 PMCID: PMC4832957 DOI: 10.4103/0366-6999.155127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors. DATA SOURCES Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014, with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology." STUDY SELECTION Articles regarding principles of DCE-MRI, principles of DWI, clinical applications as well as opportunity and aspiration were identified, retrieved and reviewed. RESULTS A significant correlation between ADC values and treatment response was reported in most DWI studies. Most quantitative DCE-MRI studies showed a significant correlation between K trans values and treatment response. However, in different tumors and studies, both high and low pretreatment ADC or K trans values were found to be associated with response rate. Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment, showing a decrease in K trans or an increase in ADC associated with response in most cases. CONCLUSIONS Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker. However, validation is hampered by the lack of reproducibility and standardization. MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.
Collapse
Affiliation(s)
| | - Jun-Fang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
56
|
Malkyarenko DI, Chenevert TL. Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction. J Magn Reson Imaging 2015; 40:1487-95. [PMID: 25667948 DOI: 10.1002/jmri.24486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. MATERIALS AND METHODS Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. RESULTS Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. CONCLUSION Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.
Collapse
Affiliation(s)
- Dariya I Malkyarenko
- University of Michigan Hospitals, 1500 E. Medical Center Dr., UHB2, Ann Arbor, MI, USA.
| | | |
Collapse
|
57
|
Welsh L, Panek R, McQuaid D, Dunlop A, Schmidt M, Riddell A, Koh DM, Doran S, Murray I, Du Y, Chua S, Hansen V, Wong KH, Dean J, Gulliford S, Bhide S, Leach MO, Nutting C, Harrington K, Newbold K. Prospective, longitudinal, multi-modal functional imaging for radical chemo-IMRT treatment of locally advanced head and neck cancer: the INSIGHT study. Radiat Oncol 2015; 10:112. [PMID: 25971451 PMCID: PMC4438605 DOI: 10.1186/s13014-015-0415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radical chemo-radiotherapy (CRT) is an effective organ-sparing treatment option for patients with locally advanced head and neck cancer (LAHNC). Despite advances in treatment for LAHNC, a significant minority of these patients continue to fail to achieve complete response with standard CRT. By constructing a multi-modality functional imaging (FI) predictive biomarker for CRT outcome for patients with LAHNC we hope to be able to reliably identify those patients at high risk of failing standard CRT. Such a biomarker would in future enable CRT to be tailored to the specific biological characteristics of each patients' tumour, potentially leading to improved treatment outcomes. METHODS/DESIGN The INSIGHT study is a single-centre, prospective, longitudinal multi-modality imaging study using functional MRI and FDG-PET/CT for patients with LAHNC squamous cell carcinomas receiving radical CRT. Two cohorts of patients are being recruited: one treated with, and another treated without, induction chemotherapy. All patients receive radical intensity modulated radiotherapy with concurrent chemotherapy. Patients undergo functional imaging before, during and 3 months after completion of radiotherapy, as well as at the time of relapse, should that occur within the first two years after treatment. Serum samples are collected from patients at the same time points as the FI scans for analysis of a panel of serum markers of tumour hypoxia. DISCUSSION The primary aim of the INSIGHT study is to acquire a prospective multi-parametric longitudinal data set comprising functional MRI, FDG PET/CT, and serum biomarker data from patients with LAHNC undergoing primary radical CRT. This data set will be used to construct a predictive imaging biomarker for outcome after CRT for LAHNC. This predictive imaging biomarker will be used in future studies of functional imaging based treatment stratification for patients with LAHNC. Additional objectives are: defining the reproducibility of FI parameters; determining robust methods for defining FI based biological target volumes for IMRT planning; creation of a searchable database of functional imaging data for data mining. The INSIGHT study will help to establish the role of FI in the clinical management of LAHNC. TRIAL REGISTRATION NCRI H&N CSG ID 13860.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Chemoradiotherapy/mortality
- Female
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Humans
- Longitudinal Studies
- Magnetic Resonance Imaging/methods
- Male
- Middle Aged
- Multimodal Imaging/methods
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Staging
- Positron-Emission Tomography/methods
- Prognosis
- Prospective Studies
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Intensity-Modulated/methods
- Tomography, X-Ray Computed/methods
- Young Adult
Collapse
Affiliation(s)
- Liam Welsh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
- Clinical Research Fellow, Head and Neck Unit, Royal Marsden Hospital, Sutton, Surrey, SM2 5PT, UK.
| | - Rafal Panek
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Dualta McQuaid
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Alex Dunlop
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Maria Schmidt
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Angela Riddell
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Dow-Mu Koh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Simon Doran
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Iain Murray
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Yong Du
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Sue Chua
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Vibeke Hansen
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kee H Wong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Jamie Dean
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Sarah Gulliford
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Shreerang Bhide
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Martin O Leach
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Christopher Nutting
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kevin Harrington
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
58
|
Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer. PLoS One 2015; 10:e0123877. [PMID: 25859981 PMCID: PMC4393258 DOI: 10.1371/journal.pone.0123877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease.
Collapse
|
59
|
Galbán CJ, Ma B, Malyarenko D, Pickles MD, Heist K, Henry NL, Schott AF, Neal CH, Hylton NM, Rehemtulla A, Johnson TD, Meyer CR, Chenevert TL, Turnbull LW, Ross BD. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 2015; 10:e0122151. [PMID: 25816249 PMCID: PMC4376686 DOI: 10.1371/journal.pone.0122151] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 02/18/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate diffusion weighted MRI (DW-MR) as a response metric for assessment of neoadjuvant chemotherapy (NAC) in patients with primary breast cancer using prospective multi-center trials which provided MR scans along with clinical outcome information. MATERIALS AND METHODS A total of 39 patients with locally advanced breast cancer accrued from three different prospective clinical trials underwent DW-MR examination prior to and at 3-7 days (Hull University), 8-11 days (University of Michigan) and 35 days (NeoCOMICE) post-treatment initiation. Thirteen patients, 12 of which participated in treatment response study, from UM underwent short interval (<1hr) MRI examinations, referred to as "test-retest" for examination of repeatability. To further evaluate stability in ADC measurements, a thermally controlled diffusion phantom was used to assess repeatability of diffusion measurements. MRI sequences included contrast-enhanced T1-weighted, when appropriate, and DW images acquired at b-values of 0 and 800 s/mm2. Histogram analysis and a voxel-based analytical technique, the Parametric Response Map (PRM), were used to derive diffusion response metrics for assessment of treatment response prediction. RESULTS Mean tumor apparent diffusion coefficient (ADC) values generated from patient test-retest examinations were found to be very reproducible (|ΔADC|<0.1x10-3mm2/s). This data was used to calculate the 95% CI from the linear fit of tumor voxel ADC pairs of co-registered examinations (±0.45x10-3mm2/s) for PRM analysis of treatment response. Receiver operating characteristic analysis identified the PRM metric to be predictive of outcome at the 8-11 (AUC = 0.964, p = 0.01) and 35 day (AUC = 0.770, p = 0.05) time points (p<.05) while whole-tumor ADC changes where significant at the later 35 day time interval (AUC = 0.825, p = 0.02). CONCLUSION This study demonstrates the feasibility of performing a prospective analysis of DW-MRI as a predictive biomarker of NAC in breast cancer patients. In addition, we provide experimental evidence supporting the use of sensitive analytical tools, such as PRM, for evaluating ADC measurements.
