51
|
Gardiner EJ, Cairns MJ, Liu B, Beveridge NJ, Carr V, Kelly B, Scott RJ, Tooney PA. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res 2013; 47:425-37. [PMID: 23218666 PMCID: PMC7094548 DOI: 10.1016/j.jpsychires.2012.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 01/13/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology.
Collapse
Affiliation(s)
- Erin J. Gardiner
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- The Priority Research Centre for Translational Neuroscience and Mental Health and the Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray J. Cairns
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- The Priority Research Centre for Translational Neuroscience and Mental Health and the Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Bing Liu
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- The Priority Research Centre for Translational Neuroscience and Mental Health and the Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Natalie J. Beveridge
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- The Priority Research Centre for Translational Neuroscience and Mental Health and the Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vaughan Carr
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Brian Kelly
- School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- The Priority Research Centre for Translational Neuroscience and Mental Health and the Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rodney J. Scott
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- The Priority Research Centre for Translational Neuroscience and Mental Health and the Hunter Medical Research Institute, Newcastle, NSW, Australia
- Hunter Area Pathology Service, Newcastle, NSW, Australia
| | - Paul A. Tooney
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- School of Medicine and Public Health, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
52
|
Rusiecki JA, Byrne C, Galdzicki Z, Srikantan V, Chen L, Poulin M, Yan L, Baccarelli A. PTSD and DNA Methylation in Select Immune Function Gene Promoter Regions: A Repeated Measures Case-Control Study of U.S. Military Service Members. Front Psychiatry 2013; 4:56. [PMID: 23805108 PMCID: PMC3690381 DOI: 10.3389/fpsyt.2013.00056] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/02/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The underlying molecular mechanisms of PTSD are largely unknown. Distinct expression signatures for PTSD have been found, in particular for immune activation transcripts. DNA methylation may be significant in the pathophysiology of PTSD, since the process is intrinsically linked to gene expression. We evaluated temporal changes in DNA methylation in select promoter regions of immune system-related genes in U.S. military service members with a PTSD diagnosis, pre- and post-diagnosis, and in controls. METHODS Cases (n = 75) had a post-deployment diagnosis of PTSD in their medical record. Controls (n = 75) were randomly selected service members with no PTSD diagnosis. DNA was extracted from pre- and post-deployment sera. DNA methylation (%5-mC) was quantified at specific CpG sites in promoter regions of insulin-like growth factor 2 (IGF2), long non-coding RNA transcript H19, interleukin-8 (IL8), IL16, and IL18 via pyrosequencing. We used multivariate analysis of variance and generalized linear models to calculate adjusted means (adjusted for age, gender, and race) to make temporal comparisons of %5-mC for cases (pre- to post-deployment) versus controls (pre- to post-deployment). RESULTS There were significant differences in the change of %5-mC pre- to post-deployment between cases and controls for H19 (cases: +0.57%, controls: -1.97%; p = 0.04) and IL18 (cases: +1.39%, controls: -3.83%; p = 0.01). For H19 the difference was driven by a significant reduction in %5-mC among controls; for IL18 the difference was driven by both a reduction in %5-mC among controls and an increase in %5-mC among cases. Stratified analyses revealed more pronounced differences in the adjusted means of pre-post H19 and IL18 methylation differences for cases versus controls among older service members, males, service members of white race, and those with shorter deployments (6-12 months). CONCLUSION In the study of deployed personnel, those who did not develop PTSD had reduced %5-mC levels of H19 and IL18 after deployment, while those who did develop PTSD had increased levels of IL18. Additionally, pre-deployment the people who later became cases had lower levels of IL18 %5-mC compared with controls. These findings are preliminary and should be investigated in larger studies.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine, School of Medicine, Uniformed Services University , Bethesda, MD , USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
PEREZ-RIVAS LUISG, JEREZ JOSEM, FERNANDEZ-DE SOUSA CRISTINAE, DE LUQUE VANESSA, QUERO CRISTINA, PAJARES BELLA, FRANCO LEONARDO, SANCHEZ-MUÑOZ ALFONSO, RIBELLES NURIA, ALBA EMILIO. Serum protein levels following surgery in breast cancer patients: A protein microarray approach. Int J Oncol 2012; 41:2200-6. [DOI: 10.3892/ijo.2012.1667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/30/2012] [Indexed: 11/05/2022] Open
|
54
|
Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends Mol Med 2012; 18:494-501. [PMID: 22818027 DOI: 10.1016/j.molmed.2012.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|
55
|
How do cytokines trigger genomic instability? J Biomed Biotechnol 2012; 2012:536761. [PMID: 22754280 PMCID: PMC3382994 DOI: 10.1155/2012/536761] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/08/2012] [Indexed: 01/05/2023] Open
Abstract
Inflammation is a double-edged sword presenting a dual effect on cancer development, from one hand promoting tumor initiation and progression and from the other hand protecting against cancer through immunosurveillance mechanisms. Cytokines are crucial components of inflammation, participating in the interaction between the cells of tumor microenvironment. A comprehensive study of the role of cytokines in the context of the inflammation-tumorigenesis interplay helps us to shed light in the pathogenesis of cancer. In this paper we focus on the role of cytokines in the development of genomic instability, an evolving hallmark of cancer.
