51
|
Abstract
Renal fibrosis is a hallmark of chronic kidney disease. Although considerable achievements in the pathogenesis of renal fibrosis have been made, the underlying mechanisms of renal fibrosis remain largely to be explored. Now we have reached the consensus that TGF-β is a master regulator of renal fibrosis. Indeed, TGF-β regulates renal fibrosis via both canonical and noncanonical TGF-β signaling. Moreover, ongoing renal inflammation promotes fibrosis as inflammatory cells such as macrophages, conventional T cells and mucosal-associated invariant T cells may directly or indirectly contribute to renal fibrosis, which is also tightly regulated by TGF-β. However, anti-TGF-β treatment for renal fibrosis remains ineffective and nonspecific. Thus, research into mechanisms and treatment of renal fibrosis remains highly challenging.
Collapse
|
52
|
Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol 2020; 8:187. [PMID: 32266267 PMCID: PMC7105573 DOI: 10.3389/fcell.2020.00187] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Renin-angiotensin-aldosterone system (RAAS) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors have shown efficacy in reducing the risk of ESRD. However, patients vary in their response to RAAS blockades, and the pharmacodynamic responses to SGLT2 inhibitors decline with increasing severity of renal impairment. Thus, effective therapy for DKD is yet unmet. Transforming growth factor-β1 (TGF-β1), expressed by nearly all kidney cell types and infiltrating leukocytes and macrophages, is a pleiotropic cytokine involved in angiogenesis, immunomodulation, and extracellular matrix (ECM) formation. An overactive TGF-β1 signaling pathway has been implicated as a critical profibrotic factor in the progression of chronic kidney disease in human DKD. In animal studies, TGF-β1 neutralizing antibodies and TGF-β1 signaling inhibitors were effective in ameliorating renal fibrosis in DKD. Conversely, a clinical study of TGF-β1 neutralizing antibodies failed to demonstrate renal efficacy in DKD. However, overexpression of latent TGF-β1 led to anti-inflammatory and anti-fibrosis effects in non-DKD. This evidence implied that complete blocking of TGF-β1 signaling abolished its multiple physiological functions, which are highly associated with undesirable adverse events. Ideal strategies for DKD therapy would be either specific and selective inhibition of the profibrotic-related TGF-β1 pathway or blocking conversion of latent TGF-β1 to active TGF-β1.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW Preclinical data suggests that transforming growth factor-β (TGF-β) is arguably the most potent profibrotic growth factor in kidney injury. Despite this, recent clinical trials targeting TGF-β have been disappointing. These negative studies suggest that TGF-β signaling in the injured kidney might be more complicated than originally thought. This review examines recent studies that expand our understanding of how this pleiotropic growth factor affects renal injury. RECENT FINDINGS There are recent studies showing new mechanisms whereby TGF-β can mediate injury (e.g. epigenetic effects, macrophage chemoattractant). However, more significant are the increasing reports on cross-talk between TGF-β signaling and other pathways relevant to renal injury such as Wnt/β-catenin, YAP/TAZ (transcriptional coactivator with PDZ-binding motif), and klotho/FGF23. TGF-β clearly alters the response to injury, not just by direct transcriptional changes on target cells, but also through effects on other signaling pathways. In T cells and tubular epithelial cells, some of these TGF-β-mediated changes are potentially beneficial. SUMMARY It is unlikely that inhibition of TGF-β per se will be a successful antifibrotic strategy, but a better understanding of TGF-β's actions may reveal promising downstream targets or modulators of signaling to target therapeutically for chronic kidney disease.
Collapse
|
54
|
Hreha TN, Collins CA, Daugherty AL, Twentyman J, Paluri N, Hunstad DA. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep 2020; 8:e14401. [PMID: 32227630 PMCID: PMC7104652 DOI: 10.14814/phy2.14401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Renal scarring after pyelonephritis is linked to long-term health risks for hypertension and chronic kidney disease. Androgen exposure increases susceptibility to, and severity of, uropathogenic Escherichia coli (UPEC) pyelonephritis and resultant scarring in both male and female mice, while anti-androgen therapy is protective against severe urinary tract infection (UTI) in these models. This work employed androgenized female C57BL/6 mice to elucidate the molecular mechanisms of post-infectious renal fibrosis and to determine how these pathways are altered by the presence of androgens. We found that elevated circulating testosterone levels primed the kidney for fibrosis by increasing local production of TGFβ1 before the initiation of UTI, altering the ratio of transcription factors Smad2 and Smad3 and increasing the presence of mesenchymal stem cell (MSC)-like cells and Gli1 + activated myofibroblasts, the cells primarily responsible for deposition of scar components. Increased production of TGFβ1 and aberrations in Smad2:Smad3 were maintained throughout the course of infection in the presence of androgen, correlating with renal scarring that was not observed in non-androgenized female mice. Pharmacologic inhibition of TGFβ1 signaling blunted myofibroblast activation. We conclude that renal fibrosis after pyelonephritis is exacerbated by the presence of androgens and involves activation of the TGFβ1 signaling cascade, leading to increases in cortical populations of MSC-like cells and the Gli1 + activated myofibroblasts that are responsible for scarring.
Collapse
Affiliation(s)
- Teri N. Hreha
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | | | | | - Joy Twentyman
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Present address:
Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - Nitin Paluri
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - David A. Hunstad
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
55
|
Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, Niewiarowska J. Endothelial Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:71-86. [PMID: 32040856 DOI: 10.1007/978-3-030-37184-5_6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a critical process required for tumor progression. Newly formed blood vessels provide nutrition and oxygen to the tumor contributing to its growth and development. However, endothelium also plays other functions that promote tumor metastasis. It is involved in intravasation, which allows invasive cancer cells to translocate into the blood vessel lumen. This phenomenon is an important stage for cancer metastasis. Besides direct association with cancer development, endothelial cells are one of the main sources of cancer-associated fibroblasts (CAFs). The heterogeneous group of CAFs is the main inductor of migration and invasion abilities of cancer cells. Therefore, the endothelium is also indirectly responsible for metastasis. Considering the above, the endothelium is one of the important targets of anticancer therapy. In the chapter, we will present mechanisms regulating endothelial function, dependent on cancer and cancer niche cells. We will focus on possibilities of suppressing pro-metastatic endothelial functions, applied in anti-cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
56
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
57
|
Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW, Müller GA, Goligorsky MS. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant 2019; 34:49-62. [PMID: 29726981 DOI: 10.1093/ndt/gfy100] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/18/2018] [Indexed: 01/22/2023] Open
Abstract
Background Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-β) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses. Methods We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants. We cultured renal fibroblasts and RMVECs and used microfluidic devices for coculturing. Results Dickkopf-3 (DKK3), a putative ligand of the Wnt/β-catenin pathway, was present exclusively in the fibrogenic secretome. In cultured fibroblasts, DKK3 potently induced myofibroblast activation. In addition, DKK3 antagonized effects of DKK1, a known inhibitor of the Wnt pathway, in conversion of fibroblasts to myofibroblasts. In RMVECs, DKK3 induced endothelial-mesenchymal transition and impaired their angiogenic competence. The inhibition of endothelial outgrowth, enhanced myofibroblast formation and endothelial-mesenchymal transition were confirmed in coculture. In reporter DKK3-eGFP × Col3.6-GFPcyan mice, DKK3 was marginally expressed under basal conditions. Adriamycin-induced nephropathy resulted in upregulation of DKK3 expression in tubular and, to a lesser degree, endothelial compartments. Sulindac sulfide was found to exhibit superior Wnt pathway-suppressive action and decreased DKK3 signals and the extent of renal fibrosis. Conclusions In conclusion, this unbiased proteomic screen of the profibrogenic endothelial secretome revealed DKK3 acting as an agonist of the Wnt pathway, enhancing formation of myofibroblasts and endothelial-mesenchymal transition and impairing angiogenesis. A potent inhibitor of the Wnt pathway, sulindac sulfide, suppressed nephropathy-induced DKK3 expression and renal fibrosis.