Collapse
Affiliation(s)
- Craig J. Galbán
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bing Ma
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dariya Malyarenko
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Martin D. Pickles
- Centre for MR Investigations, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Kevin Heist
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Norah L. Henry
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anne F. Schott
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Colleen H. Neal
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nola M. Hylton
- Department of Radiology, University of California San Francisco, San Francisco, California, United States of America
| | - Alnawaz Rehemtulla
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy D. Johnson
- Departments of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles R. Meyer
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Chenevert
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lindsay W. Turnbull
- Centre for MR Investigations, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Brian D. Ross
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
60
|
Baer AH, Hoff BA, Srinivasan A, Galbán CJ, Mukherji SK. Feasibility analysis of the parametric response map as an early predictor of treatment efficacy in head and neck cancer. AJNR Am J Neuroradiol 2015; 36:757-62. [PMID: 25792532 DOI: 10.3174/ajnr.a4296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/16/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Estimating changes in the volume transfer constant, normalized area under the contrast-enhancement time curve at 60 seconds, and fractional blood plasma volume by using dynamic contrast-enhanced MR imaging may be useful in predicting tumor response to chemoradiation. We hypothesized that the parametric response map, a voxel-by-voxel analysis of quantitative dynamic contrast-enhanced MR imaging maps, predicts survival in patients with head and neck cancer. MATERIALS AND METHODS Ten patients with locoregionally advanced head and neck squamous cell carcinoma underwent definitive concurrent chemoradiation therapy. For each patient, dynamic contrast-enhanced MR imaging data were collected before and 2 weeks after treatment initiation. Change in perfusion parameters within the primary tumor volume with time was analyzed by parametric response mapping and by whole-tumor mean percentage change. Outcome was defined as overall survival. The perfusion parameter and metric most predictive of outcome were identified. Overall survival was estimated by the log-rank test and Kaplan-Meier survival curve. RESULTS The volume transfer constant and normalized area under the contrast-enhancement time curve at 60 seconds were predictive of survival both in parametric response map analysis (volume transfer constant, P = .002; normalized area under the contrast-enhancement time curve at 60 seconds, P = .02) and in the percentage change analysis (volume transfer constant, P = .04; normalized area under the contrast-enhancement time curve at 60 seconds, P = .02). Blood plasma volume predicted survival in neither analysis. CONCLUSIONS Parametric response mapping of MR perfusion biomarkers could potentially guide treatment modification in patients with predicted treatment failure. Larger studies are needed to determine whether parametric response map analysis or percentage signal change in these perfusion parameters is the stronger predictor of survival.
Collapse
Affiliation(s)
- A H Baer
- From the Department of Radiology (A.H.B., B.A.H., A.S., C.J.G.), University of Michigan Health System, Ann Arbor, Michigan
| | - B A Hoff
- From the Department of Radiology (A.H.B., B.A.H., A.S., C.J.G.), University of Michigan Health System, Ann Arbor, Michigan
| | - A Srinivasan
- From the Department of Radiology (A.H.B., B.A.H., A.S., C.J.G.), University of Michigan Health System, Ann Arbor, Michigan
| | - C J Galbán
- From the Department of Radiology (A.H.B., B.A.H., A.S., C.J.G.), University of Michigan Health System, Ann Arbor, Michigan
| | - S K Mukherji
- Department of Radiology (S.K.M.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
61
|
Multimodality functional imaging in radiation therapy planning: relationships between dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:103843. [PMID: 25788972 PMCID: PMC4350945 DOI: 10.1155/2015/103843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/15/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. MATERIALS AND METHODS The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. RESULTS ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. CONCLUSION A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets.
Collapse
|
62
|
Choi SJ, Kim J, Seo J, Kim HS, Lee JM, Park H. Parametric response mapping of dynamic CT as an imaging biomarker to distinguish viability of hepatocellular carcinoma treated with transcatheter arterial chemoembolization. ACTA ACUST UNITED AC 2015; 39:518-25. [PMID: 24519566 DOI: 10.1007/s00261-014-0087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Accurate assessment of viability of hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE) is important for therapy planning. The purpose of this study is to determine the diagnostic value of a novel image analysis method called parametric response mapping (PRM) in predicting viability of tumor in HCC treated with TACE for dynamic CT images. METHODS 35 patients who had 35 iodized-oil defect areas (IODAs) in HCCs treated with TACE were included in our study. These patients were divided into two groups, one group with viable tumors (n = 22) and the other group with non-viable tumors (n = 13) in the IODA. All patients were followed up using triple-phase dynamic CT after the treatment. We compared (a) manual analysis, (b) using PRM results, and (c) using PRM results with automatic classifier to distinguish between two tumor groups based on dynamic CT images from two longitudinal exams. Two radiologists performed the manual analysis. The PRM approach was implemented using prototype software. We adopted an off-the-shelf k nearest neighbor (kNN) classifier and leave-one-out cross-validation for the third approach. The area under the curve (AUC) values were compared for three approaches. RESULTS Manual analysis yielded AUC of 0.74, using PRM results yielded AUC of 0.84, and using PRM results with an automatic classifier yielded AUC of 0.87. CONCLUSIONS We improved upon the standard manual analysis approach by adopting a novel image analysis method of PRM combined with an automatic classifier.
Collapse
Affiliation(s)
- Seung Joon Choi
- Department of Radiology, Gachon University Gil Hospital, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
63
|
Tsien C, Cao Y, Chenevert T. Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 2015; 24:218-26. [PMID: 24931097 DOI: 10.1016/j.semradonc.2014.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this article, we review the clinical applications of diffusion magnetic resonance imaging (MRI) in the radiotherapy treatment of several key clinical sites, including those of the central nervous system, the head and neck, the prostate, and the cervix. Diffusion-weighted MRI (DWI) is an imaging technique that is rapidly gaining widespread acceptance owing to its ease and wide availability. DWI measures the mobility of water within tissue at the cellular level without the need of any exogenous contrast agent. For radiotherapy treatment planning, DWI improves upon conventional imaging techniques, by better characterization of tumor tissue properties required for tumor grading, diagnosis, and target volume delineation. Because DWI is also a sensitive marker for alterations in tumor cellularity, it has potential clinical applications in the early assessment of treatment response following radiation therapy.
Collapse
Affiliation(s)
- Christina Tsien
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI.
