51
|
Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa I, Talmon GA, Smith LM, Yu X, Neelamegham S, Fu J, Xia L, Ponnusamy MP, Batra SK. Disruption of C1galt1 Gene Promotes Development and Metastasis of Pancreatic Adenocarcinomas in Mice. Gastroenterology 2018; 155:1608-1624. [PMID: 30086262 PMCID: PMC6219903 DOI: 10.1053/j.gastro.2018.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/23/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) produce higher levels of truncated O-glycan structures (such as Tn and sTn) than normal pancreata. Dysregulated activity of core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) leads to increased expression of these truncated O-glycans. We investigated whether and how truncated O-glycans contributes to the development and progression of PDAC using mice with disruption of C1galt1. METHODS We crossed C1galt1 floxed mice (C1galt1loxP/loxP) with KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) mice to create KPCC mice. Growth and progression of pancreatic tumors were compared between KPC and KPCC mice; pancreatic tissues were collected and analyzed by immunohistochemistry; immunofluorescence; and Sirius red, alcian blue, and lectin staining. We used the CRISPR/Cas9 system to disrupt C1GALT1 in human PDAC cells (T3M4 and CD18/HPAF) and levels of O-glycans were analyzed by lectin blotting, mass spectrometry, and lectin pulldown assay. Orthotopic studies and RNA sequencing analyses were performed with control and C1GALT1 knockout PDAC cells. C1GALT1 expression was analyzed in well-differentiated (n = 36) and poorly differentiated (n = 23) PDAC samples by immunohistochemistry. RESULTS KPCC mice had significantly shorter survival times (median 102 days) than KPC mice (median 200 days) and developed early pancreatic intraepithelial neoplasias at 3 weeks, PDAC at 5 weeks, and metastasis at 10 weeks compared with KPC mice. Pancreatic tumors that developed in KPCC mice were more aggressive (more invasive and metastases) than those in KPC mice, had a decreased amount of stroma, and had increased production of Tn. Poorly differentiated PDAC specimens had significantly lower levels of C1GALT1 than well-differentiated PDACs. Human PDAC cells with knockout of C1GALT1 had aberrant glycosylation of MUC16 compared with control cells and increased expression of genes that regulate tumorigenesis and metastasis. CONCLUSIONS In studies of KPC mice with disruption of C1galt1, we found that loss of C1galt1 promotes development of aggressive PDACs and increased metastasis. Knockout of C1galt1 leads to increased tumorigenicity and truncation of O-glycosylation on MUC16, which could contribute to increased aggressiveness.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, NE, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - Xinheng Yu
- Department of Chemical and Biological Engineering, Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA,Address Correspondence to: Surinder K. Batra, Ph.D., and Moorthy P. Ponnusamy, Ph.D., Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, and
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA,Address Correspondence to: Surinder K. Batra, Ph.D., and Moorthy P. Ponnusamy, Ph.D., Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, and
| |
Collapse
|
52
|
Aithal A, Rauth S, Kshirsagar P, Shah A, Lakshmanan I, Junker WM, Jain M, Ponnusamy MP, Batra SK. MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets 2018; 22:675-686. [PMID: 29999426 PMCID: PMC6300140 DOI: 10.1080/14728222.2018.1498845] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION MUC16 is overexpressed in multiple cancers and plays an important role in tumorigenicity and acquired resistance to therapy. Area covered: In this review, we describe the role of MUC16 under normal physiological conditions and during tumorigenesis. First, we provide a summary of research on MUC16 from its discovery as CA125 to present anti-MUC16 therapy trials that are currently in the initial phases of clinical testing. Finally, we discuss the reasons for the limited effectiveness of these therapies and discuss the direction and focus of future research. Expert opinion: Apart from its protective role in normal physiology, MUC16 contributes to disease progression and metastasis in several malignancies. Due to its aberrant overexpression, it is a promising target for diagnosis and therapy. Cleavage and shedding of its extracellular domain is the major barrier for efficient targeting of MUC16-expressing cancers. Concerted efforts should be undertaken to target the noncleaved cell surface retained portion of MUC16. Such efforts should be accompanied by basic research to understand MUC16 cleavage and decipher the functioning of MUC16 cytoplasmic tail. While previous efforts to activate anti-MUC16 immune response using anti-CA125 idiotype antibodies have met with limited success, ideification of neo-antigenic epitopes in MUC16 that correlate with improved survival have raised raised hopes for developing MUC16-targeted immunotherapy.