Collapse
Affiliation(s)
- Mark Lipphardt
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA.,Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Noo Li Jeon
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea
| | - Sina Dadafarin
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - David W Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| |
Collapse
|
58
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
59
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
60
|
Bochenek ML, Leidinger C, Rosinus NS, Gogiraju R, Guth S, Hobohm L, Jurk K, Mayer E, Münzel T, Lankeit M, Bosmann M, Konstantinides S, Schäfer K. Activated Endothelial TGFβ1 Signaling Promotes Venous Thrombus Nonresolution in Mice Via Endothelin-1: Potential Role for Chronic Thromboembolic Pulmonary Hypertension. Circ Res 2019; 126:162-181. [PMID: 31747868 DOI: 10.1161/circresaha.119.315259] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by defective thrombus resolution, pulmonary artery obstruction, and vasculopathy. TGFβ (transforming growth factor-β) signaling mutations have been implicated in pulmonary arterial hypertension, whereas the role of TGFβ in the pathophysiology of CTEPH is unknown. OBJECTIVE To determine whether defective TGFβ signaling in endothelial cells contributes to thrombus nonresolution and fibrosis. METHODS AND RESULTS Venous thrombosis was induced by inferior vena cava ligation in mice with genetic deletion of TGFβ1 in platelets (Plt.TGFβ-KO) or TGFβ type II receptors in endothelial cells (End.TGFβRII-KO). Pulmonary endarterectomy specimens from CTEPH patients were analyzed using immunohistochemistry. Primary human and mouse endothelial cells were studied using confocal microscopy, quantitative polymerase chain reaction, and Western blot. Absence of TGFβ1 in platelets did not alter platelet number or function but was associated with faster venous thrombus resolution, whereas endothelial TGFβRII deletion resulted in larger, more fibrotic and higher vascularized venous thrombi. Increased circulating active TGFβ1 levels, endothelial TGFβRI/ALK1 (activin receptor-like kinase), and TGFβRI/ALK5 expression were detected in End.TGFβRII-KO mice, and activated TGFβ signaling was present in vessel-rich areas of CTEPH specimens. CTEPH-endothelial cells and murine endothelial cells lacking TGFβRII simultaneously expressed endothelial and mesenchymal markers and transcription factors regulating endothelial-to-mesenchymal transition, similar to TGFβ1-stimulated endothelial cells. Mechanistically, increased endothelin-1 levels were detected in TGFβRII-KO endothelial cells, murine venous thrombi, or endarterectomy specimens and plasma of CTEPH patients, and endothelin-1 overexpression was prevented by inhibition of ALK5, and to a lesser extent of ALK1. ALK5 inhibition and endothelin receptor antagonization inhibited mesenchymal lineage conversion in TGFβ1-exposed human and murine endothelial cells and improved venous thrombus resolution and pulmonary vaso-occlusions in End.TGFβRII-KO mice. CONCLUSIONS Endothelial TGFβ1 signaling via type I receptors and endothelin-1 contribute to mesenchymal lineage transition and thrombofibrosis, which were prevented by blocking endothelin receptors. Our findings may have relevant implications for the prevention and management of CTEPH.
Collapse
Affiliation(s)
- Magdalena L Bochenek
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., L.H., K.J., M.L., M.B., S.K.), University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK e.V.; RheinMain) (M.L.B., N.S.R., R.G., E.M., T.M., K.S.)
| | - Christiane Leidinger
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany
| | - Nico S Rosinus
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK e.V.; RheinMain) (M.L.B., N.S.R., R.G., E.M., T.M., K.S.)
| | - Rajinikanth Gogiraju
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK e.V.; RheinMain) (M.L.B., N.S.R., R.G., E.M., T.M., K.S.)
| | - Stefan Guth
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany (S.G., E.M.)
| | - Lukas Hobohm
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., L.H., K.J., M.L., M.B., S.K.), University Medical Center Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (M.L.B., L.H., K.J., M.L., M.B., S.K.), University Medical Center Mainz, Germany
| | - Eckhard Mayer
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany (S.G., E.M.).,German Center for Cardiovascular Research (DZHK e.V.; RheinMain) (M.L.B., N.S.R., R.G., E.M., T.M., K.S.)
| | - Thomas Münzel
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK e.V.; RheinMain) (M.L.B., N.S.R., R.G., E.M., T.M., K.S.)
| | - Mareike Lankeit
- Center for Thrombosis and Hemostasis (M.L.B., L.H., K.J., M.L., M.B., S.K.), University Medical Center Mainz, Germany.,Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité -University Medicine, Berlin, Germany (M.L.)
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis (M.L.B., L.H., K.J., M.L., M.B., S.K.), University Medical Center Mainz, Germany.,Department of Medicine, Boston University School of Medicine, MA (M.B.)
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., L.H., K.J., M.L., M.B., S.K.), University Medical Center Mainz, Germany.,Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece (S.K.)
| | - Katrin Schäfer
- From the Center for Cardiology, Cardiology I (M.L.B., C.L., N.S.R., R.G., L.H., T.M., K.S.), University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK e.V.; RheinMain) (M.L.B., N.S.R., R.G., E.M., T.M., K.S.)