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI
| | - Thomas Chenevert
- Department of Radiology, University of Michigan Hospital and Health Systems, Ann Arbor, MI
| |
Collapse
|
64
|
Lausch A, Chen J, Ward AD, Gaede S, Lee TY, Wong E. An augmented parametric response map with consideration of image registration error: towards guidance of locally adaptive radiotherapy. Phys Med Biol 2014; 59:7039-58. [DOI: 10.1088/0031-9155/59/22/7039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
65
|
Schouten CS, de Bree R, van der Putten L, Noij DP, Hoekstra OS, Comans EFI, Witte BI, Doornaert PA, Leemans CR, Castelijns JA. Diffusion-weighted EPI- and HASTE-MRI and 18F-FDG-PET-CT early during chemoradiotherapy in advanced head and neck cancer. Quant Imaging Med Surg 2014; 4:239-50. [PMID: 25202659 DOI: 10.3978/j.issn.2223-4292.2014.07.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/25/2014] [Indexed: 01/10/2023]
Abstract
MAIN PROBLEM Diffusion-weighted MRI (DW-MRI) has potential to predict chemoradiotherapy (CRT) response in head and neck squamous cell carcinoma (HNSCC) and is generally performed using echo-planar imaging (EPI). However, EPI-DWI is susceptible to geometric distortions. Half-fourier acquisition single-shot turbo spin-echo (HASTE)-DWI may be an alternative. This prospective pilot study evaluates the potential predictive value of EPI- and HASTE-DWI and 18F-fluorodeoxyglucose PET-CT (18F-FDG-PET-CT) early during CRT for locoregional outcome in HNSCC. METHODS Eight patients with advanced HNSCC (7 primary tumors and 25 nodal metastases) scheduled for CRT, underwent DW-MRI (using both EPI- and HASTE-DWI) and 18F-FDG-PET(-CT) pretreatment, early during treatment and three months after treatment. Median follow-up time was 38 months. RESULTS No local recurrences were detected during follow-up. Median Apparent Diffusion Coefficient (ADC)EPI-values in primary tumors increased from 77×10(-5) mm(2)/s pretreatment, to 113×10(-5) mm(2)/s during treatment (P=0.02), whereas ADCHASTE did not increase (74 and 74 mm(2)/s, respectively). Two regional recurrences were diagnosed. During treatment, ADCEPI tended to be higher for patients with regional control [(117.3±12.1)×10(-5) mm(2)/s] than for patients with a recurrence [(98.0±4.2)×10(-5) mm(2)/s]. This difference was not seen with ADCHASTE. No correlations between ΔADCEPI and ΔSUV (Standardized Uptake Value) were found in the primary tumor or nodal metastases. CONCLUSIONS HASTE-DWI seems to be inadequate in early CRT response prediction, compared to EPI-DWI which has potential to predict locoregional outcome. EPI-DWI and 18F-FDG-PET-CT potentially provide independent information in the early response to treatment, since no correlations were found between ΔADCEPI and ΔSUV.
Collapse
Affiliation(s)
- Charlotte S Schouten
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Remco de Bree
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Lisa van der Putten
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Daniel P Noij
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Otto S Hoekstra
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Emile F I Comans
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Birgit I Witte
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Patricia A Doornaert
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - C René Leemans
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jonas A Castelijns
- 1 Department of Otolaryngology-Head and Neck Surgery, 2 Department of Radiology and Nuclear Medicine, 3 Department of Epidemiology and Biostatistics, 4 Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
66
|
Chen Y, Liu X, Zheng D, Xu L, Hong L, Xu Y, Pan J. Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magn Reson Imaging 2014; 32:630-7. [DOI: 10.1016/j.mri.2014.02.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 01/01/2023]
|
67
|
Image registration for quantitative parametric response mapping of cancer treatment response. Transl Oncol 2014; 7:101-10. [PMID: 24772213 DOI: 10.1593/tlo.14121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/10/2023] Open
Abstract
Imaging biomarkers capable of early quantification of tumor response to therapy would provide an opportunity to individualize patient care. Image registration of longitudinal scans provides a method of detecting treatment associated changes within heterogeneous tumors by monitoring alterations in the quantitative value of individual voxels over time, which is unattainable by traditional volumetric-based histogram methods. The concepts involved in the use of image registration for tracking and quantifying breast cancer treatment response using parametric response mapping (PRM), a voxel-based analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) scans, are presented. Application of PRM to breast tumor response detection is described, wherein robust registration solutions for tracking small changes in water diffusivity in breast tumors during therapy are required. Methodologies that employ simulations are presented for measuring expected statistical accuracy of PRM for response assessment. Test-retest clinical scans are used to yield estimates of system noise to indicate significant changes in voxel-based changes in water diffusivity. Overall, registration-based PRM image analysis provides significant opportunities for voxel-based image analysis to provide the required accuracy for early assessment of response to treatment in breast cancer patients receiving neoadjuvant chemotherapy.
Collapse
|
68
|
Yuan J, Yeung DKW, Mok GSP, Bhatia KS, Wang YXJ, Ahuja AT, King AD. Non-Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma. PLoS One 2014; 9:e87024. [PMID: 24466318 PMCID: PMC3900693 DOI: 10.1371/journal.pone.0087024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI) at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI), stretched-exponential model (SEM), intravoxel incoherent motion (IVIM) and statistical model in the patients with nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS After ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm(2). DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC) maps in NPC. RESULTS Diffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution. CONCLUSION Non-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- * E-mail:
| | - David Ka Wai Yeung
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Greta S. P. Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau SAR, China
| | - Kunwar S. Bhatia
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi-Xiang J. Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Anil T. Ahuja
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ann D. King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
69
|
Lambrecht M, Dirix P, Vandecaveye V, De Keyzer F, Hermans R, Nuyts S. Role and value of diffusion-weighted MRI in the radiotherapeutic management of head and neck cancer. Expert Rev Anticancer Ther 2014; 10:1451-9. [DOI: 10.1586/era.10.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
70
|
Hatakenaka M, Nakamura K, Yabuuchi H, Shioyama Y, Matsuo Y, Kamitani T, Yonezawa M, Yoshiura T, Nakashima T, Mori M, Honda H. Apparent diffusion coefficient is a prognostic factor of head and neck squamous cell carcinoma treated with radiotherapy. Jpn J Radiol 2014; 32:80-9. [PMID: 24408077 DOI: 10.1007/s11604-013-0272-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the correlation between apparent diffusion coefficient (ADC) and prognosis in head and neck squamous cell carcinoma (HNSCC) treated with radiotherapy. MATERIALS AND METHODS We retrospectively studied 41 patients (38 male and 3 female, ages 37-85 years) diagnosed with HNSCC (14 oropharynx, 22 hypopharynx, 4 larynx, 1 oral cavity) and treated with radiotherapy, with radiation dose to gross tumor volume over 60 Gy. The association between age, gender, performance status, tumor location, T stage, N stage, stage, dose, overall treatment time, treatment method, adjuvant therapy, or ADC and prognosis was analyzed using a Cox proportional hazard test. RESULTS ADC calculated with b-values of 300, 500, 750, and 1,000 s/mm(2) (ADC 300-1,000) alone showed a significant correlation with all of the analyses (p = 0.022 for local control, p = 0.0109 for regional control, p = 0.0041 for disease-free survival, and p = 0.0014 for overall survival). ADC calculated with b-values of 0, 100, and 200 s/mm(2) (ADC 0-200) showed a significant correlation with overall survival (p = 0.0012). N stage showed a significant correlation with regional control (p = 0.0241). Performance status showed significant association with local control (p = 0.0459), disease-free survival (p = 0.023), and overall survival (p = 0.0151), respectively. CONCLUSION ADC is an independent predictor of prognosis in HNSCC treated with radiotherapy.
