51
|
Gomez IG, Roach AM, Nakagawa N, Amatucci A, Johnson BG, Dunn K, Kelly MC, Karaca G, Zheng TS, Szak S, Peppiatt-Wildman CM, Burkly LC, Duffield JS. TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression of Fibrotic Kidney Disease. J Am Soc Nephrol 2016; 27:3639-3652. [PMID: 27026366 DOI: 10.1681/asn.2015111227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.
Collapse
Affiliation(s)
- Ivan G Gomez
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Allie M Roach
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Naoki Nakagawa
- Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Aldo Amatucci
- Research & Development, Biogen, Cambridge, Massachusetts
| | - Bryce G Johnson
- Research & Development, Biogen, Cambridge, Massachusetts.,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| | - Kadeshia Dunn
- Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
| | - Mark C Kelly
- Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
| | - Gamze Karaca
- Research & Development, Biogen, Cambridge, Massachusetts
| | | | - Suzanne Szak
- Research & Development, Biogen, Cambridge, Massachusetts
| | | | - Linda C Burkly
- Research & Development, Biogen, Cambridge, Massachusetts;
| | - Jeremy S Duffield
- Research & Development, Biogen, Cambridge, Massachusetts; .,Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
52
|
Eph/ephrin signaling in the kidney and lower urinary tract. Pediatr Nephrol 2016; 31:359-71. [PMID: 25903642 DOI: 10.1007/s00467-015-3112-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Development and homeostasis of the highly specialized cell types and tissues that constitute the organs of the urinary system, the kidneys and ureters, the bladder, and the urethra, require the tightly regulated exchange of signals in and between these tissues. Eph/ephrin signaling is a bidirectional signaling pathway that has been functionally implicated in many developmental and homeostatic contexts, most prominently in the vascular and neural system. Expression and knockout analyses have now provided evidence that Eph/ephrin signaling is of crucial relevance for cell and tissue interactions in the urinary system as well. A clear requirement has emerged in the formation of the vesicoureteric junction, in urorectal septation and glomerulogenesis during embryonic development, in maintenance of medullary tubular cells and podocytes in homeostasis, and in podocyte and glomerular injury responses. Deregulation of Eph/ephrin signaling may also contribute to the formation and progression of tumors in the urinary system, most prominently bladder and renal cell carcinoma. While in the embryonic contexts Eph/ephrin signaling regulates adhesion of epithelial cells, in the adult setting, cell-shape changes and cell survival seem to be the primary cellular processes mediated by this signaling module. With progression of the genetic analyses of mice conditionally mutant for compound alleles of Eph receptor and ephrin ligand genes, additional essential functions are likely to arise in the urinary system.
Collapse
|
53
|
Chen X, Wei SY, Li JS, Zhang QF, Wang YX, Zhao SL, Yu J, Wang C, Qin Y, Wei QJ, Lv GX, Li B. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction. PLoS One 2016; 11:e0147084. [PMID: 26765329 PMCID: PMC4713170 DOI: 10.1371/journal.pone.0147084] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 12/27/2015] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1) is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG) mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO) model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT) mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi-Yao Wei
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian-Si Li
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Fang Zhang
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Xiao Wang
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi-Lei Zhao
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Yu
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Wang
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Qin
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiu-Ju Wei
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gui-Xiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- * E-mail: (BL); (G-XL)
| | - Bing Li
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (BL); (G-XL)
| |
Collapse
|
54
|
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 2015; 35:96-107. [PMID: 25795503 DOI: 10.1016/j.semnephrol.2015.01.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kidney is comprised of heterogeneous cell populations that function together to perform a number of tightly controlled, complex and interdependent processes. Renal endothelial cells contribute to vascular tone, regulation of blood flow to local tissue beds, modulation of coagulation and inflammation, and vascular permeability. Both ischemia and sepsis have profound effects on the renal endothelium, resulting in microvascular dysregulation resulting in continued ischemia and further injury. In recent years, the concept of the vascular endothelium as an organ that is both the source of and target for inflammatory injury has become widely appreciated. Here we revisit the renal endothelium in the light of ever evolving molecular advances.
