51
|
Small Extracellular Vesicles Released from Ovarian Cancer Spheroids in Response to Cisplatin Promote the Pro-Tumorigenic Activity of Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20204972. [PMID: 31600881 PMCID: PMC6834150 DOI: 10.3390/ijms20204972] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the different strategies used to treat ovarian cancer, around 70% of women/patients eventually fail to respond to the therapy. Cancer stem cells (CSCs) play a role in the treatment failure due to their chemoresistant properties. This capacity to resist chemotherapy allows CSCs to interact with different components of the tumor microenvironment, such as mesenchymal stem cells (MSCs), and thus contribute to tumorigenic processes. Although the participation of MSCs in tumor progression is well understood, it remains unclear how CSCs induce the pro-tumorigenic activity of MSCs in response to chemotherapy. Small extracellular vesicles, including exosomes, represent one possible way to modulate any type of cell. Therefore, in this study, we evaluate if small extracellular vesicle (sEV) derived from ovarian cancer spheroids (OCS), which are enriched in CSCs, can modify the activity of MSCs to a pro-tumorigenic phenotype. We show that sEV released by OCS in response to cisplatin induce an increase in the migration pattern of bone marrow MSCs (BM-MSCs) and the secretion interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor A (VEGFA). Moreover, the factors secreted by BM-MSCs induce angiogenesis in endothelial cells and the migration of low-invasive ovarian cancer cells. These findings suggest that cisplatin could modulate the cargo of sEV released by CSCs, and these exosomes can further induce the pro-tumorigenic activity of MSCs.
Collapse
|
52
|
He Y, Zou L. Notch-1 inhibition reduces proliferation and promotes osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Ther Med 2019; 18:1884-1890. [PMID: 31410150 PMCID: PMC6676088 DOI: 10.3892/etm.2019.7765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
Low differentiation and high proliferation rates are critical factors affecting bone marrow mesenchymal stem cell (BMSC) tumorigenesis. The present study aimed to investigate the role of the Notch signaling pathway in BMSC proliferation and osteogenic differentiation. Mouse BMSCs were divided into control, vector, Notch1-small interfering (si)RNA, γ-secretase inhibitor, and Notch1-siRNA + γ-secretase inhibitor groups. The siRNA-Notch1, γ-secretase inhibitor, and Notch1-siRNA + γ-secretase inhibitor groups were treated with Notch1 siRNA and/or γ-secretase inhibitor. Following treatment, cell proliferation was evaluated using a Cell Counting Kit-8. Tumor-related factors, including transforming growth factor (TGF)-β1, c-Myc and p53, were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. BMSC osteogenic differentiation was induced and the cells were stained with alizarin red at 14 and 21 days. Alkaline phosphatase (AKP) activity was also evaluated. The siRNA-Notch1 and γ-secretase inhibitor both reduced BMSC proliferation and the expression of TGF-β1 and c-Myc and increased the expression of p53. Following the induction of osteogenesis and staining with alizarin red, the level of AKP was significantly higher in cells in the siRNA-Notch1 and γ-secretase inhibitor groups compared with that in the control group. It was found that Notch1 inhibition reduced proliferation and promoted the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Ying He
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lijin Zou
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Dr Lijin Zou, Burn Center, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
53
|
Hill BS, Sarnella A, D'Avino G, Zannetti A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol 2019; 60:202-213. [PMID: 31377307 DOI: 10.1016/j.semcancer.2019.07.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Currently, metastasis remains the primary cause of death of patients with breast cancer despite the important advances in the treatment of this disease. In the complex tumour microenvironment network, several malignant and non-malignant cell types as well as components of extracellular matrix cooperate in promoting the metastatic spread of breast carcinoma. Many components of the stromal compartment are recruited from distant sites to the tumour including mesenchymal stem cells, endothelial cells, macrophages and other immune cells whereas other cells such as fibroblasts are already present in both primary and secondary lesions. When these cells come into contact with cancer cells they are "educated" and acquire a pro-tumoural phenotype, which support all the steps of the metastatic cascade. In this Review, we highlight the role played by each stromal component in guiding cancer cells in their venture towards colonizing metastatic sites.