Collapse
Affiliation(s)
- Masamitsu Hatakenaka
- Department of Diagnostic Radiology, School of Medicine, Sapporo Medical University, Minami 1, Nishi 17, Chuo-ku, Sapporo, 060-8556, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Lambrecht M, Van Herck H, De Keyzer F, Vandecaveye V, Slagmolen P, Suetens P, Hermans R, Nuyts S. Redefining the target early during treatment. Can we visualize regional differences within the target volume using sequential diffusion weighted MRI? Radiother Oncol 2013; 110:329-34. [PMID: 24231234 DOI: 10.1016/j.radonc.2013.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/18/2023]
Abstract
PURPOSE In head and neck cancer, diffusion weighted MRI (DWI) can predict response early during treatment. Treatment-induced changes and DWI-specific artifacts hinder an accurate registration between apparent diffusion coefficient (ADC) maps. The aim of the study was to develop a registration tool which calculates and visualizes regional changes in ADC. METHODS Twenty patients with stage IV HNC treated with primary radiotherapy received an MRI including DWI before and early during treatment. Markers were manually placed at anatomical landmarks on the different modalities at both time points. A registration method, consisting of a fully automatic rigid and nonrigid registration and two semi-automatic thin-plate spline (TPS) warps was developed and applied to the image sets. After each registration step the mean registration errors were calculated and ΔADC was compared between good and poor responders. RESULTS Adding the TPS warps significantly reduced the registration error (in mm, 6.3 ± 6.2 vs 3.2 ± 3.3 mm, p<0.001). After the marker based registration the median ΔADC in poor responders was significantly lower than in good responders (7% vs. 21%; p<0.001). CONCLUSIONS This registration method allowed for a significant reduction of the mean registration error. Furthermore the voxel-wise calculation of the ΔADC early during radiotherapy allowed for a visualization of the regional differences of ΔADC within the tumor.
Collapse
Affiliation(s)
- Maarten Lambrecht
- Department of Radiation Oncology, Leuvens Kankerinstituut, University Hospitals Leuven, Campus Gasthuisberg, Belgium.
| | - Hans Van Herck
- Department of Electrical Engineering (ESAT/PSI), KU Leuven, Belgium; iMinds - KU Leuven Future Health Department, Belgium
| | - Frederik De Keyzer
- Department of Radiology, University Hospitals Leuven, Campus Gasthuisberg, Belgium
| | - Vincent Vandecaveye
- Department of Radiology, University Hospitals Leuven, Campus Gasthuisberg, Belgium
| | - Pieter Slagmolen
- Department of Electrical Engineering (ESAT/PSI), KU Leuven, Belgium; iMinds - KU Leuven Future Health Department, Belgium
| | - Paul Suetens
- Department of Electrical Engineering (ESAT/PSI), KU Leuven, Belgium; iMinds - KU Leuven Future Health Department, Belgium
| | - Robert Hermans
- Department of Radiology, University Hospitals Leuven, Campus Gasthuisberg, Belgium
| | - Sandra Nuyts
- Department of Radiation Oncology, Leuvens Kankerinstituut, University Hospitals Leuven, Campus Gasthuisberg, Belgium
| |
Collapse
|
72
|
Schakel T, Hoogduin JM, Terhaard CHJ, Philippens MEP. Diffusion weighted MRI in head-and-neck cancer: geometrical accuracy. Radiother Oncol 2013; 109:394-7. [PMID: 24183864 DOI: 10.1016/j.radonc.2013.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The aim of this study is to assess the geometric accuracy of diffusion weighted (DW)-MRI by quantification of geometric distortions in the gross tumor volume (GTV) in head and neck (HN) cancer. MATERIALS & METHODS A retrospective analysis was performed on the data of 23 patients (with 24 lesions). For these patients, magnetic field maps and DW-MRI were acquired. The magnetic field maps were converted to voxel displacement maps. GTV delineations were transferred onto these voxel displacement maps and the voxel shifts in the GTV were analyzed. RESULTS The median shift was 3.2mm and the maximal posterior and anterior shifts were up to 15.0 and 26.0mm respectively. The range of shifts varied from 11.8 to 25.6mm. The percentage of GTV voxels that showed a shift of at least 6mm was found to be 23.2%. CONCLUSIONS Current DW-MRI images of HN tumors show severe distortions up to centimeters, which restrict the use of DW-MRI scans for GTV definition in RT treatment planning.
Collapse
Affiliation(s)
- Tim Schakel
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
73
|
Matoba M, Tuji H, Shimode Y, Toyoda I, Kuginuki Y, Miwa K, Tonami H. Fractional change in apparent diffusion coefficient as an imaging biomarker for predicting treatment response in head and neck cancer treated with chemoradiotherapy. AJNR Am J Neuroradiol 2013; 35:379-85. [PMID: 24029391 DOI: 10.3174/ajnr.a3706] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE ADC provides a measure of water molecule diffusion in tissue. The aim of this study was to evaluate whether the fractional change in ADC during therapy can be used as a valid predictive indicator of treatment response in head and neck squamous cell carcinoma treated with chemoradiotherapy. MATERIALS AND METHODS Forty patients underwent DWI at pretreatment and 3 weeks after the start of treatment. The pretreatment ADC, fractional change in ADC, tumor regression rate, and other clinical variables were compared with locoregional control and locoregional failure and were analyzed by using logistic regression analysis and receiver operating characteristic analysis. Furthermore, progression-free survival curves divided by the corresponding threshold value were compared by means of the log-rank test. RESULTS The fractional change in ADCprimary, the fractional change in ADCnode, primary tumor volume, nodal volume, tumor regression ratenode, N stage, and tumor location revealed significant differences between locoregional failure and locoregional control (P < .05). In univariate analysis, the fractional change in ADCprimary, fractional change in ADCnode, tumor regression ratenode, N stage, and tumor location showed significant association with locoregional control (P < .05). In multivariate analysis, however, only the fractional change in ADCprimary was identified as a significant and independent predictor of locoregional control (P = .04). A threshold fractional change in ADCprimary of 0.24 revealed a sensitivity of 100%, specificity of 78.7%, and overall accuracy of 84.8% for the prediction of locoregional control. Progression-free survival of the 2 groups divided by the fractional change in ADCprimary at 0.24 showed a significant difference (P < .05). CONCLUSIONS The results suggest that the fractional change in ADCprimary is a valid imaging biomarker for predicting treatment response in head and neck squamous cell carcinoma treated with chemoradiotherapy.
Collapse
Affiliation(s)
- M Matoba
- From the Departments of Radiology (M.M., I.T., Y.K., H. Tonami)
| | | | | | | | | | | | | |
Collapse
|
74
|
Tsai YH, Hsu LM, Weng HH, Lee MH, Yang JT, Lin CP. Functional diffusion map as an imaging predictor of functional outcome in patients with primary intracerebral haemorrhage. Br J Radiol 2013; 86:20110644. [PMID: 23255534 DOI: 10.1259/bjr.20110644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Predicting outcome in patients with primary intracerebral haemorrhage (ICH) in the acute stage can provide information to determine the best therapeutic and rehabilitation strategies. We prospectively investigated the predictive value of the functional diffusion map (fDM) in the acute stage of ICH. METHODS 47 patients with ICH were enrolled for clinical evaluation and MRI within 24 h of symptom onset and 5 days after ICH. Functional diffusion mapping prospectively monitored the apparent diffusion coefficient (ADC) maps of perihaematomal oedema. Consequently, the change in perihaematomal oedema was classified into three categories: increased, decreased, or no significant change. Clinical outcomes were evaluated 6 months after ICH according to the modified Rankin Scale. Correlation between clinical outcome and the fDMs was performed. RESULTS Among the clinical variables, thalamic haematoma, serum glucose level and National Institutes of Health Stroke Scale scores were significantly different between the good- and poor-outcome groups. The percentage of oedematous tissue undergoing significant change between baseline and Day 5 was also significantly different between the groups. CONCLUSION fDMs allow for spatial voxel-by-voxel tracking of changes in ADC values. It may be feasible to use fDMs to predict the functional outcome of patients with ICH during the acute stage. Advances in knowledge The use of fDMs for stroke study is demonstrated. fDMs may be more suitable to reflect the pathophysiological heterogeneity within oedemas and may facilitate another thinking process for imaging study of stroke and other neurological diseases.