| |
Collapse
|
61
|
Zhang C, Hu X, Qi F, Luo J, Li X. Identification of CD2, CCL5 and CCR5 as potential therapeutic target genes for renal interstitial fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:454. [PMID: 31700890 DOI: 10.21037/atm.2019.08.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background We aimed to explore potential gene biomarkers of renal interstitial fibrosis (RIF) due to a lack of effective and non-invasive methods for diagnosis. Methods Three data sets (GSE22459, GSE76882 and GSE57731) including 350 samples were acquired from Gene Expression Omnibus (GEO) database. We used bioconductor limma package to perform background adjustment. Cluster analysis was conducted by 'edgeR' package to identify the differentially expressed genes (DEGs). We generated heat maps with using heatmap package in R software. Function annotation of genes was performed by Gene Ontology (GO) enrichment analysis. STRING (Search Tool for the Retrieval of Interacting Genes) database was employed to construct the protein-protein interaction (PPI) network and the results were visualized by Cytoscape 3.6.1. At last, we applied Graphpad Prism 7.0. to explore the correlation between three hub genes and pathological degrees of RIF. Results By applying the "edgeR" package in R, we detected 116 DEGs with three data sets. These genes were enriched in 19 GO biological process categories. Three main hub genes (CD2, CCL5 and CCR5) were identified after construction of PPI network. In Pearson correlation coefficient, CD2, CCL5 and CCR5 was found to hold higher expression patterns in RIF samples based on independent data set GSE57731. Besides, their gene expression levels were found significantly positive correlation with the degree of RIF (CD2: P<0.05, r=0.29; CCL5: P<0.05, r=0.31; CCR5: P<0.05, r=0.38). Conclusions CD2, CCL5 and CCR5 might serve as potential early biomarkers of RIF. The mechanism between these genes and RIF remains to be further studied.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Xin Hu
- First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
62
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|
63
|
Ko J, Kang HJ, Kim DA, Kim MJ, Ryu ES, Lee S, Ryu JH, Roncal C, Johnson RJ, Kang DH. Uric acid induced the phenotype transition of vascular endothelial cells via induction of oxidative stress and glycocalyx shedding. FASEB J 2019; 33:13334-13345. [PMID: 31553887 DOI: 10.1096/fj.201901148r] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent data suggested a causative role of uric acid (UA) in the development of renal disease, in which endothelial dysfunction is regarded as the key mechanism. Endothelial-to-mesenchymal transition (EndoMT) and shedding of the glycocalyx are early changes of endothelial dysfunction. We investigated whether UA induced EndoMT in HUVECs and an animal model of hyperuricemia fed with 2% oxonic acid for 4 wk. UA induced EndoMT in HUVECs with a generation of reactive oxygen species via the activation of membranous NADPH oxidase (from 15 min) and mitochondria (from 6 h) along with glycocalyx shedding (from 6 h), which were blocked by probenecid. GM6001, an inhibitor of matrix metalloproteinase, alleviated UA-induced glycocalyx shedding and EndoMT. Antioxidants including N-acetyl cysteine, apocynin, and mitotempo ameliorated EndoMT; however, they did not change glycocalyx shedding in HUVECs. In the kidney of hyperuricemic rats, endothelial staining in peritubular capillaries (PTCs) was substantially decreased with a de novo expression of α-smooth muscle actin in PTCs. Plasma level of syndecan-1 was increased in hyperuricemic rats, which was ameliorated by allopurinol. UA caused a phenotypic transition of endothelial cells via induction of oxidative stress with glycocalyx shedding, which could be one of the mechanisms of UA-induced endothelial dysfunction and kidney disease.-Ko, J., Kang, H.-J., Kim, D.-A., Kim, M.-J., Ryu, E.-S., Lee, S., Ryu, J.-H., Roncal, C., Johnson, R. J., Kang, D.-H. Uric acid induced the phenotype transition of vascular endothelial cells via induction of oxidative stress and glycocalyx shedding.
Collapse
Affiliation(s)
- Jiyeon Ko
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hyun-Jung Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Dal-Ah Kim
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Mi-Jin Kim
- Department of Biotechnology, CHA University, Seongnam, South Korea
| | - Eun-Sun Ryu
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Shina Lee
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jung-Hwa Ryu
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
64
|
Engel JE, Williams E, Williams ML, Bidwell GL, Chade AR. Targeted VEGF (Vascular Endothelial Growth Factor) Therapy Induces Long-Term Renal Recovery in Chronic Kidney Disease via Macrophage Polarization. Hypertension 2019; 74:1113-1123. [PMID: 31542966 DOI: 10.1161/hypertensionaha.119.13469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) universally associates with renal microvascular rarefaction and inflammation, but whether a link exists between these 2 processes is unclear. We designed a therapeutic construct of VEGF (vascular endothelial growth factor) fused to an ELP (elastin-like polypeptide) carrier and show that it improves renal function in experimental renovascular disease. We test the hypothesis that ELP-VEGF therapy will improve CKD, and that recovery will be driven by decreasing microvascular rarefaction partly via modulation of macrophage phenotype and inflammation. CKD was induced in 14 pigs, which were observed for 14 weeks. At 6 weeks, renal blood flow and filtration were quantified using multidetector computed tomography, and then pigs received single intrarenal ELP-VEGF or placebo (n=7 each). Renal function was quantified again 4 and 8 weeks later. Pigs were euthanized and renal microvascular density, angiogenic and inflammatory markers, fibrosis, macrophage infiltration, and phenotype were quantified. Loss of renal hemodynamics in CKD was progressively recovered by ELP-VEGF therapy, accompanied by improved renal microvascular density, fibrosis, and expression of inflammatory mediators. Although renal macrophage infiltration was similar in both CKD groups, ELP-VEGF therapy distinctly shifted their phenotype from proinflammatory M1 to VEGF-expressing M2. Our study unravels potential mechanisms and feasibility of a new strategy to offset progression of CKD using drug-delivery technologies. The results indicate that renal recovery after ELP-VEGF therapy was largely driven by modulation of renal macrophages toward VEGF-expressing M2 phenotype, restoring VEGF signaling and sustaining improvement of renal function and microvascular integrity in CKD.
Collapse
Affiliation(s)
- Jason E Engel
- From the Departments of Physiology and Biophysics (J.E.E., E.W., M.L.W., A.R.C.), University of Mississippi Medical Center, Jackson
| | - Erika Williams
- From the Departments of Physiology and Biophysics (J.E.E., E.W., M.L.W., A.R.C.), University of Mississippi Medical Center, Jackson
| | - Maxx L Williams
- From the Departments of Physiology and Biophysics (J.E.E., E.W., M.L.W., A.R.C.), University of Mississippi Medical Center, Jackson
| | - Gene L Bidwell
- Neurology (G.L.B.), University of Mississippi Medical Center, Jackson.,Cell and Molecular Biology (G.L.B.), University of Mississippi Medical Center, Jackson.,Pharmacology and Toxicology (G.L.B.), University of Mississippi Medical Center, Jackson
| | - Alejandro R Chade
- From the Departments of Physiology and Biophysics (J.E.E., E.W., M.L.W., A.R.C.), University of Mississippi Medical Center, Jackson.,Medicine (A.R.C.), University of Mississippi Medical Center, Jackson.,Radiology (A.R.C.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
65
|
Abstract
Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM) that disrupts and replaces functional parenchyma, which leads to organ failure. It is known as the major pathological mechanism of chronic kidney disease (CKD). Although CKD has an impact on no less than 10% of the world population, therapeutic options are still limited. Regardless of etiology, elevated TGF-β levels are highly correlated with the activated pro-fibrotic pathways and disease progression. TGF-β, the key driver of renal fibrosis, is involved in a dynamic pathophysiological process that leads to CKD and end-stage renal disease (ESRD). It is becoming clear that epigenetics regulates renal programming, and therefore, the development and progression of renal disease. Indeed, recent evidence shows TGF-β1/Smad signaling regulates renal fibrosis via epigenetic-correlated mechanisms. This review focuses on the function of TGF-β/Smads in renal fibrogenesis, and the role of epigenetics as a regulator of pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Tao-Tao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
66
|
Platel V, Faure S, Corre I, Clere N. Endothelial-to-Mesenchymal Transition (EndoMT): Roles in Tumorigenesis, Metastatic Extravasation and Therapy Resistance. JOURNAL OF ONCOLOGY 2019; 2019:8361945. [PMID: 31467544 PMCID: PMC6701373 DOI: 10.1155/2019/8361945] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-β (TGF-β) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.