Collapse
Affiliation(s)
- Sudhanshu Kumar Verma
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN.
| |
Collapse
|
55
|
Ligresti G, Nagao RJ, Xue J, Choi YJ, Xu J, Ren S, Aburatani T, Anderson SK, MacDonald JW, Bammler TK, Schwartz SM, Muczynski KA, Duffield JS, Himmelfarb J, Zheng Y. A Novel Three-Dimensional Human Peritubular Microvascular System. J Am Soc Nephrol 2015; 27:2370-81. [PMID: 26657868 DOI: 10.1681/asn.2015070747] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Human kidney peritubular capillaries are particularly susceptible to injury, resulting in dysregulated angiogenesis, capillary rarefaction and regression, and progressive loss of kidney function. However, little is known about the structure and function of human kidney microvasculature. Here, we isolated, purified, and characterized human kidney peritubular microvascular endothelial cells (HKMECs) and reconstituted a three-dimensional human kidney microvasculature in a flow-directed microphysiologic system. By combining epithelial cell depletion and cell culture in media with high concentrations of vascular endothelial growth factor, we obtained HKMECs of high purity in large quantity. Unlike other endothelial cells, isolated HKMECs depended on high vascular endothelial growth factor concentration for survival and growth and exhibited high tubulogenic but low angiogenic potential. Furthermore, HKMECs had a different transcriptional profile. Under flow, HKMECs formed a thin fenestrated endothelium with a functional permeability barrier. In conclusion, this three-dimensional HKMEC-specific microphysiologic system recapitulates human kidney microvascular structure and function and shows phenotypic characteristics different from those of other microvascular endothelial cells.
Collapse
Affiliation(s)
| | | | - Jun Xue
- Departments of Bioengineering
| | | | - Jin Xu
- Departments of Bioengineering
| | | | | | | | | | | | | | | | | | | | - Ying Zheng
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
56
|
Chen CL, Chou KJ, Fang HC, Hsu CY, Huang WC, Huang CW, Huang CK, Chen HY, Lee PT. Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition. Stem Cell Res Ther 2015; 6:239. [PMID: 26631265 PMCID: PMC4668678 DOI: 10.1186/s13287-015-0241-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/09/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Pathophysiological changes associated with chronic kidney disease impair angiogenic processes and increase renal fibrosis. Progenitor-like cells derived from adult kidney have been previously used to promote regeneration in acute kidney injury, even though it remained unclear whether the cells could be beneficial in chronic kidney disease (CKD). Methods In this study, we established a CKD model by five-sixths nephrectomy and mouse kidney progenitor-like cells (MKPCs) were intravenously administered weekly for 5 weeks after establishing CKD. We examined the impact of MKPCs on the progression of renal fibrosis and the potential of MKPCs to preserve the angiogenic process and prevent endothelial mesenchymal transition in vivo and in vitro. Results Our results demonstrate that the MKPCs delayed interstitial fibrosis and the progression of glomerular sclerosis and ameliorated the decline of kidney function. At 17 weeks, the treated mice exhibited lower blood pressures, higher hematocrit levels, and larger kidney sizes than the control mice. In addition, the MKPC treatment prolonged the survival of the mice with chronic kidney injuries. We observed a decreased recruitment of macrophages and myofibroblasts in the interstitium and the increased tubular proliferation. Notably, MKPC both decreased the level of vascular rarefaction and prevented endothelial mesenchymal transition (EndoMT) in the remnant kidneys. Moreover, the conditioned medium from the MKPCs ameliorated endothelial cell death under hypoxic culture conditions and prevented TGF-β-induced EndoMT through downregulation of phosphorylated Smad 3 in vitro. Conclusions MKPCs may be a beneficial treatment for kidney diseases characterized by progressive renal fibrosis. The enhanced preservation of angiogenic processes following MKPC injections may be associated with decreased fibrosis in the remnant kidney. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell-based therapeutic strategies for regenerative medicine in renal fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0241-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C L Chen
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - K J Chou
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - H C Fang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - C Y Hsu
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - W C Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - C W Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - C K Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - H Y Chen
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| | - P T Lee
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang-Ming University, 386 Ta-Chung 1st Rd, Kaohsiung, 813, Taiwan.