Collapse
Affiliation(s)
- Y-H Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
75
|
Powell C, Schmidt M, Borri M, Koh DM, Partridge M, Riddell A, Cook G, Bhide SA, Nutting CM, Harrington KJ, Newbold KL. Changes in functional imaging parameters following induction chemotherapy have important implications for individualised patient-based treatment regimens for advanced head and neck cancer. Radiother Oncol 2013; 106:112-7. [PMID: 23089306 DOI: 10.1016/j.radonc.2012.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/09/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND When induction chemotherapy (IC) is used prior to chemoradiotherapy (CRT) in head and neck cancer (HNC), functional imaging (FI) may inform adaptation of treatment plans with the aim of optimising outcomes. Understanding the impact of IC on FI parameters is, therefore, essential. PURPOSE To prospectively evaluate the feasibility of acquiring serial FI ((18)F-FDG-PET, diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI) and its role in defining individualised treatment regimens following IC in HNC. METHODS AND MATERIALS Ten patients with stage III and IV HNC underwent conventional (CT and MRI) and functional (DW, DCE-MRI and (18)F-FDG-PET/CT) imaging at baseline and following two cycles of IC prior to definitive CRT. RESULTS One patient withdrew due to claustrophobia. Seven out of nine patients had a complete metabolic response to IC on (18)F-FDG-PET imaging. DCE-MRI showed a significant fall in transfer constant (K(trans)) (0.209 vs 0.129 min(-1)P<0.01) and integrated area under gadolinium curve at 60s (IAUGC6O) (18.4 vs 11.9 mmol/min, P<0.01) and DW-MRI a rise in ADC (0.89 vs 1.06 × 10(-3) mm(2)/s, P<0.01) following IC. CONCLUSIONS Acquiring FI sequences is feasible in HNC. There are marked changes in FI parameters following IC which may guide adaptation of individualised treatment regimens.
Collapse
Affiliation(s)
- Ceri Powell
- The Royal Marsden NHS Trust, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Calabrese L, Ostuni A, Ansarin M, Giugliano G, Maffini F, Alterio D, Rocca MC, Petralia G, Bruschini R, Chiesa F. Future challenges in head and neck cancer: From the bench to the bedside? Crit Rev Oncol Hematol 2012; 84 Suppl 1:e90-6. [DOI: 10.1016/j.critrevonc.2010.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/29/2010] [Accepted: 11/03/2010] [Indexed: 01/23/2023] Open
|
77
|
Hoeffner EG, Mukherji SK, Srinivasan A, Quint DJ. Neuroradiology back to the future: head and neck imaging. AJNR Am J Neuroradiol 2012; 33:2026-32. [PMID: 23064595 PMCID: PMC7965588 DOI: 10.3174/ajnr.a3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY Imaging of the head and neck was initially described within the first year after Roentgen's discovery of the x-ray and was used to localize foreign bodies in the head and neck area, including the orbital, laryngeal, and esophageal regions. Subsequently, x-rays were used to evaluate the air-filled paranasal sinuses, the pneumatized temporal bone, and the upper aerodigestive tract. Special views for evaluating these structures were developed by early investigators. As contrast agents were developed, a variety of invasive procedures were developed to assess the structures of the head and neck. CT and MR imaging were applied to the extracranial head and neck slightly later than the brain and spine; these modalities revolutionized head and neck radiology, finally allowing assessment of the deeper structures of this complex anatomic region.
Collapse
Affiliation(s)
- E G Hoeffner
- Division of Neuroradiology, Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
78
|
King AD, Chow KK, Yu KH, Mo FKF, Yeung DKW, Yuan J, Bhatia KS, Vlantis AC, Ahuja AT. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2012; 266:531-8. [PMID: 23151830 DOI: 10.1148/radiol.12120167] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To determine the diagnostic performance of diffusion-weighted (DW) imaging for the prediction of treatment failure in primary head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS The study was approved by the local institutional ethics committee and conducted with informed written consent in patients with primary HNSCC treated with radiation therapy and chemotherapy. DW imaging of the primary tumor was performed before treatment in 37 patients and was repeated within 2 weeks of treatment in 30 patients. Histograms of apparent diffusion coefficients (ADCs) were analyzed, and mean ADC, kurtosis, skewness, and their respective percentage change were correlated for local failure and local control at 2 years by using the Student t test. Univariate and multivariate analyses of the ADC parameters, T stage, and tumor volume were performed by using logistic regression for prediction of local failure. RESULTS Local failure occurred in 16 of 37 (43%) patients and local control occurred in 21 of 37 (57%) patients. Pretreatment ADC parameters showed no correlation with local failure. There was significant intratreatment increase in mean ADC and a decrease in skewness and kurtosis (P < .001, P < .001, P = .024, respectively) for the whole group of patients when compared with those before treatment. During treatment, primary tumors showed a significantly lower increase in percentage change of mean ADC, higher skewness, and higher kurtosis for local failure than for local control (P = .016, .015, and .040, respectively). These ADC parameters also were significant for predicting local failure with use of univariate but not multivariate analysis. CONCLUSION Early intratreatment DW imaging has the potential to allow prediction of treatment response at the primary site in patients with HNSCC.
Collapse
Affiliation(s)
- Ann D King
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngai Shing Street, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012; 18:1711-5. [PMID: 23042237 PMCID: PMC3493851 DOI: 10.1038/nm.2971] [Citation(s) in RCA: 547] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/30/2012] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is increasingly being recognized as a highly heterogeneous disorder, composed of varying pathobiology. Accurate detection of COPD subtypes by image biomarkers are urgently needed to enable individualized treatment thus improving patient outcome. We adapted the Parametric Response Map (PRM), a voxel-wise image analysis technique, for assessing COPD phenotype. We analyzed whole lung CT scans of 194 COPD individuals acquired at inspiration and expiration from the COPDGene Study. PRM identified the extent of functional small airways disease (fSAD) and emphysema as well as provided CT-based evidence that supports the concept that fSAD precedes emphysema with increasing COPD severity. PRM is a versatile imaging biomarker capable of diagnosing disease extent and phenotype, while providing detailed spatial information of disease distribution and location. PRMs ability to differentiate between specific COPD phenotypes will allow for more accurate diagnosis of individual patients complementing standard clinical techniques.