Collapse
Affiliation(s)
- Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Wade M. Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States of America
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
53
|
Lock JY, Carlson TL, Carrier RL. Mucus models to evaluate the diffusion of drugs and particles. Adv Drug Deliv Rev 2018; 124:34-49. [PMID: 29117512 DOI: 10.1016/j.addr.2017.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022]
Abstract
Mucus is a complex hydrogel that acts as a natural barrier to drug delivery at different mucosal surfaces including the respiratory, gastrointestinal, and vaginal tracts. To elucidate the role mucus plays in drug delivery, different in vitro, in vivo, and ex vivo mucus models and techniques have been utilized. Drug and drug carrier diffusion can be studied using various techniques in either isolated mucus gels or mucus present on cell cultures and tissues. The species, age, and potential disease state of the animal from which mucus is derived can all impact mucus composition and structure, and therefore impact drug and drug carrier diffusion. This review provides an overview of the techniques used to characterize drug and drug carrier diffusion, and discusses the advantages and disadvantages of the different models available to highlight the information they can afford.
Collapse
|
54
|
Coelho R, Marcos-Silva L, Ricardo S, Ponte F, Costa A, Lopes JM, David L. Peritoneal dissemination of ovarian cancer: role of MUC16-mesothelin interaction and implications for treatment. Expert Rev Anticancer Ther 2017; 18:177-186. [PMID: 29241375 DOI: 10.1080/14737140.2018.1418326] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Peritoneal dissemination is a particular form of malignant progression in ovarian cancer, preceding hematogenic or lymphatic dissemination. Thus, prevention of peritoneal implantation of cancer cells is envisioned to inhibit neoplastic dissemination and therefore prolong disease remission and patient's survival. Areas covered: An extended review on the role of MUC16 (CA125) and mesothelin (MSLN), expressed in a high percentage of ovarian carcinomas, indicate that this duet is relevant for the contact between cancer cells and mesothelial cells in homotypic (cancer cell-cancer cell) and heterotypic (cancer cell-mesothelial cell) interactions. This review discusses the reasons underlying the clinical failure of immunotherapeutic strategies targeting MUC16. Clinical data on MSLN targeting agents such as antibody-based immunotoxins or antibody drug conjugates are also reviewed. The promising anti-tumor effect of CAR-T cells directed to MUC16 or MSLN is emphasized. New emerging strategies specifically disrupting the MUC16-MSLN interaction are at the forefront of this review, including TRAIL ligands bound to MSLN targeting MUC16 expressing cells and single chain monoclonal antibodies and immunoadhesins recognizing MSLN-MUC16 binding domains. Expert commentary: Based on existing evidences the authors advocate that agents targeting MUC16-MSLN may add to the therapeutic armamentarium directed to abrogate peritoneal homing of ovarian cancer.
Collapse
Affiliation(s)
- Ricardo Coelho
- a Differentiation and Cancer Group, IPATIMUP/i3S , Institute of Molecular Pathology and Immunology of the University of Porto/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal.,b FMUP , Faculty of Medicine of University of Porto , Porto , Portugal
| | - Lara Marcos-Silva
- a Differentiation and Cancer Group, IPATIMUP/i3S , Institute of Molecular Pathology and Immunology of the University of Porto/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal.,c Animal Cell Technology Unit, ITQB, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa, Lisboa, Portugal and iBET, Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal
| | - Sara Ricardo
- a Differentiation and Cancer Group, IPATIMUP/i3S , Institute of Molecular Pathology and Immunology of the University of Porto/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal.,b FMUP , Faculty of Medicine of University of Porto , Porto , Portugal
| | - Filipa Ponte
- a Differentiation and Cancer Group, IPATIMUP/i3S , Institute of Molecular Pathology and Immunology of the University of Porto/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal
| | - Antonia Costa
- b FMUP , Faculty of Medicine of University of Porto , Porto , Portugal.,d Gynecology and Obstetrics Department , Centro hospitalar de São João , Porto , Portugal.,e Monitoring and simulation of perinatal asphyxia group, INEB/i3S, Instituto de Engenharia Biomédica , Universidade do Porto, Porto, Portugal/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal
| | - Jose Manuel Lopes
- b FMUP , Faculty of Medicine of University of Porto , Porto , Portugal.,f Pathology Department , Centro hospitalar de São João , Porto , Portugal.,g Cancer Cell Signalling and Metabolism Group, IPATIMUP/i3S , Institute of Molecular Pathology and Immunology of the University of Porto/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal
| | - Leonor David