| |
Collapse
|
57
|
Abstract
Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Collapse
|
58
|
Humphreys BD, Cantaluppi V, Portilla D, Singbartl K, Yang L, Rosner MH, Kellum JA, Ronco C. Targeting Endogenous Repair Pathways after AKI. J Am Soc Nephrol 2015; 27:990-8. [PMID: 26582401 DOI: 10.1681/asn.2015030286] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKI remains a highly prevalent disease associated with poor short- and long-term outcomes and high costs. Although significant advances in our understanding of repair after AKI have been made over the last 5 years, this knowledge has not yet been translated into new AKI therapies. A consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 and reviewed new evidence on successful kidney repair to identify the most promising pathways that could be translated into new treatments. In this paper, we provide a summary of current knowledge regarding successful kidney repair and offer a framework for conceptualizing the therapeutic targeting that may facilitate this process. We outline gaps in knowledge and suggest a research agenda to more efficiently bring new discoveries regarding repair after AKI to the clinic.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Vincenzo Cantaluppi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza 'Molinette,' Turin, Italy
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kai Singbartl
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China; and
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
59
|
Pitulescu ME, Adams RH. Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adh Migr 2015; 8:366-77. [PMID: 25482636 DOI: 10.4161/19336918.2014.970010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.
Collapse
Key Words
- Ang, angiopoietin
- CHC, clathrin heavy chains
- CLASP, clathrin-associated-sorting protein
- CV, cardinal vein
- DA, dorsal aorta
- EC, endothelial cell
- EEA1, early antigen 1
- Eph
- Ephrin-B2ΔV, ephrin-B2 deletion of C-terminal PDZ binding motif
- HSPG, heparan sulfate proteoglycan
- JNK, c-Jun N-terminal kinase
- LEC, lymphatic endothelial cells
- LRP1, Low density lipoprotein receptor-related protein 1
- MVB, multivesicular body
- NRP, neuropilin
- PC, pericytes
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PTC, peritubular capillary
- PlGF, placental growth factor
- RTK, receptor tyrosine kinase
- VEGF, Vascular endothelial growth factor
- VEGFR, Vascular endothelial growth factor receptor
- VSMC, vascular smooth muscle cells.
- aPKC, atypical protein kinase C
- endocytosis
- endothelial cells
- ephrin
- mural cells
- receptor
Collapse
Affiliation(s)
- Mara E Pitulescu
- a Department of Tissue Morphogenesis; Max Planck Institute for Molecular Biomedicine; and Faculty of Medicine , University of Münster ; Münster , Germany
| | | |
Collapse
|
60
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 505] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
61
|
microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clin Sci (Lond) 2015; 128:775-88. [PMID: 25881669 DOI: 10.1042/cs20140733] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
miRNAs are regulators of gene expression in diverse biological and pathological courses in life. Their discovery may be considered one of the most important steps in the story of modern biology. miRNAs are packed within exosomes and released by cells for cellular communications; they are present in bodily fluids. Their study opens the way for understanding the pathogenetic mechanisms of many diseases; furthermore, as potential candidate biomarkers, they can be measured in bodily fluids for non-invasive monitoring of disease outcomes. The present review highlights recent advances in the role of miRNAs in the pathogenesis of primary and secondary glomerulonephritides such as IgA nephropathy, focal segmental glomerular sclerosis, lupus nephritis and diabetic nephropathy. The identification of reciprocal expression of miRNAs and their target genes provides the molecular basis for additional information on the pathogenetic mechanisms of kidney diseases. Finally, recent findings demonstrate that miRNAs can be considered as potential targets for novel drugs.