Collapse
Affiliation(s)
- Valentin Platel
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Sébastien Faure
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Isabelle Corre
- Sarcomes Osseux et Remodelage des Tissus Calcifiés Phy-OS, Université de Nantes INSERM UMR U1238, Faculté de Médecine, F-44035 Nantes, France
| | - Nicolas Clere
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| |
Collapse
|
67
|
Gewin LS. Transforming Growth Factor-β in the Acute Kidney Injury to Chronic Kidney Disease Transition. Nephron Clin Pract 2019; 143:154-157. [PMID: 31039574 DOI: 10.1159/000500093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a key profibrotic growth factor that is activated in acute kidney injury (AKI) and associated with cellular responses that lead to the development of chronic kidney disease (CKD). The persistently injured, de-differentiated tubular epithelial cell is an important mediator of the transition from AKI to CKD. TGF-β signaling may perpetuate proximal tubule injury through de-differentiation, cell cycle arrest, and increased susceptibility to apoptosis. In addition, TGF-β signaling promotes macrophage chemotaxis, endothelial injury, and myofibroblast differentiation after AKI. Future studies that block TGF-β signaling after cessation of AKI are needed to better define its role in the progression of acute to chronic renal injury.
Collapse
Affiliation(s)
- Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA, .,Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA, .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA,
| |
Collapse
|
68
|
Lovisa S, Genovese G, Danese S. Role of Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:659-668. [PMID: 30520951 DOI: 10.1093/ecco-jcc/jjy201] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn's disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
69
|
Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 2019; 99:1281-1324. [PMID: 30864875 DOI: 10.1152/physrev.00021.2018] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
70
|
Yun SM, Kim SH, Kim EH. The Molecular Mechanism of Transforming Growth Factor-β Signaling for Intestinal Fibrosis: A Mini-Review. Front Pharmacol 2019; 10:162. [PMID: 30873033 PMCID: PMC6400889 DOI: 10.3389/fphar.2019.00162] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease is known as the most chronic inflammatory disorder in colon, which subsequently progresses to intestinal obstruction and fistula formation. Many studies to date for the treatment of IBD have been focused on inflammation. However, most of the anti-inflammatory agents do not have anti-fibrotic effects and could not relieve intestinal stricture in IBD patients. Because preventing or reversing intestinal fibrosis in IBD is a major therapeutic target, we analyzed the papers focusing on TGF-β signaling in intestinal fibrosis. TGF-β is a good candidate to treat the intestinal fibrosis in IBD which involves TGF-β signaling pathway, EMT, EndMT, ECM, and other regulators. Understanding the mechanism involved in TGF-β signaling will contribute to the treatment and diagnosis of intestinal fibrosis occurring in IBD as well as the understanding of the molecular mechanisms underlying the pathogenesis.
Collapse
Affiliation(s)
- Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Seok-Ho Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
71
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
72
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
73
|
Chade AR. Understanding and managing atherosclerotic renovascular disease: still a work in progress. F1000Res 2019; 7. [PMID: 30631430 PMCID: PMC6281014 DOI: 10.12688/f1000research.16369.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 12/04/2022] Open
Abstract
Atherosclerotic renovascular disease (ARVD) is an unresolved therapeutic dilemma despite extensive pre-clinical and clinical studies. The pathophysiology of the disease has been widely studied, and many factors that may be involved in progressive renal injury and cardiovascular risk associated with ARVD have been identified. However, therapies and clinical trials have focused largely on attempts to resolve renal artery stenosis without considering the potential need to treat the renal parenchyma beyond the obstruction. The results of these trials show a staggering consistence: although nearly 100% of the patients undergoing renal angioplasty show a resolution of the vascular obstruction, they do not achieve significant improvements in renal function or blood pressure control compared with those patients receiving medical treatment alone. It seems that we may need to take a step back and reconsider the pathophysiology of the disease in order to develop more effective therapeutic strategies. This mini-review discusses potential therapeutic alternatives that focus on the renal parenchyma distal to the vascular obstruction and may provide additional tools to enhance current treatment of ARVD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Departments of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| |
Collapse
|
74
|
Meng XM. Inflammatory Mediators and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:381-406. [PMID: 31399975 DOI: 10.1007/978-981-13-8871-2_18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal inflammation is the initial, healthy response to renal injury. However, prolonged inflammation promotes the fibrosis process, which leads to chronic pathology and eventually end-stage kidney disease. There are two major sources of inflammatory cells: first, bone marrow-derived leukocytes that include neutrophils, macrophages, fibrocytes and mast cells, and second, locally activated kidney cells such as mesangial cells, podocytes, tubular epithelial cells, endothelial cells and fibroblasts. These activated cells produce many profibrotic cytokines and growth factors that cause accumulation and activation of myofibroblasts, and enhance the production of the extracellular matrix. In particular, activated macrophages are key mediators that drive acute inflammation into chronic kidney disease. They produce large amounts of profibrotic factors and modify the microenvironment via a paracrine effect, and they also transdifferentiate to myofibroblasts directly, although the origin of myofibroblasts in the fibrosing kidney remains controversial. Collectively, understanding inflammatory cell functions and mechanisms during renal fibrosis is paramount to improving diagnosis and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
75
|
Hypoxia and Renal Tubulointerstitial Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:467-485. [PMID: 31399980 DOI: 10.1007/978-981-13-8871-2_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia, one of the most common causes of kidney injury, is a key pathological condition in various kidney diseases. Renal fibrosis is the terminal pathway involved in the continuous progression of chronic kidney disease (CKD), characterized by glomerulosclerosis and tubulointerstitial fibrosis (TIF). Recent studies have shown that hypoxia is a key factor promoting the progression of TIF. Loss of microvasculature, reduced oxygen dispersion, and metabolic abnormality of cells in the kidney are the main causes of the hypoxic state. Hypoxia can, in turn, profoundly affect the tubular epithelial cells, endothelial cells, pericytes, fibroblasts, inflammatory cells, and progenitor cells. In this chapter, we reviewed the critical roles of hypoxia in the pathophysiology of TIF and discussed the potential of anti-hypoxia as its promising therapeutic target.
Collapse
|
76
|
Bezhaeva T, Geelhoed WJ, Wang D, Yuan H, van der Veer EP, Alem CMAV, Damanik FFR, Qiu X, Zonneveld AJV, Moroni L, Li S, Rotmans JI. Contribution of bone marrow-derived cells to in situ engineered tissue capsules in a rat model of chronic kidney disease. Biomaterials 2018; 194:47-56. [PMID: 30580195 DOI: 10.1016/j.biomaterials.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Tissue engineered blood vessels (TEBVs) hold great promise for clinical use in patients with end stage renal disease (ESRD) requiring vascular access for hemodialysis. A promising way to make TEBVs is to exploit foreign body response (FBR) of polymeric rods used as templates. However, since the FBR predominantly involves bone-marrow (BM) derived cells and ESRD coincides with impaired function of BM, it is important to assess the generation of TEBVs in conditions of renal failure. To this end, we implanted polymer rods in the subcutis of rats after BM-transplantation with GFP-labeled BM cells in a model of chronic kidney disease (CKD). At 3 weeks after implantation, rods were encapsulated by tissue capsule (TC) composed of collagen, myofibroblasts and macrophages. On average, 13% of CD68+ macrophages were GFP+, indicating BM origin. Macrophage-to-myofibroblasts differentiation appeared to play an important role in TC formation as 26% of SMA+/GFP+ myofibroblasts co-expressed the macrophage marker CD68. Three weeks after rod implantation, the cellular response changed towards tissue repair, characterized by 40% increase in CD68+/CD163+ repair associated macrophages and 95% increase in TGFβ and IL10 gene expression as compared to TCs harvested at 1 week. These results show that both BM derived and tissue resident cells, contribute to TC formation, whereas macrophages serve as precursors of myofibroblasts in mature TCs. Finally, the presence of CKD did not significantly alter the process of TC formation, which holds the potential to support our approach for future clinical use in ESRD patients.