Collapse
|
80
|
Abstract
The efficiency of an oncological treatment regimen is often assessed by morphological criteria such as tumour size evaluated by cross-sectional imaging, or by laboratory measurements of plasma biomarkers. Because these types of measures typically allow for assessment of treatment response several weeks or even months after the start of therapy, earlier response assessment that provides insight into tumour function is needed. This is particularly urgent for the evaluation of newer targeted therapies and for fractionated therapies that are delivered over a period of weeks to allow for a change of treatment in non-responding patients. Diffusion-weighted MRI (DW-MRI) is a non-invasive imaging tool that does not involve radiation or contrast media, and is sensitive to tissue microstructure and function on a cellular level. DW-MRI parameters have shown sensitivity to treatment response in a growing number of tumour types and organ sites, with additional potential as predictive parameters for treatment outcome. A brief overview of DW-MRI principles is provided here, followed by a review of recent literature in which DW-MRI has been used to monitor and predict tumour response to various therapeutic regimens.
Collapse
Affiliation(s)
- Lauren J Bains
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Switzerland
| | | | | |
Collapse
|
81
|
Malyarenko D, Galbán CJ, Londy FJ, Meyer CR, Johnson TD, Rehemtulla A, Ross BD, Chenevert TL. Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging 2012; 37:1238-46. [PMID: 23023785 DOI: 10.1002/jmri.23825] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine quantitative quality control procedures to evaluate technical variability in multi-center measurements of the diffusion coefficient of water as a prerequisite to use of the biomarker apparent diffusion coefficient (ADC) in multi-center clinical trials. MATERIALS AND METHODS A uniform data acquisition protocol was developed and shared with 18 participating test sites along with a temperature-controlled diffusion phantom delivered to each site. Usable diffusion weighted imaging data of ice water at five b-values were collected on 35 clinical MRI systems from three vendors at two field strengths (1.5 and 3 Tesla [T]) and analyzed at a central processing site. RESULTS Standard deviation of bore-center ADCs measured across 35 scanners was <2%; error range: -2% to +5% from literature value. Day-to-day repeatability of the measurements was within 4.5%. Intra-exam repeatability at the phantom center was within 1%. Excluding one outlier, inter-site reproducibility of ADC at magnet isocenter was within 3%, although variability increased for off-center measurements. Significant (>10%) vendor-specific and system-specific spatial nonuniformity ADC bias was detected for the off-center measurement that was consistent with gradient nonlinearity. CONCLUSION Standardization of DWI protocol has improved reproducibility of ADC measurements and allowed identifying spatial ADC nonuniformity as a source of error in multi-site clinical studies.
Collapse
Affiliation(s)
- Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Hoff BA, Kozloff KM, Boes JL, Brisset JC, Galbán S, Van Poznak CH, Jacobson JA, Johnson TD, Meyer CR, Rehemtulla A, Ross BD, Galbán CJ. Parametric response mapping of CT images provides early detection of local bone loss in a rat model of osteoporosis. Bone 2012; 51:78-84. [PMID: 22542461 PMCID: PMC3371150 DOI: 10.1016/j.bone.2012.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/09/2012] [Accepted: 04/09/2012] [Indexed: 01/18/2023]
Abstract
Loss of bone mass due to disease, such as osteoporosis and metastatic cancer to the bone, is a leading cause of orthopedic complications and hospitalization. Onset of bone loss resulting from disease increases the risk of incurring fractures and subsequent pain, increasing medical expenses while reducing quality of life. Although current standard CT-based protocols provide adequate prognostic information for assessing bone loss, many of the techniques for evaluating CT scans rely on measures based on whole-bone summary statistics. This reduces the sensitivity at identifying local regions of bone resorption, as well as formation. In this study, we evaluate the effectiveness of a voxel-based image post-processing technique, called the Parametric Response Map (PRM), for identifying local changes in bone mass in weight-bearing bones on CT scans using an established animal model of osteoporosis. Serial CT scans were evaluated weekly using PRM subsequent to ovariectomy or sham surgeries over the period of one month. For comparison, bone volume fraction and mineral density measurements were acquired and found to significantly differ between groups starting 3 weeks post-surgery. High resolution ex vivo measurements acquired four weeks post-surgery validated the extent of bone loss in the surgical groups. In contrast to standard methodologies for assessing bone loss, PRM results were capable of identifying local decreases in bone mineral by week 2, which were found to be significant between groups. This study concludes that PRM is able to detect changes in bone mineral with higher sensitivity and spatial differentiation than conventional techniques for evaluating CT scans, which may aid in clinical decision making for patients suffering from bone loss.
Collapse
Affiliation(s)
- Benjamin A. Hoff
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kenneth M. Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jennifer L. Boes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Stefanie Galbán
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Jon A. Jacobson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Charles R. Meyer
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Brian D. Ross
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Craig J. Galbán
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
83
|
Early diffusion weighted magnetic resonance imaging can predict survival in women with locally advanced cancer of the cervix treated with combined chemo-radiation. Eur Radiol 2012; 22:2319-27. [DOI: 10.1007/s00330-012-2496-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/06/2012] [Indexed: 01/17/2023]
|
84
|
Abstract
Extracranial applications of diffusion-weighted (DW) magnetic resonance (MR) imaging are gaining increasing importance, including in head and neck radiology. The main indications for performing DW imaging in this relatively small but challenging region of the body are tissue characterization, nodal staging, therapy monitoring, and early detection of treatment failure by differentiating recurrence from posttherapeutic changes. Lower apparent diffusion coefficients (ADCs) have been reported in the head and neck region of adults and children for most malignant lesions, as compared with ADCs of benign lesions. For nodal staging, DW imaging has shown promise in helping detect lymph node metastases, even in small (subcentimeter) nodes with lower ADCs, as compared with normal or reactive nodes. Follow-up of early response to treatment is reflected in an ADC increase in the primary tumor and nodal metastases; whereas nonresponding lesions tend to reveal only a slight increase or even a decrease in ADC during follow-up. Optimization and standardization of DW imaging technical parameters, comparison of DW images with morphologic images, and increasing experience, however, are prerequisites for successful application of this challenging technique in the evaluation of various head and neck pathologic conditions.
Collapse
Affiliation(s)
- Harriet C Thoeny
- Department of Radiology, Neuroradiology and Nuclear Medicine, Inselspital, Freiburgstrasse 10, University of Bern, Bern CH-3010, Switzerland.
| | | | | |
Collapse
|
85
|
Savolainen S, Kortesniemi M, Timonen M, Reijonen V, Kuusela L, Uusi-Simola J, Salli E, Koivunoro H, Seppälä T, Lönnroth N, Välimäki P, Hyvönen H, Kotiluoto P, Serén T, Kuronen A, Heikkinen S, Kosunen A, Auterinen I. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences. Phys Med 2012; 29:233-48. [PMID: 22613369 DOI: 10.1016/j.ejmp.2012.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 01/18/2023] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients.