- a Differentiation and Cancer Group, IPATIMUP/i3S , Institute of Molecular Pathology and Immunology of the University of Porto/Institute for Research and Innovation in Health of University of Porto , Porto , Portugal.,b FMUP , Faculty of Medicine of University of Porto , Porto , Portugal
| |
Collapse
|
55
|
Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, Herbst B, Askan G, Bhanot U, Senbabaoglu Y, Wells DK, Cary CIO, Grbovic-Huezo O, Attiyeh M, Medina B, Zhang J, Loo J, Saglimbeni J, Abu-Akeel M, Zappasodi R, Riaz N, Smoragiewicz M, Kelley ZL, Basturk O, Gönen M, Levine AJ, Allen PJ, Fearon DT, Merad M, Gnjatic S, Iacobuzio-Donahue CA, Wolchok JD, DeMatteo RP, Chan TA, Greenbaum BD, Merghoub T, Leach SD. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017; 551:512-516. [PMID: 29132146 PMCID: PMC6145146 DOI: 10.1038/nature24462] [Citation(s) in RCA: 797] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.
Collapse
Affiliation(s)
- Vinod P. Balachandran
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marta Łuksza
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Julia N. Zhao
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romain Remark
- Tisch Cancer Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Herbst
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pathology Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh Bhanot
- Pathology Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasin Senbabaoglu
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel K. Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Attiyeh
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Medina
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Zhang
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Loo
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Saglimbeni
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohsen Abu-Akeel
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberta Zappasodi
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Radiation Oncology Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin Smoragiewicz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Z. Larkin Kelley
- Cold Spring Harbor Laboratory, New York, NY, USA. Department of Microbiology and Immunology, Weill Cornell Medical School, New York, NY, USA
| | - Olca Basturk
- Pathology Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mithat Gönen
- Biostatistics Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnold J. Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Peter J. Allen
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas T. Fearon
- Cold Spring Harbor Laboratory, New York, NY, USA. Department of Microbiology and Immunology, Weill Cornell Medical School, New York, NY, USA
| | - Miriam Merad
- Tisch Cancer Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pathology Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D. Wolchok
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald P. DeMatteo
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Radiation Oncology Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D. Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taha Merghoub
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven D. Leach
- Departments of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
56
|
Bacigalupo ML, Carabias P, Troncoso MF. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression. World J Gastroenterol 2017; 23:5266-5281. [PMID: 28839427 PMCID: PMC5550776 DOI: 10.3748/wjg.v23.i29.5266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.
Collapse
|
57
|
Fei Y, Guo P, Wang F, Li H, Lei Y, Li W, Xun X, Lu F. Identification of miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Mol Med Rep 2017; 16:4179-4186. [DOI: 10.3892/mmr.2017.7123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
58
|
Suh H, Pillai K, Morris DL. Mucins in pancreatic cancer: biological role, implications in carcinogenesis and applications in diagnosis and therapy. Am J Cancer Res 2017; 7:1372-1383. [PMID: 28670497 PMCID: PMC5489784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023] Open
Abstract
Pancreatic cancer is the fourth highest cause of cancer mortality in the world. It has very low survival rates owing to late diagnosis resulting from the absence of accurate diagnostic tools and effective therapies. Hence, there is a pressing need to develop new diagnostic and therapeutic tools. In the recent years, there has been new evidence implicating the importance of mucins in pancreatic carcinogenesis. Mucins belong to a group of heavily glycosylated proteins, and are often aberrantly expressed in a number of cancers such as pancreatic cancer. Therefore, this literature review will summarise the role of mucins and mucin expression in pancreatic neoplasms. Subsequently the paper will also discuss the most recent advances in the biological properties of mucins and their role in carcinogenesis and resistance to chemotherapy. Then it will conclude on the newest developments in diagnosis and therapy based on mucins for pancreatic cancer.