Collapse
Affiliation(s)
- Taisiya Bezhaeva
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Wouter J Geelhoed
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Dong Wang
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, USA; Department of Bioengineering, University of California, Berkeley, USA
| | - Haoyong Yuan
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Eric P van der Veer
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Carla M A van Alem
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Febriyani F R Damanik
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, the Netherlands
| | - Xuefeng Qiu
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, USA; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anton-Jan van Zonneveld
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, the Netherlands
| | - Song Li
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, USA; Department of Bioengineering, University of California, Berkeley, USA; Department of Medicine, University of California, Los Angeles, USA
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
77
|
Pathophysiological and molecular mechanisms involved in renal congestion in a novel rat model. Sci Rep 2018; 8:16808. [PMID: 30429498 PMCID: PMC6235885 DOI: 10.1038/s41598-018-35162-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 01/18/2023] Open
Abstract
Increased central venous pressure in congestive heart failure causes renal dysfunction; however, the underlying mechanisms are unclear. We created a rat renal congestion model and investigated the effect of renal congestion on hemodynamics and molecular mechanisms. The inferior vena cava (IVC) between the renal veins was ligated by suture in male Sprague-Dawley rats to increase upstream IVC pressure and induce congestion in the left kidney only. Left kidney congestion reduced renal blood flow, glomerular filtration rate, and increased renal interstitial hydrostatic pressure. Tubulointerstitial and glomerular injury and medullary thick ascending limb hypoxia were observed only in the congestive kidneys. Molecules related to extracellular matrix expansion, tubular injury, and focal adhesion were upregulated in microarray analysis. Renal decapsulation ameliorated the tubulointerstitial injury. Electron microscopy captured pericyte detachment in the congestive kidneys. Transgelin and platelet-derived growth factor receptors, as indicators of pericyte-myofibroblast transition, were upregulated in the pericytes and the adjacent interstitium. With the compression of the peritubular capillaries and tubules, hypoxia and physical stress induce pericyte detachment, which could result in extracellular matrix expansion and tubular injury in renal congestion.
Collapse
|
78
|
Chung S, Overstreet JM, Li Y, Wang Y, Niu A, Wang S, Fan X, Sasaki K, Jin GN, Khodo SN, Gewin L, Zhang MZ, Harris RC. TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. JCI Insight 2018; 3:123563. [PMID: 30385721 DOI: 10.1172/jci.insight.123563] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/19/2018] [Indexed: 12/28/2022] Open
Abstract
TGF-β signals through a receptor complex composed of 2 type I and 2 type II (TGF-βRII) subunits. We investigated the role of macrophage TGF-β signaling in fibrosis after AKI in mice with selective monocyte/macrophage TGF-βRII deletion (macrophage TGF-βRII-/- mice). Four weeks after injury, renal TGF-β1 expression and fibrosis were higher in WT mice than macrophage TGF-βRII-/- mice, which had decreased renal macrophages. The in vitro chemotactic response to f-Met-Leu-Phe was comparable between bone marrow-derived monocytes (BMMs) from WT and macrophage TGF-βRII-/- mice, but TGF-βRII-/- BMMs did not respond to TGF-β. We then implanted Matrigel plugs suffused with either f-Met-Leu-Phe or TGF-β1 into WT or macrophage TGF-βRII-/- mice. After 6 days, f-Met-Leu-Phe induced similar macrophage infiltration into the Matrigel plugs of WT and macrophage TGF-βRII-/- mice, but TGF-β induced infiltration only in WT mice. We further determined the number of labeled WT or TGF-βRII-/- BMMs infiltrating into WT kidneys 20 days after ischemic injury. There were more labeled WT BMMs than TGF-βRII-/- BMMs. Therefore, macrophage TGF-βRII deletion protects against the development of tubulointerstitial fibrosis following severe ischemic renal injury. Chemoattraction of macrophages to the injured kidney through a TGF-β/TGF-βRII axis is a heretofore undescribed mechanism by which TGF-β can mediate renal fibrosis during progressive renal injury.
Collapse
Affiliation(s)
- Sungjin Chung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jessica M Overstreet
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yan Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kensuke Sasaki
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Guan-Nan Jin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stellor Nlandu Khodo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Leslie Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
79
|
Lipphardt M, Dihazi H, Müller GA, Goligorsky MS. Fibrogenic Secretome of Sirtuin 1-Deficient Endothelial Cells: Wnt, Notch and Glycocalyx Rheostat. Front Physiol 2018; 9:1325. [PMID: 30298020 PMCID: PMC6160542 DOI: 10.3389/fphys.2018.01325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
Sirtuins (SIRT) are ubiquitous histone and protein deacetylases and a member of this family, SIRT1, is the best-studied one. Its functions in endothelial cells encompass branching angiogenesis, activation of endothelial nitric oxide synthase, regulation of proapoptotic and proinflammatory pathways, among others. Defective SIRT1 activity has been described in various cardiovascular, renal diseases and in aging-associated conditions. Therefore, understanding of SIRT1-deficient, endothelial dysfunctional phenotype has much to offer clinically. Here, we summarize recent studies by several investigative teams of the characteristics of models of global endothelial SIRT1 deficiency, the causes of facilitative development of fibrosis in these conditions, dissect the protein composition of the aberrant secretome of SIRT1-deficient endothelial cells and present several components of this aberrant secretome that are involved in fibrogenesis via activation of fibroblasts to myofibroblasts. These include ligands of Wnt and Notch pathways, as well as proteolytic fragments of glycocalyx core protein, syndecan-4. The latter finding is crucial for understanding the degradation of glycocalyx that accompanies SIRT1 deficiency. This spectrum of abnormalities associated with SIRT1 deficiency in endothelial cells is essential for understanding the origins and features of endothelial dysfunction in a host of cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Mark Lipphardt
- Departments of Medicine, Physiology and Pharmacology, New York Medical College, Valhalla, NY, United States.,Clinic for Nephrology and Rheumatology, Göttingen University Medical Faculty, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, Göttingen University Medical Faculty, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gerhard A Müller
- Clinic for Nephrology and Rheumatology, Göttingen University Medical Faculty, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Physiology and Pharmacology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
80
|
Soluble cMet levels in urine are a significant prognostic biomarker for diabetic nephropathy. Sci Rep 2018; 8:12738. [PMID: 30143691 PMCID: PMC6109090 DOI: 10.1038/s41598-018-31121-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocyte growth factor and its receptor cMet activate biological pathways necessary for repair and regeneration following kidney injury. Here, we evaluated the clinical role of urinary cMet as a prognostic biomarker in diabetic nephropathy (DN). A total of 218 patients with DN were enrolled in this study. We examined the association of urine cMet levels and long-term outcomes in patients with DN. The levels of urinary cMet were higher in patients with decreased renal function than in patients with relatively preserved renal function (5.25 ± 9.62 ng/ml versus 1.86 ± 4.77 ng/ml, P = 0.001). A fully adjusted model revealed that a urinary cMet cutoff of 2.9 ng/mL was associated with a hazard ratio for end-stage renal disease of 2.33 (95% confidence interval 1.19–4.57, P = 0.014). The addition of urinary cMet to serum creatinine and proteinuria provided the highest net reclassification improvement. We found that in primary cultured human glomerular endothelial cells, TGFβ treatment induced fibrosis, and the protein expression levels of collagen I, collagen IV, fibronectin, and αSMA were decreased after administration of an agonistic cMet antibody. In conclusion, elevated levels of urinary cMet at the time of initial diagnosis could predict renal outcomes in patients with DN.