Collapse
|
62
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
63
|
Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2015; 14:3-14. [PMID: 25088124 DOI: 10.2174/1871529x1401140724093505] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 01/11/2023]
Abstract
Acute kidney injury is associated with alterations in vascular tone that contribute to an overall reduction in GFR. Studies in animal models indicate that ischemia triggers alterations in endothelial function that contribute significantly to the overall degree and severity of a kidney injury. Putative mediators of vasoconstriction that may contribute to the initial loss of renal blood flow and GFR are highlighted. In addition, there is discussion of how intrinsic damage to the endothelium impairs homeostatic responses in vascular tone as well as promotes leukocyte adhesion and exacerbating the reduction in renal blood flow. The timing of potential therapies in animal models as they relate to the evolution of AKI, as well as the limitations of such approaches in the clinical setting are discussed. Finally, we discuss how acute kidney injury induces permanent alterations in renal vascular structure. We posit that the cause of the sustained impairment in kidney capillary density results from impaired endothelial growth responses and suggest that this limitation is a primary contributing feature underlying progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Mervin C Yoder
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Med Sci 334, Indianapolis, IN 46202, USA.
| |
Collapse
|
64
|
Abstract
A number of genes involved in kidney development are reactivated in the adult after acute kidney injury (AKI). This has led to the belief that tissue repair mechanisms recapitulate pathways involved in embryonic development after AKI. We will discuss evidence to support this hypothesis by comparing the mechanisms of development with common pathways known to regulate post-AKI repair, or that we identified as cell-specific candidates based on public datasets from recent AKI translational profiling studies. We will argue that while many of these developmental pathways are reactivated after AKI, this is not associated with general cellular reprogramming to an embryonic state. We will show that reactivation of these developmental genes is often associated with expression in cells that are not normally involved in mediating parallel responses in the embryo, and that depending on the cellular context, these responses can have beneficial or detrimental effects on injury and repair after AKI.
Collapse
|
65
|
Cui R, Chen X, Peng L, Ma J, Zhu D, Li T, Wei Q, Li B. Multiple Mechanisms in Renal Artery Stenosis-Induced Renal Interstitial Fibrosis. ACTA ACUST UNITED AC 2014; 128:57-66. [DOI: 10.1159/000366481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
|
66
|
Gomez IG, Duffield JS. The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int Suppl (2011) 2014; 4:26-33. [PMID: 26312147 PMCID: PMC4536957 DOI: 10.1038/kisup.2014.6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies have identified a poorly appreciated yet extensive population of perivascular mesenchymal cells in the kidney, which are derived from metanephric mesenchyme progenitor cells during nephrogenesis at which time they express the transcription factor FOXD1. Some studies have called these resident fibroblasts, whereas others have called them pericytes. Regardless of nomenclature, many are partially integrated into the capillary basement membrane and contribute in important ways to the homeostasis of peritubular capillaries. Fate-mapping studies using conditional CreER recombinase-mediated tracing of discrete cell cohorts have identified these pericytes and resident fibroblasts as the major precursor population of interstitial myofibroblasts in animal models of kidney disease. Here, we will review the evidence that they are the major population of myofibroblast precursors, highlight some critical functions in homeostasis, and focus on the cell signaling pathways that are important to their differentiation into, and persistence as myofibroblasts.
