51
|
Protein tyrosine phosphatase Shp2 deficiency in podocytes attenuates lipopolysaccharide-induced proteinuria. Sci Rep 2017; 7:461. [PMID: 28352079 PMCID: PMC5428720 DOI: 10.1038/s41598-017-00564-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
Podocytes are specialized epithelial cells that play a significant role in maintaining the integrity of the glomerular filtration barrier and preventing urinary protein leakage. We investigated the contribution of protein tyrosine phosphatase Shp2 to lipopolysaccharide (LPS)-induced renal injury. We report increased Shp2 expression in murine kidneys and cultured podocytes following an LPS challenge. To determine the role of podocyte Shp2 in vivo, we generated podocyte-specific Shp2 knockout (pod-Shp2 KO) mice. Following administration of LPS, pod-Shp2 KO mice exhibited lower proteinuria and blood urea nitrogen concentrations than controls indicative of preserved filter integrity. In addition, renal mRNA and serum concentrations of inflammatory cytokines IL-1β, TNFα, INFγ and IL-12 p70 were significantly decreased in LPS-treated knockout mice compared with controls. Moreover, the protective effects of podocyte Shp2 deficiency were associated with decreased LPS-induced NF-κB and MAPK activation, nephrin phosphorylation and attenuated endoplasmic reticulum stress. These effects were recapitulated in differentiated E11 murine podocytes with lentiviral-mediated Shp2 knockdown. Furthermore, Shp2 deficient podocytes displayed reduced LPS-induced migration in a wound healing assay. These findings identify Shp2 in podocytes as a significant contributor to the signaling events following LPS challenge and suggest that inhibition of Shp2 in podocytes may present a potential therapeutic target for podocytopathies.
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Diabetic nephropathy, a major microvascular complication of diabetes and the most common cause of end-stage renal disease, is characterized by prominent accumulation of extracellular matrix. The membrane microdomains caveolae, and their integral protein caveolin-1, play critical roles in the regulation of signal transduction. In this review we discuss current knowledge of the contribution of caveolin-1/caveolae to profibrotic signaling and the pathogenesis of diabetic kidney disease, and assess its potential as a therapeutic target. RECENT FINDINGS Caveolin (cav)-1 is key to facilitating profibrotic signal transduction induced by several stimuli known to be pathogenic in diabetic nephropathy, including the most prominent factors hyperglycemia and angiotensin II. Phosphorylation of cav-1 on Y14 is an important regulator of these responses. In vivo studies support a pathogenic role for caveolae in the progression of diabetic nephropathy. Targeting caveolin-1/caveolae would enable inhibition of multiple profibrotic pathways, representing a novel and potentially potent therapeutic option for diabetic nephropathy.
Collapse
Affiliation(s)
- Richard Van Krieken
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
53
|
Swiatecka-Urban A. Endocytic Trafficking at the Mature Podocyte Slit Diaphragm. Front Pediatr 2017; 5:32. [PMID: 28286744 PMCID: PMC5324021 DOI: 10.3389/fped.2017.00032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Endocytic trafficking couples cell signaling with the cytoskeletal dynamics by organizing a crosstalk between protein networks in different subcellular compartments. Proteins residing in the plasma membrane are internalized and transported as cargo in endocytic vesicles (i.e., endocytosis). Subsequently, cargo proteins can be delivered to lysosomes for degradation or recycled back to the plasma membrane. The slit diaphragm is a modified tight junction connecting foot processes of the glomerular epithelial cells, podocytes. Signaling at the slit diaphragm plays a critical role in the kidney while its dysfunction leads to glomerular protein loss (proteinuria), manifesting as nephrotic syndrome, a rare condition with an estimated incidence of 2-4 new cases per 100,000 each year. Relatively little is known about the role of endocytic trafficking in podocyte signaling and maintenance of the slit diaphragm integrity. This review will focus on the role of endocytic trafficking at the mature podocyte slit diaphragm.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
54
|
Regulation of Nephrin Phosphorylation in Diabetes and Chronic Kidney Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639250 DOI: 10.1007/5584_2017_62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes is the leading cause of microalbuminuria and end-stage renal failure in industrial countries. Disruption of the filtration barrier, seen in almost all nephrotic diseases and diabetes, is the result of the loss or effacement of the podocyte foot process, notably damage of proteins within the slit diaphragm such as nephrin. For many years, nephrin has been viewed as a structural component of the slit diaphragm. It is now well recognized that nephrin contains several tyrosine residues in its cytoplasmic domain, which influences the development of glomerular injury. In this review, we propose an overview of nephrin signaling pathways in kidney injury.