Collapse
|
81
|
Man S, Sanchez Duffhues G, Ten Dijke P, Baker D. The therapeutic potential of targeting the endothelial-to-mesenchymal transition. Angiogenesis 2018; 22:3-13. [PMID: 30076548 PMCID: PMC6510911 DOI: 10.1007/s10456-018-9639-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
Endothelial cells (ECs) have been found to be capable of acquiring a mesenchymal phenotype through a process known as endothelial-to-mesenchymal transition (EndMT). First seen in the developing embryo, EndMT can be triggered postnatally under certain pathological conditions. During this process, ECs dedifferentiate into mesenchymal stem-like cells (MSCs) and subsequently give rise to cell types belonging to the mesoderm lineage. As EndMT contributes to a multitude of diseases, pharmacological modulation of the signaling pathways underlying EndMT may prove to be effective as a therapeutic treatment. Additionally, EndMT in ECs could also be exploited to acquire multipotent MSCs, which can be readily re-differentiated into various distinct cell types. In this review, we will consider current models of EndMT, how manipulation of this process might improve treatment of clinically important pathologies and how it could be harnessed to advance regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Shirley Man
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Gonzalo Sanchez Duffhues
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
82
|
Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P. Anti-fibrotic treatments: A review of clinical evidence. Matrix Biol 2018; 68-69:333-354. [DOI: 10.1016/j.matbio.2018.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
83
|
Hong L, Du X, Li W, Mao Y, Sun L, Li X. EndMT: A promising and controversial field. Eur J Cell Biol 2018; 97:493-500. [PMID: 30082099 DOI: 10.1016/j.ejcb.2018.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
The endothelial to mesenchymal transition (EndMT) is the process by which endothelial cells lose a portion of their cellular features and obtain certain characteristics of mesenchymal cells, including loss of tight junctions, increased motility, and increased secretion of extracellular matrix proteins. EndMT is involved in cardiac development and a variety of diseases processes, such as vascular or tissue fibrosis and tumor. However, its role in specific diseases remains under debate. This review summarizes EndMT-related diseases, existing controversies, different types of EndMT, and molecules and signaling pathways associated with the process.
Collapse
Affiliation(s)
- Lei Hong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China.
| | - Xiaolong Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China.
| | - Wendong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China
| | - Youjun Mao
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China
| | - Lili Sun
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China.
| |
Collapse
|
84
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
85
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018. [PMID: 29701666 DOI: 10.3390/ijms19051294.pmid:29701666;pmcid:pmc5983604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
86
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19051294. [PMID: 29701666 PMCID: PMC5983604 DOI: 10.3390/ijms19051294] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
87
|
Chade AR, Williams ML, Engel J, Guise E, Harvey TW. A translational model of chronic kidney disease in swine. Am J Physiol Renal Physiol 2018; 315:F364-F373. [PMID: 29693449 DOI: 10.1152/ajprenal.00063.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal models of chronic kidney disease (CKD) are critical for understanding its pathophysiology and for therapeutic development. The cardiovascular and renal anatomy and physiology of the pig are virtually identical to humans. This study aimed to develop a novel translational model of CKD that mimics the pathological features of CKD in humans. CKD was induced in seven domestic pigs by bilateral renal artery stenosis and diet-induced dyslipidemia. Animals were observed for a total of 14 wk. Renal hemodynamics and function were quantified in vivo using multi-detector CT after 6, 10, and 14 wk of CKD. Urine and blood were collected at each time-point, and blood pressure was continuously measured (telemetry). After completion of in vivo studies, pigs were euthanized, kidneys were removed, and microvascular (MV) architecture (μCT), markers of renal injury, inflammation, and fibrosis were evaluated ex vivo. Additional pigs were used as controls ( n = 7). Renal blood flow and glomerular filtration were reduced by 50% in CKD, accompanied by hypertension and elevated plasma creatinine, albumin-to-creatinine ratio and increased urinary KIM-1 and NGAL, suggesting renal injury. Furthermore, 14 wk of CKD resulted in cortical and medullary MV remodeling and loss, inflammation, glomerulosclerosis, tubular atrophy, and tubule-interstitial fibrosis compared with controls. The current study characterizes a novel model of CKD that mimics several of the pathological features observed in human CKD, irrespective of the etiology. Current approaches only slow rather than halt CKD progression, and this novel model may offer a suitable platform for the development of new treatments in a translational fashion.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jason Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Erika Guise
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Taylor W Harvey
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
88
|
Dipeptidyl peptidase-4 inhibition and renoprotection: the role of antifibrotic effects. Curr Opin Nephrol Hypertens 2018; 26:56-66. [PMID: 27820706 DOI: 10.1097/mnh.0000000000000291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This article analyzes the potential beneficial effects of dipeptidyl peptidase (DPP)-4 inhibitors on renal diseases. RECENT FINDINGS The pathological significance of DPP-4, either dependent or independent on catalytic activities, on renal diseases has been reported in preclinical studies. With regard to this, we have shown that damaged endothelial cells are converted to a mesenchymal cell phenotype, which is associated with the induction of DPP-4 in endothelial cells. The endothelial mesenchymal transition may contribute to kidney fibrosis; indeed, the antifibrotic effects of DPP-4 inhibitors have been reported elsewhere. However, even though such potential benefits of DPP-4 inhibitors on renal diseases were shown in preclinical studies, clinical trials have not yet revealed significant benefits in renal hard outcomes of DPP-4 inhibitors. SUMMARY To completely understand the beneficial effects of DPP-4 inhibitors, both the following studies are required: first, preclinical studies that analyze deeper molecular mechanisms of DPP-4 inhibition, and, second, clinical studies that investigate whether such potential beneficial effects of DPP-4 inhibitors are relevant to the patients in the clinic.
Collapse
|
89
|
Hohenstein B, Hugo C. Peritubular capillaries: an important piece of the puzzle. Kidney Int 2018; 91:9-11. [PMID: 28003093 DOI: 10.1016/j.kint.2016.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 01/10/2023]
Abstract
The thorough investigation of peritubular capillary changes during renal fibrosis presented in this issue provides novel insights, not only into the value of elaborate methodological approaches, but also the necessity to carefully dissect pathophysiology using current techniques. This study strengthens the existing view of a uniform progression of renal fibrosis and is consistent with other recent studies pointing toward the relevance of early alterations of peritubular capillaries as initiators of renal fibrosis.
Collapse
Affiliation(s)
- Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, Technische Universitaet Dresden, Dresden, Germany.