Collapse
Affiliation(s)
- Ivan G Gomez
- Departments of Medicine and Pathology, University of Washington , Seattle, Washington, USA
| | - Jeremy S Duffield
- Departments of Medicine and Pathology, University of Washington , Seattle, Washington, USA ; Biogen Idec , Cambridge, Massachusetts, USA
| |
Collapse
|
67
|
Abstract
Chronic kidney disease (CKD) is placing an increasing burden on patients and societies because no decisive therapy has been established. Tubulointerstitial lesions accompanied by fibrosis, inflammatory cells, and capillary rarefaction not only characterize, but also aggravate renal dysfunction in CKD. In this setting, renal cells, particularly tubular cells, suffer from hypoxia caused by the imbalance of blood perfusion and oxygen demand despite their adaptive responses represented by upregulation of hypoxia-inducible factors (HIFs). Fibrosis is a pathological state characterized by excess extracellular matrix (ECM) deposition, which is also a hallmark and causative factor of many chronic diseases including CKD. Recent studies have suggested that the dominant origin of ECM-producing myofibroblasts (MFs) may be pericytes, which are indispensable cells for maintaining proper capillary functions, as they wrap capillaries and stabilize them through a fine-tuned interplay with endothelial cells. During fibrosis, pericytes are activated and detach from capillaries before conversion into MFs, which compromises capillaries and worsens hypoxia. We also discuss how hypoxia and HIFs affect fibrogenesis. Given that hypoxia is caused by insufficient angiogenesis and that fibrosis results from pericyte loss, restoration of pericytes should be an intriguing target for overcoming both hypoxia and fibrosis. We propose the deactivation of MFs to recover lost pericytes as a promising therapy for CKD.
Collapse
|
68
|
Nakagawa S, Omura T, Yonezawa A, Yano I, Nakagawa T, Matsubara K. Extracellular nucleotides from dying cells act as molecular signals to promote wound repair in renal tubular injury. Am J Physiol Renal Physiol 2014; 307:F1404-11. [PMID: 25354940 DOI: 10.1152/ajprenal.00196.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) often correlates with poor prognosis and is followed by various severe unfavorable systemic outcomes. It is important to understand the pathophysiology of AKI for the development of novel therapeutic approaches toward promoting renal regeneration after injury. Recent studies have indicated that AKI-induced tubular cell death plays an active role in the onset of tissue regeneration; however, the mechanisms underlying renal tubular repair after injury have yet to be understood. In the present study, we explored molecules that might serve as "danger" signals in mediating tubular regeneration. Kidneys of rats systemically administered the nephrotoxicant cisplatin (to induce AKI) exhibited massive cell proliferation. The proportion of proliferating cells in the total cell distribution was highest in the outer stripe of the outer medulla coincided with where the tubular damage was the most severe in this study. This finding suggests that soluble factors may have been released from damaged cells to stimulate the proliferation of neighboring tubular epithelial cells. In elucidating the mechanism of dying cell-to-surviving cell communication using normal rat kidney NRK-52E epithelial cells, we found a significant increase in ATP levels in supernatants of these cells after the induction of cell death using ultraviolet irradiation. Furthermore, treatment of conditioned supernatants with apyrase or suramin, which inhibits purinergic signaling, resulted in significant decreases in cell proliferation and migration activities. These results demonstrate a novel role for extracellular nucleotides, probably as danger signals in aggravating tubular regeneration after AKI.
Collapse
Affiliation(s)
- Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
69
|
Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 2014; 307:F1187-95. [PMID: 25350978 DOI: 10.1152/ajprenal.00425.2014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent clinical and animal studies have shown that acute kidney injury (AKI), even if followed by complete recovery of renal function, can eventually result in chronic kidney disease (CKD). Renal hypoxia is emerging as a key player in the pathophysiology of the AKI-to-CKD transition. Capillary rarefaction after AKI episodes induces renal hypoxia, which can in turn profoundly affect tubular epithelial cells, (myo)fibroblasts, and inflammatory cells, culminating in tubulointerstitial fibrosis, i.e., progression to CKD. Damaged tubular epithelial cells that fail to redifferentiate might supply a decreased amount of vascular endothelial growth factor and contribute to capillary rarefaction, thus aggravating hypoxia and forming a vicious cycle. Mounting evidence also shows that epigenetic changes are closely related to renal hypoxia in the pathophysiology of CKD progression. Animal experiments suggest that targeting hypoxia is a promising strategy to block the transition from AKI to CKD. However, the precise mechanisms by which hypoxia induces the AKI-to-CKD transition and by which hypoxia-inducible factor activation can exert a protective effect in this context should be clarified in further studies.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
70
|
Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res 2014; 51:247-58. [PMID: 25195856 DOI: 10.1159/000365149] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 06/07/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pericytes surround endothelial cells at the perivascular interface. Signaling between endothelial cells and pericytes is crucial for capillary homeostasis, as pericytes stabilize vessels and regulate many microvascular functions. Recently it has been shown that pericytes are able to detach from the vascular wall and contribute to fibrosis by becoming scar-forming myofibroblasts in many organs including the kidney. At the same time, the loss of pericytes within the perivascular compartment results in vulnerable capillaries which are prone to instability, pathological angiogenesis, and, ultimately, rarefaction. AIMS This review will give an overview of pericyte-endothelial cell interactions, summarize the signaling pathways that have been identified to be involved in pericyte detachment from the vascular wall, and present pathological endothelial responses in the context of disease of the kidney.