Collapse
|
56
|
Lin PC, Liu TC, Chang CC, Chen YH, Chang JG. High-resolution melting (HRM) analysis for the detection of single nucleotide polymorphisms in microRNA target sites. Clin Chim Acta 2012; 413:1092-7. [PMID: 22445829 DOI: 10.1016/j.cca.2012.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND The function of microRNAs (miRNAs) depends on the binding of miRNAs to their target sequences in the 3'UTR of messenger RNAs (mRNAs), which enhances the degradation of mRNAs and consequently, represses their expression. Single nucleotide polymorphisms (SNPs) in the miRNA target sequences may affect or impair the binding of miRNAs. Studies have shown that SNPs in miRNA target sites (miR-TS-SNPs) have a great influence on diverse biological functions, including pharmacogenomics and disease susceptibilities in human. METHODS High-resolution melting (HRM) analysis was applied for investigating the allele frequencies of 3 miR-TS-SNPs (PLA2G2A, IL-16, and NOD2) in acute leukemia. We also compared the genotypes of acute lymphoblastic leukemia patients at initial diagnosis and complete remission. RESULTS HRM analysis revealed 3 genotypes (both homozygous and heterozygous) in the 3 miR-TS-SNPs. The allele frequencies of all 3 miR-TS-SNPs were similar in normal individuals and patients with acute myelogenous leukemia. Most patients with acute lymphoblastic leukemia had the same genotypes at initial diagnosis and complete remission. CONCLUSIONS Large scale scanning of case-control studies for miR-TS-SNPs may contribute to the investigation of their roles and pathogenesis mechanisms in human diseases. Our study showed that HRM analysis can be an efficient tool for studies of miR-TS-SNPs.
Collapse
Affiliation(s)
- Pei-Chin Lin
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | |
Collapse
|
57
|
Curiel-Lewandrowski C, Yamasaki H, Si CP, Jin X, Zhang Y, Richmond J, Tuzova M, Wilson K, Sullivan B, Jones D, Ryzhenko N, Little F, Kupper TS, Center DM, Cruikshank WW. Loss of nuclear pro-IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma. J Clin Invest 2011; 121:4838-49. [PMID: 22080865 DOI: 10.1172/jci41769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 09/21/2011] [Indexed: 02/03/2023] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin lymphomas that affect the skin. The pathogenesis of these conditions is poorly understood. For example, the signaling mechanisms contributing to the dysregulated growth of the neoplastic T cells are not well defined. Here, we demonstrate that loss of nuclear localization of pro-IL-16 facilitates CTCL cell proliferation by causing a decrease in expression of the cyclin dependent-kinase inhibitor p27Kip1. The decrease in p27Kip1 expression was directly attributable to an increase in expression of S-phase kinase-associated protein 2 (Skp2). Regulation of Skp2 is in part attributed to the nuclear presence of the scaffold protein pro-IL-16. T cells isolated from 11 patients with advanced CTCL, but not those from healthy controls or patients with T cell acute lymphocytic leukemia (T-ALL), demonstrated reduction in nuclear pro-IL-16 levels. Sequence analysis identified the presence of mutations in the 5' end of the PDZ1 region of pro-IL-16, a domain required for association of pro-IL-16 with the nuclear chaperone HSC70 (also known as HSPA8). HSC70 knockdown led to loss of nuclear translocation by pro-IL-16 and subsequent increases in Skp2 levels and decreases in p27Kip1 levels, which ultimately enhanced T cell proliferation. Thus, our data indicate that advanced CTCL cell growth is facilitated, at least in part, by mutations in the scaffold protein pro-IL-16, which directly regulates Skp2 synthesis.
Collapse
Affiliation(s)
- Clara Curiel-Lewandrowski
- Department of Dermatology, Cutaneous Oncology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 2011; 21:1074-86. [PMID: 21628449 PMCID: PMC3129250 DOI: 10.1101/gr.118703.110] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/15/2011] [Indexed: 12/26/2022]
Abstract
Human and mouse genomes contain a similar number of CpG islands (CGIs), which are discrete CpG-rich DNA sequences associated with transcription start sites. In both species, ∼50% of all CGIs are remote from annotated promoters but, nevertheless, often have promoter-like features. To determine the role of CGI methylation in cell differentiation, we analyzed DNA methylation at a comprehensive CGI set in cells of the mouse hematopoietic lineage. Using a method that potentially detects ∼33% of genomic CpGs in the methylated state, we found that large differences in gene expression were accompanied by surprisingly few DNA methylation changes. There were, however, many DNA methylation differences between hematopoietic cells and a distantly related tissue, brain. Altered DNA methylation in the immune system occurred predominantly at CGIs within gene bodies, which have the properties of cell type-restricted promoters, but infrequently at annotated gene promoters or CGI flanking sequences (CGI "shores"). Unexpectedly, elevated intragenic CGI methylation correlated with silencing of the associated gene. Differentially methylated intragenic CGIs tended to lack H3K4me3 and associate with a transcriptionally repressive environment regardless of methylation state. Our results indicate that DNA methylation changes play a relatively minor role in the late stages of differentiation and suggest that intragenic CGIs represent regulatory sites of differential gene expression during the early stages of lineage specification.