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
90
|
Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 2018; 14:404-418. [PMID: 29260931 DOI: 10.1080/15548627.2017.1414755] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is associated with damage to blood-brain barrier (BBB) integrity. Circular RNAs (circRNAs) are highly expressed in the brain and are involved in brain diseases; however, whether circRNAs regulate the EndoMT in the brain remains unknown. Our study demonstrated that circHECW2 regulated the EndoMT by directly binding to MIR30D, a significantly downregulated miRNA from miRNA profiling, which subsequently caused an increased expression of ATG5. These findings shed new light on the understanding of the noncanonical role of ATG5 in the EndoMT induced by methamphetamine (Meth) or lipopolysaccharide (LPS). The in vivo relevance was confirmed as microinjection of circHecw2 siRNA lentivirus into the mouse hippocampus suppressed the EndoMT induced by LPS. These findings provide novel insights regarding the contribution of circHECW2 to the nonautophagic role of ATG5 in the EndoMT process in the context of drug abuse and the broad range of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Li Yang
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Bing Han
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- b Department of Physiology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Gang Hu
- c Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China.,d Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
91
|
Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant 2018; 32:791-800. [PMID: 27798196 DOI: 10.1093/ndt/gfw340] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Klotho protein interacts with the transforming growth factor β (TGF-β) receptor and Wnt, which contribute to the progression of renal disease, inhibiting their signals. Renal and circulating klotho levels are diminished in chronic kidney disease. Methods Experiments were performed to assess whether supplementation of klotho protein could have protective effects on the kidney. Rats were injected with adriamycin (5 mg/kg) and divided into three groups: those treated with vehicle, those treated with klotho protein and those treated with klotho plus 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD). Rats without adriamycin treatment were used as a control. Results Adriamycin reduced the serum klotho concentration and renal expression of klotho and E-cadherin. Adriamycin also increased the renal expression of Wnt, TGF-β, and angiotensinogen, as well as the renal abundance of β-catenin and angiotensin II. Klotho supplementation suppressed adriamycin-induced elevations of β-catenin and angiotensin II with sustained Wnt expression. Combined treatment with klotho and TDZD reversed the klotho-induced improvements in the renal abundance of β-catenin and angiotensin II as well as the expression of TGF-β and angiotensinogen without affecting E-cadherin. Conclusions Our data indicate that Wnt is involved in the pathogenesis of adriamycin nephropathy. Furthermore, klotho supplementation inhibited Wnt signaling, ameliorating renal angiotensin II. Finally, klotho protein appears to suppress epithelial-mesenchymal transition by inhibiting TGF-β and Wnt signaling.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroyuki Kobori
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kida, Kagawa, Japan
| | - Naohito Ishii
- Department of Clinical Chemistry, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| |
Collapse
|
92
|
Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 2018; 93:27-40. [PMID: 29291820 DOI: 10.1016/j.kint.2017.07.030] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
The acutely injured mammalian kidney mounts a cellular and molecular response to repair itself. However, in patchy regions such intrinsic processes are impaired and dysregulated leading to chronic kidney disease. Currently, no therapy exists to treat established acute kidney injury per se. Strategies to augment human endogenous repair processes and retard associated profibrotic responses are urgently required. Recent studies have identified injury-induced activation of the intrinsic molecular driver of epithelial regeneration and induction of partial epithelial to the mesenchymal state, respectively. Activation of key developmental transcription factors drive such processes; however, whether these recruit comparable gene regulatory networks with target genes similar to those in nephrogenesis is unclear. Extensive complex molecular cross-talk between the nephron epithelia and immune, interstitial, and endothelial cells regulate renal recovery. In vitro-based M1/M2 macrophage subtypes have been increasingly linked to renal repair; however, the precise contribution of in vivo macrophage plasticity to repair responses is poorly understood. Endothelial cell-pericyte intimacy, balance of the angiocrine/antiangiocrine system, and endothelial cell-regulated inflammatory processes have an impact on renal recovery and fibrosis. Close scrutiny of cellular and molecular pathways in repairing human kidneys is imperative for the identification of promising therapeutic targets and biomarker of human renal repair processes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
93
|
Chade AR, Williams ML, Guise E, Vincent LJ, Harvey TW, Kuna M, Mahdi F, Bidwell GL. Systemic biopolymer-delivered vascular endothelial growth factor promotes therapeutic angiogenesis in experimental renovascular disease. Kidney Int 2017; 93:842-854. [PMID: 29273331 DOI: 10.1016/j.kint.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
We recently developed a therapeutic biopolymer composed of an elastin-like polypeptide (ELP) fused to vascular endothelial growth factor (VEGF) and showed long-term renoprotective effects in experimental renovascular disease after a single intra-renal administration. Here, we sought to determine the specificity, safety, efficacy, and mechanisms of renoprotection of ELP-VEGF after systemic therapy in renovascular disease. We tested whether kidney selectivity of the ELP carrier would reduce off-target binding of VEGF in other organs. In vivo bio-distribution after systemic administration of ELP-VEGF in swine was determined in kidneys, liver, spleen, and heart. Stenotic-kidney renal blood flow and glomerular filtration rate were quantified in vivo using multi-detector computed tomography (CT) after six weeks of renovascular disease, then treated with a single intravenous dose of ELP-VEGF or placebo and observed for four weeks. CT studies were then repeated and the pigs euthanized. Ex vivo studies quantified renal microvascular density (micro-CT) and fibrosis. Kidneys, liver, spleen, and heart were excised to quantify the expression of angiogenic mediators and markers of progenitor cells. ELP-VEGF accumulated predominantly in the kidney and stimulated renal blood flow, glomerular filtration rate, improved cortical microvascular density, and renal fibrosis, and was accompanied by enhanced renal expression of VEGF, downstream mediators of VEGF signaling, and markers of progenitor cells compared to placebo. Expression of angiogenic factors in liver, spleen, and heart were not different compared to placebo-control. Thus, ELP efficiently directs VEGF to the kidney after systemic administration and induces long-term renoprotection without off-target effects, supporting the feasibility and safety of renal therapeutic angiogenesis via systemic administration of a novel kidney-specific bioengineered compound.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Erika Guise
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Luke J Vincent
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Taylor W Harvey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Marija Kuna
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gene L Bidwell
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
94
|
Chronic kidney disease-associated cardiovascular disease: scope and limitations of animal models. Cardiovasc Endocrinol 2017; 6:120-127. [PMID: 31646129 DOI: 10.1097/xce.0000000000000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a heterogeneous range of disorders affecting up to 11% of the world's population. The majority of patients with CKD die of cardiovascular disease (CVD) before progressing to end-stage renal disease. CKD patients have an increased risk of atherosclerotic disease as well as a unique cardiovascular phenotype. There remains no clear aetiology for these issues and a better understanding of the pathophysiology of CKD-associated CVD is urgently needed. Although nonanimal studies can provide insights into the nature of disease, the whole-organism nature of CKD-associated CVD means that high-quality animal models, at least for the immediate future, are likely to remain a key tool in improving our understanding in this area. We will discuss the methods used to induce renal impairment in rodents and the methods available to assess cardiovascular phenotype and in each case describe the applicability to humans.
Collapse
|
95
|
TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci 2017; 18:ijms18102157. [PMID: 29039786 PMCID: PMC5666838 DOI: 10.3390/ijms18102157] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Fibrotic diseases are characterized by net accumulation of extracellular matrix proteins in affected organs leading to their dysfunction and ultimate failure. Myofibroblasts have been identified as the cells responsible for the progression of the fibrotic process, and they originate from several sources, including quiescent tissue fibroblasts, circulating CD34⁺ fibrocytes and the phenotypic conversion of various cell types into activated myofibroblasts. Several studies have demonstrated that endothelial cells can transdifferentiate into mesenchymal cells through a process termed endothelial- mesenchymal transition (EndMT) and that this can give rise to activated myofibroblasts involved in the development of fibrotic diseases. Transforming growth factor β (TGF-β) has a central role in fibrogenesis by modulating the fibroblast phenotype and function, inducing myofibroblast transdifferentiation and promoting matrix accumulation. In addition, TGF-β by inducing EndMT may further contribute to the development of fibrosis. Despite extensive investigation of the pathogenesis of fibrotic diseases, no effective treatment strategies are available. Delineation of the mechanisms responsible for initiation and progression of fibrotic diseases is crucial for the development of therapeutic strategies for the treatment of the disease. In this review, we summarize the role of the TGF-β signaling pathway and EndMT in the development of fibrotic diseases and discuss their therapeutic potential.