Collapse
Affiliation(s)
- Claudia Schrimpf
- Division of Vascular and Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
71
|
Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res 2014; 103:438-51. [PMID: 25016615 DOI: 10.1093/cvr/cvu168] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pericytes, which are also known as Rouget cells or perivascular cells, are considered to represent a likely distinct pool of vascular cells that are extremely branched and located mostly in the periphery of the vascular system. The family of pericytes is a heterogeneous cell population that includes pericytes and pericyte-like cells. Accumulated data indicate that networks of pericyte-like cells exist in normal non-atherosclerotic intima, and that pericyte-like cells can be involved in the development of atherosclerotic lesions from the very early stages of disease. The pathogenic role of arterial pericytes and pericyte-like cells also might be important in advanced and complicated atherosclerotic lesions via realizing mechanisms of vascular remodelling, ectopic ossification, intraplaque neovascularization, and probably thrombosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Yuri V Bobryshev
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow, Russia
| |
Collapse
|
72
|
Abstract
Renal pericytes have been neglected for many years, but recently they have become an intensively studied cell population in renal biology and pathophysiology. Pericytes are stromal cells that support vasculature, and a subset of pericytes are mesenchymal stem cells. In kidney, pericytes have been reported to play critical roles in angiogenesis, regulation of renal medullary and cortical blood flow, and serve as progenitors of interstitial myofibroblasts in renal fibrogenesis. They interact with endothelial cells through distinct signaling pathways and their activation and detachment from capillaries after acute or chronic kidney injury may be critical for driving chronic kidney disease progression. By contrast, during kidney homeostasis it is likely that pericytes serve as a local stem cell population that replenishes differentiated interstitial and vascular cells lost during aging. This review describes both the regenerative properties of pericytes as well as involvement in pathophysiologic conditions such as fibrogenesis.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Division of Nephrology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Benjamin D Humphreys
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
73
|
Abstract
Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution.
Collapse
|
74
|
Anders HJ. Immune system modulation of kidney regeneration--mechanisms and implications. Nat Rev Nephrol 2014; 10:347-58. [PMID: 24776845 DOI: 10.1038/nrneph.2014.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an important guardian of tissue homeostasis. In response to injury, resident and infiltrating immune cells orchestrate all phases of danger control, resolution of inflammation and tissue regeneration or scar formation. As mammalian postnatal kidneys are not capable of de novo nephrogenesis, recovery is limited to the regeneration or repair of existing nephrons. The regenerative capacity of the nephron varies between compartments; the epithelial cells of the tubule regenerate more efficiently than the structurally highly organized podocytes. Cells of the surrounding environment modulate nephron regeneration by secreting paracrine mediators. This Review discusses immune mediators and pathways that regulate the intrinsic regenerative capacity of the nephron. Eliminating injurious triggers, modulating renal inflammation and specifically enhancing the regenerative capacity of nephrons might be a promising strategy to improve long-term outcomes in patients with acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München-Innenstadt, Ziemssenstrasse 1, 80336 Munich, Germany
| |
Collapse
|
75
|
Kramann R, Tanaka M, Humphreys BD. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol 2014; 25:1924-31. [PMID: 24652794 DOI: 10.1681/asn.2013101121] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI predicts the future development of CKD, and one proposed mechanism for this epidemiologic link is loss of peritubular capillaries triggering chronic hypoxia. A precise definition of changes in peritubular perfusion would help test this hypothesis by more accurately correlating these changes with future loss of kidney function. Here, we have adapted and validated a fluorescence microangiography approach for use with mice to visualize, analyze, and quantitate peritubular capillary dynamics after AKI. A novel software-based approach enabled rapid and automated quantitation of capillary number, individual area, and perimeter. After validating perfusion in mice with genetically labeled endothelia, we