Collapse
|
55
|
Angiotensin II increases glomerular permeability by β-arrestin mediated nephrin endocytosis. Sci Rep 2016; 6:39513. [PMID: 28004760 PMCID: PMC5177899 DOI: 10.1038/srep39513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023] Open
Abstract
Glomerular permeability and subsequent albuminuria are early clinical markers for glomerular injury in hypertensive nephropathy. Albuminuria predicts mortality and cardiovascular morbidity. AT1 receptor blockers protect from albuminuria, cardiovascular morbidity and mortality. A blood pressure independent, molecular mechanism for angiotensin II (Ang II) dependent albuminuria has long been postulated. Albuminuria results from a defective glomerular filter. Nephrin is a major structural component of the glomerular slit diaphragm and its endocytosis is mediated by β-arrestin2. Ang II stimulation increases nephrin-β-arrestin2 binding, nephrin endocytosis and glomerular permeability in mice. This Ang II effect is mediated by AT1-receptors. AT1-receptor mutants identified G-protein signaling to be essential for this Ang II effect. Gαq knockdown and phospholipase C inhibition block Ang II mediated enhanced nephrin endocytosis. Nephrin Y1217 is the critical residue controlling nephrin binding to β-arrestin under Ang II stimulation. Nephrin Y1217 also mediates cytoskeletal anchoring to actin via nck2. Ang II stimulation decreases nephrin nck2 binding. We conclude that Ang II weakens the structural integrity of the slit diaphragm by increased nephrin endocytosis and decreased nephrin binding to nck2, which leads to increased glomerular permeability. This novel molecular mechanism of Ang II supports the use of AT1-receptor blockers to prevent albuminuria even in normotensives.
Collapse
|
56
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
57
|
Arruda-Junior DF, Martins FL, Dariolli R, Jensen L, Antonio EL, Dos Santos L, Tucci PJF, Girardi ACC. Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure. Front Physiol 2016; 7:293. [PMID: 27462276 PMCID: PMC4941796 DOI: 10.3389/fphys.2016.00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for 4 weeks with vildagliptin (120 mg/kg/day) or vehicle by oral gavage. Echocardiography was performed before (pretreatment) and at the end of treatment (post-treatment) to evaluate cardiac function. The fractional area change (FAC) increased (34 ± 5 vs. 45 ± 3%, p < 0.05), and the isovolumic relaxation time decreased (33 ± 2 vs. 27 ± 1 ms; p < 0.05) in HF rats treated with vildagliptin (post-treatment vs. pretreatment). On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR) and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1) serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with upregulation of the apical proximal tubule endocytic receptor megalin and of the podocyte main slit diaphragm proteins nephrin and podocin. Collectively, these findings demonstrate that DPPIV inhibition exerts renoprotective effects and ameliorates cardiorenal function in rats with established HF. Long-term studies with DPPIV inhibitors are needed to ascertain whether these effects ultimately translate into improved clinical outcomes.
Collapse
Affiliation(s)
| | - Flavia L Martins
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| | - Rafael Dariolli
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| | - Leonardo Jensen
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| | - Ednei L Antonio
- Cardiology Division, Department of Medicine, Federal University of São Paulo São Paulo, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo Vitória, Brazil
| | - Paulo J F Tucci
- Cardiology Division, Department of Medicine, Federal University of São Paulo São Paulo, Brazil
| | - Adriana C C Girardi
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| |
Collapse
|
58
|
Subramanian B, Sun H, Yan P, Charoonratana VT, Higgs HN, Wang F, Lai KMV, Valenzuela DM, Brown EJ, Schlöndorff JS, Pollak MR. Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Kidney Int 2016; 90:363-372. [PMID: 27350175 DOI: 10.1016/j.kint.2016.04.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
Abstract
Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury.
Collapse
Affiliation(s)
- Balajikarthick Subramanian
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Hua Sun
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; University of Children's Hospital, Iowa City, Iowa, USA
| | - Paul Yan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Victoria T Charoonratana
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang Wang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ka-Man V Lai
- Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | | | - Elizabeth J Brown
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Department of Pediatrics, Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johannes S Schlöndorff
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
59
|
Menon MC, He JC. Prostaglandin I2 Receptor Agonism for Proteinuria and Diabetes: Good for the Goose and Good for the Gander? Diabetes 2016; 65:1149-51. [PMID: 27208182 PMCID: PMC4839201 DOI: 10.2337/dbi16-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
60
|
Keyvani Chahi A, Martin CE, Jones N. Nephrin Suppresses Hippo Signaling through the Adaptor Proteins Nck and WTIP. J Biol Chem 2016; 291:12799-12808. [PMID: 27033705 DOI: 10.1074/jbc.m116.724245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
Podocytes are key components of the kidney blood filtration barrier, and their ability to withstand hemodynamic strain is proposed to be closely tied to their unique and flexible cytoarchitecture. However, the mechanisms that control such mechanotransduction are poorly understood. We have previously established that tyrosine phosphorylation of the transmembrane protein nephrin promotes recruitment of the Nck1/2 cytoskeletal adaptor proteins and downstream actin remodeling. We now reveal that Nck integrates nephrin with the Hippo kinase cascade through association with the adaptor protein WTIP. Using mutational analysis, we show that Nck sequesters WTIP and its binding partner Lats1 to phosphorylated nephrin, resulting in decreased phospho-activation of Lats1. We further demonstrate that, coincident with nephrin dephosphorylation in a transient model of podocyte injury in mice, Lats1 is rapidly activated, and this precedes significant down-regulation of the transcription regulator Yap. Moreover, we show reduced levels of Yap protein in mice with chronic disruption of nephrin phospho-signaling. Together, these findings support the existence of a dynamic molecular link between nephrin signaling and the canonical Hippo pathway in podocytes, which may facilitate the conversion of mechanical cues to biochemical signals promoting podocyte viability.
Collapse
Affiliation(s)
- Ava Keyvani Chahi
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Claire E Martin
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nina Jones
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
61
|
|