Collapse
|
96
|
Lipphardt M, Song JW, Matsumoto K, Dadafarin S, Dihazi H, Müller G, Goligorsky MS. The third path of tubulointerstitial fibrosis: aberrant endothelial secretome. Kidney Int 2017; 92:558-568. [PMID: 28476555 PMCID: PMC5557669 DOI: 10.1016/j.kint.2017.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023]
Abstract
The secretome, defined as a portion of proteins secreted by specific cells to the extracellular space, secures a proper microenvironmental niche not only for the donor cells, but also for the neighboring cells, thus maintaining tissue homeostasis. Communication via secretory products exists between endothelial cells and fibroblasts, and this local mechanism maintains the viability and density of each compartment. Endothelial dysfunction, apart from obvious cell-autonomous defects, leads to the aberrant secretome, which predisposes fibroblasts to acquire a myofibroblastic fibrogenic phenotype. In our recent profiling of the secretome of such dysfunctional profibrogenic renal microvascular endothelial cells, we identified unique profibrogenic signatures, among which we detected ligands of Notch and Wnt-β-catenin pathways. Here, we stress the role of reprogramming cues in the immediate microenvironment of (myo)fibroblasts and the contribution of the endothelial secretome to the panoply of instructive signals in the vicinity of fibroblasts. We hope that this brief overview of endothelial-fibroblast communication in health and disease will lead to eventual unbiased proteomic mapping of individual secretomes of glomerular and tubular epithelial cells, pericytes, and podocytes through reductionist approaches to allow for the synthetic creation of a complex network of secretomic signals acting as reprogramming factors on individual cell types in the kidney. Knowledge of profibrogenic and antifibrogenic signatures in the secretome may garner future therapeutic efforts.
Collapse
Affiliation(s)
- Mark Lipphardt
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Jong W Song
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kei Matsumoto
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sina Dadafarin
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Gerhard Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael S Goligorsky
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA.
| |
Collapse
|
97
|
|
98
|
Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Clin Sci (Lond) 2017; 131:567-581. [PMID: 28143892 DOI: 10.1042/cs20160780] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/28/2023]
Abstract
Hypertension-induced renal fibrosis contributes to the progression of chronic kidney disease, and apigenin, an anti-hypertensive flavone that is abundant in celery, acts as an agonist of transient receptor potential vanilloid 4 (TRPV4). However, whether apigenin reduces hypertension-induced renal fibrosis, as well as the underlying mechanism, remains elusive. In the present study, the deoxycorticosterone acetate (DOCA)-salt hypertension model was established in male Sprague-Dawley rats that were treated with apigenin or vehicle for 4 weeks. Apigenin significantly attenuated the DOCA-salt-induced structural and functional damage to the kidney, which was accompanied by reduced expression of transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling pathway and extracellular matrix proteins. Immunochemistry, cell-attached patch clamp and fluorescent Ca2+ imaging results indicated that TRPV4 was expressed and activated by apigenin in both the kidney and renal cells. Importantly, knockout of TRPV4 in mice abolished the beneficial effects of apigenin that were observed in the DOCA-salt hypertensive rats. Additionally, apigenin directly inhibited activation of the TGF-β1/Smad2/3 signaling pathway in different renal tissues through activation of TRPV4 regardless of the type of pro-fibrotic stimulus. Moreover, the TRPV4-mediated intracellular Ca2+ influx activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway, which inhibited the TGF-β1/Smad2/3 signaling pathway. In summary, dietary apigenin has beneficial effects on hypertension-induced renal fibrosis through the TRPV4-mediated activation of AMPK/SIRT1 and inhibition of the TGF-β1/Smad2/3 signaling pathway. This work suggests that dietary apigenin may represent a promising lifestyle modification for the prevention of hypertension-induced renal damage in populations that consume a high-sodium diet.
Collapse
|
99
|
Yang B, Chen S, Wu M, Zhang L, Ruan M, Chen X, Chen Z, Mei C, Mao Z. PHF14: an innate inhibitor against the progression of renal fibrosis following folic acid-induced kidney injury. Sci Rep 2017; 7:39888. [PMID: 28045076 PMCID: PMC5206671 DOI: 10.1038/srep39888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
PHF14 is a newly identified regulator of mesenchyme growth in embryonic tissues. Previous studies have shown that phf14-null mutants die just after birth due to interstitial tissue hyperplasia in major organs, including the kidneys. The aim of this study was to investigate PHF14 function in renal fibrosis. By studying the chronic kidney injury mouse model, we found that PHF14 was upregulated in fibrotic kidneys after renal insults induced by folic acid administration. Compared with wild-type mice, PHF14-null mice showed more severe renal fibrosis after pro-fibrotic stimuli. Moreover, PHF14 in rat renal fibroblasts was upregulated by transforming growth factor-β (TGF-β) stimulation; while this upregulation was inhibited when smad3 phosphorylation was blocked. A chromatin immunoprecipitation (ChIP) assay further indicated that phospho-smad3 (p-smad3) acted as a transcription factor to enhance PHF14 expression. A lack of PHF14 expression enhanced collagen I and α-smooth muscle actin (α-SMA) synthesis induced by TGF-β in vitro. PHF14 was involved in inhibition of platelet-derived growth factor (PDGF) signaling overactivation by selectively repressing PDGF receptor-α (PDGFR-α) transcription. In summary, PHF14 expression was upregulated in fibrotic models in vivo and in vitro, and the TGF-β/smad3/PHF14 pathway acted as a self-limiting mechanism in the TGF-β-dominated renal pro-fibrotic process by suppressing PDGFR-α expression.
Collapse
Affiliation(s)
- Bo Yang
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Sixiu Chen
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Ming Wu
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Lin Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, People's Republic of China
| | - Mengna Ruan
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Xujiao Chen
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Zhengjun Chen
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, People's Republic of China.,State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Changlin Mei
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Zhiguo Mao
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
100
|
Cruz-Solbes AS, Youker K. Epithelial to Mesenchymal Transition (EMT) and Endothelial to Mesenchymal Transition (EndMT): Role and Implications in Kidney Fibrosis. Results Probl Cell Differ 2017; 60:345-372. [PMID: 28409352 DOI: 10.1007/978-3-319-51436-9_13] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tubulointerstitial injury is one of the hallmarks of renal disease. In particular, interstitial fibrosis has a prominent role in the development and progression of kidney injury. Collagen-producing fibroblasts are responsible for the ECM deposition. However, the origin of those activated fibroblasts is not clear. This chapter will discuss in detail the concept of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) in the context of fibrosis and kidney disease. In short, EMT and EndMT involve a change in cell shape, loss of polarity and increased motility associated with increased collagen production. Thus, providing a new source of fibroblasts. However, many controversies exist regarding the existence of EMT and EndMT in kidney disease, as well as its burden and role in disease development. The aim of this chapter is to provide an overview of the concepts and profibrotic pathways and to present the evidence that has been published in favor and against EMT and EndMT.
Collapse
|