Collapse
|
86
|
Thoeny HC, Forstner R, De Keyzer F. Genitourinary Applications of Diffusion-weighted MR Imaging in the Pelvis. Radiology 2012; 263:326-42. [DOI: 10.1148/radiol.12110446] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
87
|
Reischauer C, Gutzeit A, Vorburger RS, Froehlich JM, Binkert CA, Boesiger P. Optimizing the functional diffusion map using Monte Carlo simulations. J Magn Reson Imaging 2012; 36:1002-9. [PMID: 22550013 DOI: 10.1002/jmri.23690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To optimize the diagnostic accuracy of the functional diffusion map for monitoring tumor treatment response in cancer patients. MATERIALS AND METHODS Using Monte Carlo simulations, measurement precision of the apparent diffusion coefficient (ADC), and particularly accuracy of threshold determination from healthy reference tissue, are evaluated by investigating the repeatability limit of the ADC as a function of different degrees of diffusion weighting of the sequence. Phantom and in-vivo experiments are performed to verify and illustrate the results of the simulations. RESULTS While diagnostic accuracy of the functional diffusion map is hardly diminished by differing values of the T(2) relaxation time in tumor and reference tissue, it is shown to be impaired by differing ADCs, resulting in erroneously determined segmentation thresholds. This problem can be addressed by decreasing the maximum b-factor and increasing the number of signal averages at the maximum b-factor or, alternatively, the number of b-factors while favoring schemes with higher b-factors. Phantom experiments confirm the results of the simulations. In-vivo data are presented to illustrate the effect of sequence optimization on the diagnostic accuracy of the functional diffusion map. CONCLUSION The present work demonstrates that the diagnostic accuracy of the functional diffusion map can be impaired by inaccurate segmentation thresholds and derives means for its optimization that will increase the fidelity of future clinical studies.
Collapse
Affiliation(s)
- Carolin Reischauer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
88
|
Utility of pretreatment mean apparent diffusion coefficient and apparent diffusion coefficient histograms in prediction of outcome to chemoradiation in head and neck squamous cell carcinoma. J Comput Assist Tomogr 2012; 36:131-7. [PMID: 22261783 DOI: 10.1097/rct.0b013e3182405435] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to evaluate pretreatment whole-tumor mean apparent diffusion coefficient (ADC) and ADC histogram as predictors of outcome to chemoradiation in patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Patients with HNSCC underwent pretreatment 3-T diffusion-weighted magnetic resonance imaging with calculation of mean ADC and ADC histograms. Outcomes were determined 2 years after chemoradiation. Positive outcome was defined as no abnormal 18-fluoro deoxy glucose uptake on posttherapy computed tomography-positron emission tomography (or abnormal uptake that was proven benign), no locoregional recurrence or metastatic disease, and no requirement for salvage surgery. Negative outcome was defined as residual abnormal 18-fluoro deoxy glucose avidity that was proven malignant, salvage surgery requirement, locoregional recurrence or metastatic disease, death, or a combination of these. A 2-sample t test was used to compare the mean ADC between patients with positive and negative outcomes. The ADC cut point for dividing the groups was determined by looking at its distribution. A Kaplan-Meier plot was produced, and a log-rank test was conducted with calculation of sensitivity, specificity, and positive and negative predictive values. RESULTS Nine patients showed positive and 8 showed negative outcomes. Significant difference (P = 0.03) was seen in mean ADC (in 10 mm/s) between patients showing positive and negative outcomes (1.18 and 1.43, respectively). According to the log-rank test, tumors with greater than 45% of their volume below the ADC threshold of 1.15 × 10 mm/s were more likely to have a positive outcome (accuracy, 77%). CONCLUSIONS Patients with HNSCC demonstrating lower pretreatment ADC and with greater than 45% of volume below ADC threshold of 1.15 × 10 mm/s may have better outcome to chemoradiation at 2 years.
Collapse
|
89
|
Li SP, Padhani AR. Tumor response assessments with diffusion and perfusion MRI. J Magn Reson Imaging 2012; 35:745-63. [DOI: 10.1002/jmri.22838] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
90
|
Chenevert TL, Galbán CJ, Ivancevic MK, Rohrer SE, Londy FJ, Kwee TC, Meyer CR, Johnson TD, Rehemtulla A, Ross BD. Diffusion coefficient measurement using a temperature-controlled fluid for quality control in multicenter studies. J Magn Reson Imaging 2012; 34:983-7. [PMID: 21928310 DOI: 10.1002/jmri.22363] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To present the use of a quality control ice-water phantom for diffusion-weighted magnetic resonance imaging (DW-MRI). DW-MRI has emerged as an important cancer imaging biomarker candidate for diagnosis and early treatment response assessment. Validating imaging biomarkers through multicenter trials requires calibration and performance testing across sites. MATERIALS AND METHODS The phantom consisted of a center tube filled with distilled water surrounded by ice water. Following preparation of the phantom, ≈30 minutes was allowed to reach thermal equilibrium. DW-MRI data were collected at seven institutions, 20 MRI scanners from three vendors, and two field strengths (1.5 and 3T). The phantom was also scanned on a single system on 16 different days over a 25-day period. All data were transferred to a central processing site at the University of Michigan for analysis. RESULTS Results revealed that the variation of measured apparent diffusion coefficient (ADC) values between all systems tested was ±5%, indicating excellent agreement between systems. Reproducibility of a single system over a 25-day period was also found to be within ±5% ADC values. Overall, the use of an ice-water phantom for assessment of ADC was found to be a reasonable candidate for use in multicenter trials. CONCLUSION The ice-water phantom described here is a practical and universal approach to validate the accuracy of ADC measurements with ever changing MRI sequence and hardware design and can be readily implemented in multicenter clinical trial designs.
Collapse
Affiliation(s)
- Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Tunariu N, Kaye SB, Desouza NM. Functional imaging: what evidence is there for its utility in clinical trials of targeted therapies? Br J Cancer 2012; 106:619-28. [PMID: 22281664 PMCID: PMC3322943 DOI: 10.1038/bjc.2011.579] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Key issues in early clinical trials of targeted agents include the determination of target inhibition, rational patient selection based on pre-treatment tumour characteristics, and assessment of tumour response in the absence of actual shrinkage. There is accumulating evidence that functional imaging using advanced techniques such as dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI), DCE-computerised tomography (CT) and DCE-ultrasound, diffusion weighted-MRI, magnetic resonance spectroscopy and positron emission tomography-CT using various labelled radioactive tracers has the potential to address all three. This article reviews this evidence with examples from trials using targeted agents with established clinical efficacy and summarises the clinical utility of the various techniques. We therefore recommend that input from specialist radiologists is sought at the early stages of trial design, in order to ensure that functional imaging is incorporated appropriately for the agent under study. There is an urgent need to strengthen the evidence base for these techniques as they evolve, and to ensure standardisation of the methodology.
Collapse
Affiliation(s)
- N Tunariu
- Section of Clinical Magnetic Resonance, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK.
| | | | | |
Collapse
|
92
|
Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2012; 261:700-18. [PMID: 22095994 DOI: 10.1148/radiol.11110474] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diffusion-weighted (DW) magnetic resonance (MR) imaging is emerging as a powerful clinical tool for directing the care of patients with cancer. Whole-body DW imaging is almost at the stage where it can enter widespread clinical investigations, because the technology is stable and protocols can be implemented for the majority of modern MR imaging systems. There is a continued need for further improvements in data acquisition and analysis and in display technologies. Priority areas for clinical research include clarification of histologic relationships between tissues of interest and DW MR imaging biomarkers at diagnosis and during therapy response. Because whole-body DW imaging excels at bone marrow assessments at diagnosis and for therapy response, it can potentially address a number of unmet clinical and pharmaceutical requirements. There are compelling needs to document and understand how common and novel treatments affect whole-body DW imaging results and to establish response criteria that can be tested in prospective clinical studies that incorporate measures of patient benefit.