compared peritubular capillary number and size after moderate AKI, characterized by complete renal recovery, and after severe AKI, characterized by development of interstitial fibrosis and CKD. Eight weeks after severe AKI, we measured a 40%±7.4% reduction in peritubular capillary number (P<0.05) and a 36%±4% decrease in individual capillary cross-sectional area (P<0.001) for a 62%±2.2% reduction in total peritubular perfusion (P<0.01). Whereas total peritubular perfusion and number of capillaries did not change, we detected a significant change of single capillary size following moderate AKI. The loss of peritubular capillary density and caliber at week 8 closely correlated with severity of kidney injury at day 1, suggesting irreparable microvascular damage. These findings emphasize a direct link between severity of acute injury and future loss of peritubular perfusion, demonstrate that reduced capillary caliber is an unappreciated long-term consequence of AKI, and offer a new quantitative imaging tool for understanding how AKI leads to future CKD in mouse models.
Collapse
Affiliation(s)
- Rafael Kramann
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; and
| | - Mari Tanaka
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin D Humphreys
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Kidney Group, Harvard Stem Cell Institute, Cambridge, Massachussetts
| |
Collapse
|
76
|
Abstract
Pericytes are interstitial mesenchymal cells found in many major organs. In the kidney, microvascular pericytes are defined anatomically as extensively branched, collagen-producing cells in close contact with endothelial cells. Although many molecular markers have been proposed, none of them can identify the pericytes with satisfactory specificity or sensitivity. The roles of microvascular pericytes in kidneys were poorly understood in the past. Recently, by using genetic lineage tracing to label collagen-producing cells or mesenchymal cells, the elusive characteristics of the pericytes have been illuminated. The purpose of this article is to review recent advances in the understanding of microvascular pericytes in the kidneys. In healthy kidney, the pericytes are found to take part in the maintenance of microvascular stability. Detachment of the pericytes from the microvasculature and loss of the close contact with endothelial cells have been observed during renal insult. Renal microvascular pericytes have been shown to be the major source of scar-forming myofibroblasts in fibrogenic kidney disease. Targeting the crosstalk between pericytes and neighboring endothelial cells or tubular epithelial cells may inhibit the pericyte-myofibroblast transition, prevent peritubular capillary rarefaction, and attenuate renal fibrosis. In addition, renal pericytes deserve attention for their potential to produce erythropoietin in healthy kidneys as pericytes stand in the front line, sensing the change of oxygenation and hemoglobin concentration. Further delineation of the mechanisms underlying the reduced erythropoietin production occurring during pericyte-myofibroblast transition may be promising for the development of new treatment strategies for anemia in chronic kidney disease.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan ; Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan ; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Pericytes and perivascular fibroblasts have emerged as poorly appreciated yet extensive populations of mesenchymal cells in the kidney that play important roles in homeostasis and responses to injury. This review will update readers on the evolving understanding of the biology of these cells. RECENT FINDINGS Fate mapping has identified pericytes and perivascular fibroblasts as the major source of pathological fibrillar matrix-forming cells in interstitial kidney disease. In other organs similar cells have been described and independent fate mapping indicates that pericytes or perivascular cells are myofibroblast progenitors in multiple organs. Over the last year, new insights into the function of pericytes in kidney homeostasis has been uncovered and new molecular pathways that regulate detachment and their transdifferentiation into pathological myofibroblasts, including Wingless/Int, ephrin, transforming growth factor β, platelet derived growth factor, and Hedgehog signaling pathways, have been reported. In addition provocative studies indicate that microRNAs, which regulate posttranscriptional gene expression, may also play important roles in their transdifferentiation. SUMMARY Pericytes and perivascular fibroblasts are the major source of pathological collagen fiber-forming cells in interstitial kidney diseases. New avenues of research into their activation and differentiation has identified new drug candidates for the treatment of interstitial kidney disease.