Collapse
Affiliation(s)
- Hyerim Suh
- University of New South Wales, School of MedicineSydney NSW, Australia
| | - Krishna Pillai
- Department of Surgery, St George Hospital, The University of New South WalesKogarah, Sydney NSW 2217, Australia
| | - David Lawson Morris
- Department of Surgery, St George Hospital, The University of New South WalesKogarah, Sydney NSW 2217, Australia
| |
Collapse
|
59
|
Sun H, Zhao L, Pan K, Zhang Z, Zhou M, Cao G. Integrated analysis of mRNA and miRNA expression profiles in pancreatic ductal adenocarcinoma. Oncol Rep 2017; 37:2779-2786. [PMID: 28339085 DOI: 10.3892/or.2017.5526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 11/06/2022] Open
Abstract
In the present study, to investigate the potential molecular mechanism of pancreatic ductal adenocarcinoma (PDAC), mRNA and miRNA expression profiles were integrated for systematic analysis. Results showed that a total of 76 common differentially expressed genes (DEGs) were identified from 2 mRNA expression profiles that contained 39 tumor and 15 normal samples. Notably, the tumor and normal samples were able to be clearly classified into 4 groups based on the DEGs. mRNA‑miRNA regulation network analysis indicated that 22 out of the 76 DEGs including MUC4, RRM2 and CCL2 are regulated by 5 reported miRNAs. Survival analysis using SurvExpress database demonstrated that the common DEGs were able to significantly differentiate low- and high-risk PDAC groups in 4 datasets. In summary, various biological processes are probably involved in the development and progression of PDAC. Firstly, activation of MUC4 induces nuclear translocation of β-catenin and promotes the process of angiogenesis that provides necessary nutrition or oxygen for cancer cells. Then, RRM2 induces the invasiveness of PDAC via NF-κB. Finally, the formation of an immunosuppressive tumor microenvironment by recruiting regulatory T cells with high expression of CCL2 further promotes cancer cell proliferation and vascularization. Identification of valuable biological processes and genes can be helpful for the understanding of the molecular mechanism of PDAC.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Liang Zhao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Kehua Pan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhao Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Mengtao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
60
|
Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells. Sci Rep 2017; 7:43927. [PMID: 28262838 PMCID: PMC5338267 DOI: 10.1038/srep43927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.
Collapse
|
61
|
Matte I, Legault CM, Garde-Granger P, Laplante C, Bessette P, Rancourt C, Piché A. Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicellular spheroids in peritoneal effusions. Clin Exp Metastasis 2016; 33:839-852. [PMID: 27612856 DOI: 10.1007/s10585-016-9821-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) dissemination is primarily mediated by the shedding of tumor cells from the primary site into ascites where they form multicellular spheroids that rapidly lead to peritoneal carcinomatosis. While the clinical importance and fundamental role of multicellular spheroids in EOC is increasingly appreciated, the mechanisms that regulate their formation and dictate their cellular composition remain poorly characterized. To investigate these important questions, we characterized spheroids isolated from ascites of women with EOC. We found that in these spheroids, a core of mesothelial cells was encased in a shell of tumor cells. Analysis further revealed that EOC spheroids are dynamic structures of proliferating, non-proliferating and hypoxic regions. To recapitulate these in vivo findings, we developed a three-dimensional co-culture model of primary EOC and mesothelial cells. Our analysis indicated that, compared to the OVCAR3 cell line, primary EOC cells isolated from ascites as well as mesothelial cells formed compact spheroids. Analysis of heterotypic spheroid microarchitecture revealed a structure that grossly resembles the structure of spheroids isolated from ascites. Cells that formed compact spheroids had elevated expression of β1 integrin and low expression of E-cadherin. Addition of β1 integrin blocking antibody or siRNA-mediated downregulation of β1 integrin resulted in reduced tightness of the spheroids. Interestingly, the loss of MUC16 and E-cadherin expression resulted in the formation of more compact spheroids. Therefore, our findings support the heterotypic nature of spheroids from malignant EOC ascites. In addition, our data describe an unusual link between E-cadherin expression and less compact spheroids. Our data also emphasize the role of MUC16 and β1 integrin in EOC spheroid formation.
Collapse
Affiliation(s)
- Isabelle Matte
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Clara Major Legault
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Claude Laplante
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Paul Bessette
- Département de Chirurgie, Service d'Obstétrique-Gynécologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|