Collapse
Affiliation(s)
- Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex HA6 2RN, England.
| | | | | |
Collapse
|
93
|
Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC. Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer 2012; 48:425-31. [PMID: 22226479 DOI: 10.1016/j.ejca.2011.11.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/27/2011] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging (MRI) can be made sensitive to diffusion of water molecules in biological tissues: this phenomenon can be quantitated to provide a biomarker, the apparent diffusion coefficient (ADC). Over the past decade, evidence has accumulated from numerous clinical and animal studies that ADC is abnormal in tumours; that elevated ADC reflects an elevated non-cellular fraction; and that acute increases in ADC following therapy can indicate that tumour cells have been killed. However there remain substantial challenges in ensuring robust and valid ADC measurements, particularly in multicentre studies in common sites of metastasis such as lung and liver. Moreover, there is uncertainty about how best to select the timing of observation post-therapy to avoid false-negatives, and how to minimise the confounding factors which could decouple drug-induced ADC increase from drug-induced cell kill. In this review we summarise the physical basis of the biomarker, the evidence that it reflects non-viable fraction, particularly in extracranial tumours, and suggest a roadmap for validation and qualification.
Collapse
Affiliation(s)
- Ralph Sinkus
- Centre de Recherche Biomédicale Bichat Beaujon, Beaujon Hospital, Clichy, France.
| | | | | | | | | |
Collapse
|
94
|
Srinivasan A, Mohan S, Mukherji SK. Biologic imaging of head and neck cancer: the present and the future. AJNR Am J Neuroradiol 2011; 33:586-94. [PMID: 22194364 DOI: 10.3174/ajnr.a2535] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While anatomic imaging (CT and MR imaging) of HNC is focused on diagnosing and/or characterizing the disease, defining its local extent, and evaluating distant spread, accurate assessment of the biologic status of the cancer (cellularity, growth rate, response to nonsurgical chemoradiation therapy, and so forth) can be invaluable for prognostication, planning therapy, and follow-up of lesions after therapy. The combination of anatomic and biologic imaging techniques can thus provide a more comprehensive evaluation of the patient. The purpose of this work was to review the present and future clinical applications of advanced biologic imaging techniques in HNC evaluation and management. As part of the biologic imaging array, we discuss MR spectroscopy, diffusion and perfusion MR imaging, CTP, and FDG-PET scanning and conclude with exciting developments that hold promise in assessment of tumor hypoxia and neoangiogenesis.
Collapse
Affiliation(s)
- A Srinivasan
- Department of Radiology, Division of Neuroradiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
95
|
Head and neck cancer as a model for advances in imaging prognosis, early assessment, and posttherapy evaluation. Cancer J 2011; 17:159-65. [PMID: 21610469 DOI: 10.1097/ppo.0b013e31821e8a09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel noninvasive functional imaging methods are necessary to predict therapeutic outcome and thereby improve the ability to properly select patients for treatment with both conventional and targeted therapies, to better evaluate therapeutic effectiveness during the early phases of treatment, and to enhance a priori risk assessment for treatment induced toxicity. Functional metabolic imaging typically involves pretreatment baseline magnetic resonance imaging (MRI) and/or positron emission tomographic (PET) scans and performance of subsequent scans during and/or after treatment. Imaging parameter changes are routinely attributed to the intervening therapy and clinical outcomes subsequently correlated with these changes. The physiologic parameter(s) that best correlate with clinical outcome and the relative utility of MRI versus PET are unknown, however. Furthermore, tumor vascular physiology and metabolic parameters are heterogeneous and dynamic processes. Large daily fluctuations often occur in the absence of treatment. The magnitude of this temporal variability is not established for MRI or for PET. Routine and meaningful clinical application of functional imaging requires understanding and quantification of the intrinsic variability of the underlying biologic processes and a demonstration that treatment-induced changes exceed intrinsic temporal variation.
Collapse
|
96
|
Kato H, Kanematsu M, Toida M, Kawaguchi T, Shibata T, Kajita K, Hoshi H. Salivary gland function evaluated by diffusion-weighted MR imaging with gustatory stimulation: Preliminary results. J Magn Reson Imaging 2011; 34:904-9. [DOI: 10.1002/jmri.22729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/30/2011] [Indexed: 11/06/2022] Open
|
97
|
Applications of molecular imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 95:237-98. [PMID: 21075334 DOI: 10.1016/b978-0-12-385071-3.00009-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response, and new therapy development is steadily growing and has already significantly impacted on clinical management of cancer. In this chapter, we overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging), (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g., single-photon emission computed tomography (SPECT) and positron emission tomography (PET)). We review the use of molecular reporters of biological processes (e.g., apoptosis and protein kinase activity) for high-throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology.
Collapse
|
98
|
Feasibility of diffusion weighted MR imaging in differentiating recurrent laryngeal carcinoma from radionecrosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2011. [DOI: 10.1016/j.ejrnm.2011.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
99
|
Galbán CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, Hamstra DA, Junck L, Sundgren PC, Johnson TD, Galbán S, Sebolt-Leopold JS, Rehemtulla A, Ross BD. Prospective analysis of parametric response map-derived MRI biomarkers: identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin Cancer Res 2011; 17:4751-60. [PMID: 21527563 DOI: 10.1158/1078-0432.ccr-10-2098] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Currently, radiologic response of brain tumors is assessed according to the Macdonald criteria 10 weeks from the start of therapy. There exists a critical need to identify nonresponding patients early in the course of their therapy for consideration of alternative treatment strategies. Our study assessed the effectiveness of the parametric response map (PRM) imaging biomarker to provide for an earlier measure of patient survival prediction. EXPERIMENTAL DESIGN Forty-five high-grade glioma patients received concurrent chemoradiation. Quantitative MRI including apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps were acquired pretreatment and 3 weeks midtreatment on a prospective institutional-approved study. PRM, a voxel-by-voxel image analysis method, was evaluated as an early prognostic biomarker of overall survival. Clinical and conventional MR parameters were also evaluated. RESULTS Multivariate analysis showed that PRM(ADC+) in combination with PRM(rCBV-) obtained at week 3 had a stronger correlation to 1-year and overall survival rates than any baseline clinical or treatment response imaging metric. The composite biomarker identified three distinct patient groups, nonresponders [median survival (MS) of 5.5 months, 95% CI: 4.4-6.6 months], partial responders (MS of 16 months, 95% CI: 8.6-23.4 months), and responders (MS has not yet been reached). CONCLUSIONS Inclusion of PRM(ADC+) and PRM(rCBV-) into a single imaging biomarker metric provided early identification of patients resistant to standard chemoradiation. In comparison to the current standard of assessment of response at 10 weeks (Macdonald criteria), the composite PRM biomarker potentially provides a useful opportunity for clinicians to identify patients who may benefit from alternative treatment strategies.
Collapse
Affiliation(s)
- Craig J Galbán
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
|