Collapse
|
78
|
Basile DP, Yoder MC. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol 2013; 229:10-6. [PMID: 23794280 DOI: 10.1002/jcp.24423] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022]
Abstract
Progenitor cells for the endothelial lineage have been widely investigated for more than a decade, but continue to be controversial since no unique identifying marker has yet been identified. This review will begin with a discussion of the basic tenets originally proposed for proof that a cell displays properties of an endothelial progenitor cell. We then provide an overview of the methods for putative endothelial progenitor cell derivation, expansion, and enumeration. This discussion includes consideration of cells that are present in the circulation as well as cells resident in the vascular endothelial intima. Finally, we provide some suggested changes in nomenclature that would greatly clarify and demystify the cellular elements involved in vascular repair.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
79
|
Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. CURRENT PATHOBIOLOGY REPORTS 2013; 1. [PMID: 24319648 DOI: 10.1007/s40139-013-0026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, Massachusetts ; Harvard Medical School, Boston, Massachusetts ; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | | | |
Collapse
|
80
|
Abstract
Fibrosis of the kidney glomerulus and interstitium are characteristic features of almost all chronic kidney diseases. Fibrosis is tightly associated with destruction of capillaries, inflammation, and epithelial injury which progresses to loss of nephrons, and replacement of kidney parenchyma with scar tissue. Understanding the origins and nature of the cells known as myofibroblasts that make scar tissue is central to development of new therapeutics for kidney disease. Whereas many cell lineages in the body have become defined by well-established markers, myofibroblasts have been much harder to identify with certainty. Recent insights from genetic fate mapping and the use of dynamic reporting of cells that make fibrillar collagen in mice have identified with greater clarity the major population of myofibroblasts and their precursors in the kidney. This review will explore the nature of these cells in health and disease of the kidney to underst and their central role in the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Nephrology Kidney Research Institute, Center for Lung Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
81
|
Basile DP, Yoder MC. Getting the “Inside” Scoop on EphrinB2 Signaling in Pericytes and the Effect on Peritubular Capillary Stability. J Am Soc Nephrol 2013; 24:521-3. [DOI: 10.1681/asn.2013020153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
82
|
Campanholle G, Ligresti G, Gharib SA, Duffield JS. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol 2013; 304:C591-603. [PMID: 23325411 DOI: 10.1152/ajpcell.00414.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease, defined as loss of kidney function for more than three months, is characterized pathologically by glomerulosclerosis, interstitial fibrosis, tubular atrophy, peritubular capillary rarefaction, and inflammation. Recent studies have identified a previously poorly appreciated, yet extensive population of mesenchymal cells, called either pericytes when attached to peritubular capillaries or resident fibroblasts when embedded in matrix, as the progenitors of scar-forming cells known as myofibroblasts. In response to sustained kidney injury, pericytes detach from the vasculature and differentiate into myofibroblasts, a process not only causing fibrosis, but also directly contributing to capillary rarefaction and inflammation. The interrelationship of these three detrimental processes makes myofibroblasts and their pericyte progenitors an attractive target in chronic kidney disease. In this review, we describe current understanding of the mechanisms of pericyte-to-myofibroblast differentiation during chronic kidney disease, draw parallels with disease processes in the glomerulus, and highlight promising new therapeutic strategies that target pericytes or myofibroblasts. In addition, we describe the critical paracrine roles of epithelial, endothelial, and innate immune cells in the fibrogenic process.
Collapse
Affiliation(s)
- Gabriela Campanholle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|