Collapse
Affiliation(s)
- Aimée M. Deaton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Alastair R.W. Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Robert S. Illingworth
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Robert Andrews
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
59
|
Yadav S, Shi Y, Wang H. IL-16 effects on A549 lung epithelial cells: dependence on CD9 as an IL-16 receptor? J Immunotoxicol 2011; 7:183-93. [PMID: 20307249 DOI: 10.3109/15476911003649346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin-16 (IL-16) is a pro-inflammatory cytokine released by many types of cells found in the lungs, including normal airway and alveolar epithelial cells. Though a chemotactin for CD4(+) cells and eosinophils, IL-16 also modulates their production of factors that influence inflammatory lung diseases, e.g., asthma and allergic rhinitis. To date, little is known about any potential autocrine-like regulatory effects of IL-16. Using a model human alveolar basal epithelial A549 cell line, the present study sought to assess lung epithelial cell responses to IL-16. Potential induced effects on cell growth/function were assessed using MTT reduction, lactate dehydrogenase release, and 5-bromo-2-deoxyuridine incorporation assays. As IL-16 (at locally high levels) can induce CD4(+) cell death via apoptosis, this potential outcome among the A549 cells was also evaluated using TUNEL and changes in expression of caspase-3 and the pro-apoptotic and anti-apoptotic proteins of Bcl-2 family. The data here indicated that IL-16 inhibited A549 cell growth/function and this was associated with a marked increase in apoptosis characterized by DNA fragmentation, activation of caspase-3, and altered pro-apoptotic protein expression. Since lung epithelial cells lack the CD4 that may bind IL-16, it has been suggested that CD9 may act as an alternate receptor for this cytokine (i.e., an IL-16R). Thus, these studies also sought to determine the extent of CD9 expression on A549 cells and if any/all observed IL-16-induced changes were mediated by CD9. Flow cytometric analyses revealed the cells to be CD9(+)CD4(-). However, neutralization of the purported IL-16R with anti-CD9 antibody could not block the cytotoxic/growth inhibiting effects of IL-16. The only exception appeared to be a mitigation of a chemotactic effect of IL-16; however, studies with an equal amount of non-specific antibody (of same isotype as the anti-CD9) revealed this effect to be artefactual. The neutralization study results thus suggest to us that as-yet undefined pathway(s) exist through which IL-16 may act to exert growth inhibiting/apoptosis-inducing effects on A549 cells, a cell line routinely used as a model for lung epithelial cells.
Collapse
Affiliation(s)
- Santosh Yadav
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University New Orleans, LA, USA
| | | | | |
Collapse
|
60
|
IL-16 promotes T. whipplei replication by inhibiting phagosome conversion and modulating macrophage activation. PLoS One 2010; 5:e13561. [PMID: 21042409 PMCID: PMC2958842 DOI: 10.1371/journal.pone.0013561] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/28/2010] [Indexed: 12/18/2022] Open
Abstract
The replication of Tropheryma whipplei (the agent of Whipple's disease) within human macrophages is associated with the expression of IL-16, a cytokine known for its chemotactic and inflammatory properties. In this study, we asked whether IL-16 acts on T. whipplei replication by interfering with the endocytic pathway. We observed that in macrophages, T. whipplei was located within late phagosomes that were unable to fuse with lysosomes; in monocytes, T. whipplei was eliminated in phagolysosomes. Moreover, adding IL-16 to monocytes induced bacterial replication and inhibited phagolysosome formation. On the other hand, blocking IL-16 activity, either with anti-IL-16 antibodies in human macrophages or by using murine IL-16(-/-) bone marrow-derived macrophages, inhibited T. whipplei replication and rescued phagolysosome biogenesis. Furthermore, we propose that IL-16-mediated interference with the endocytic pathway is likely related to macrophage activation. First, IFNγ induced T. whipplei elimination and phagolysosome formation and inhibited IL-16 production by macrophages. Second, the full transcriptional response of murine macrophages to T. whipplei showed that T. whipplei specifically modulated the expression of 231 probes in IL-16(-/-) macrophages. Gene Ontology analysis revealed that 10 of 13 over-represented terms were linked to immune responses, including proinflammatory transcriptional factors of the NF-κB family. Our results demonstrated a previously unreported function for IL-16 in promoting bacterial replication through inhibited phagolysosome biogenesis and modulated macrophage activation program.
Collapse
|