Collapse
|
54
|
Wessely A, Waltera A, Reichert TE, Stöckl S, Grässel S, Bauer RJ. Induction of ALP and MMP9 activity facilitates invasive behavior in heterogeneous human BMSC and HNSCC 3D spheroids. FASEB J 2019; 33:11884-11893. [PMID: 31366234 DOI: 10.1096/fj.201900925r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells capable of differentiating into adipocytic, osteogenic, chondrogenic, and myogenic lineages. There is growing evidence that MSCs home into the tumor microenvironment attracted by a variety of signals such as chemokines, growth factors, and cytokines. Tumor-homing stem cells may originate from bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs. Recent scientific data suggest that MSCs in combination with tumor cells can either promote or inhibit tumorigenic behavior. In head and neck squamous cell carcinoma (HNSCC), BMSCs are reported to be enriched with a potential negative role. Here, we evaluated the effect of BMSCs from 4 different donors in combination with 4 HNSCC cell lines in a 3-dimensional multicellular spheroid model. Heterogeneous combinations revealed an up-regulation of gene and protein expression of osteogenic markers runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP) together with a substantial secretion of matrix metalloproteinase 9. Moreover, heterogenous BMSC/tumor spheroids showed increased invasion compared with homogenous spheroids in a Boyden chamber invasion assay. Furthermore, inhibition of ALP resulted in a substantially decreased spreading of heterogeneous spheroids on laminin-rich matrix. In summary, our data suggest a prometastatic effect of BMSCs combined with HNSCC.-Wessely, A., Waltera, A., Reichert, T. E., Stöckl, S., Grässel, S., Bauer, R. J. Induction of ALP and MMP9 activity facilitates invasive behavior in heterogeneous human BMSC and HNSCC 3D-spheroids.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Anna Waltera
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Stöckl
- Department of Orthopedic Surgery, Experimental Orthopedics, Center of Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Center of Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.,Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
55
|
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2019; 60:225-237. [PMID: 31212021 DOI: 10.1016/j.semcancer.2019.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm that give rise to several mesenchymal lineages, including osteoblasts, adipocytes, chondrocytes and myocytes. Their potent ability to home to tumors coupled with their differentiation potential and immunosuppressive function positions MSCs as key regulators of tumor fate. Here we review the existing knowledge on the involvement of MSCs in multiple tumor-promoting processes, including angiogenesis, epithelial-mesenchymal transition, metastasis, immunosuppression and therapy resistance. We also discuss the clinical potential of MSC-based therapy for cancer.
Collapse
Affiliation(s)
- Michael Timaner
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, and Division of Gastroenterology, Wan Fang Hospital, and Graduate Institutes of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei Taiwan; National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Yuval Shaked
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
56
|
Jiang Y, Wells A, Sylakowski K, Clark AM, Ma B. Adult Stem Cell Functioning in the Tumor Micro-Environment. Int J Mol Sci 2019; 20:ijms20102566. [PMID: 31130595 PMCID: PMC6566759 DOI: 10.3390/ijms20102566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor progression from an expanded cell population in a primary location to disseminated lethal growths subverts attempts at cures. It has become evident that these steps are driven in a large part by cancer cell-extrinsic signaling from the tumor microenvironment (TME), one cellular component of which is becoming more appreciated for potential modulation of the cancer cells directly and the TME globally. That cell is a heterogenous population referred to as adult mesenchymal stem cells/multipotent stromal cells (MSCs). Herein, we review emerging evidence as to how these cells, both from distant sources, mainly the bone marrow, or local resident cells, can impact the progression of solid tumors. These nascent investigations raise more questions than they answer but paint a picture of an orchestrated web of signals and interactions that can be modulated to impact tumor progression.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA.
| | - Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA.
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA.
| | - Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA.
| |
Collapse
|
57
|
LncRNA HOTAIR in Tumor Microenvironment: What Role? Int J Mol Sci 2019; 20:ijms20092279. [PMID: 31072041 PMCID: PMC6539022 DOI: 10.3390/ijms20092279] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
lncRNAs participate in many cellular processes, including regulation of gene expression at the transcriptional and post-transcriptional levels. In addition, many lncRNAs can contribute to the development of different human diseases including cancer. The tumor microenvironment (TME) plays an important role during tumor growth and metastatic progression, and most of these lncRNAs have a key function in TME intracellular signaling. Among the numerous identified lncRNAs, several experimental evidences have shown the fundamental role of the lncRNA HOTAIR in carcinogenesis, also highlighting its use as a circulating biomarker. In this review we described the contribution of HOTAIR in the TME modulation, highlighting its relation with cellular and non-cellular components during tumor evolution and progression.
Collapse
|
58
|
Plava J, Cihova M, Burikova M, Matuskova M, Kucerova L, Miklikova S. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol Cancer 2019; 18:67. [PMID: 30927930 PMCID: PMC6441200 DOI: 10.1186/s12943-019-0960-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Although solid tumors comprise malignant cells, they also contain many different non-malignant cell types in their micro-environment. The cellular components of the tumor stroma consist of immune and endothelial cells combined with a heterogeneous population of stromal cells which include cancer-associated fibroblasts. The bi-directional interactions between tumor and stromal cells therefore substantially affect tumor cell biology.Herein, we discuss current available information on these interactions in breast cancer chemo-resistance. It is acknowledged that stromal cells extrinsically alter tumor cell drug responses with profound consequences for therapy efficiency, and it is therefore essential to understand the molecular mechanisms which contribute to these substantial alterations because they provide potential targets for improved cancer therapy. Although breast cancer patient survival has improved over the last decades, chemo-resistance still remains a significant obstacle to successful treatment.Appreciating the important experimental evidence of mesenchymal stromal cells and cancer-associated fibroblast involvement in breast cancer clinical practice can therefore have important therapeutic implications.
Collapse
Affiliation(s)
- Jana Plava
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
59
|
Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112:108625. [PMID: 30784920 DOI: 10.1016/j.biopha.2019.108625] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with the capacity for self-renewal and differentiation into multiple cell types, exhibit the property of homing towards tumor sites and immunosuppression and have been used as tumor-tropic vectors for tumor therapy. However, few studies have investigated the underlying molecular mechanisms that link MSCs to targeted tumor cells. In this study, we elucidated the inhibitory effects and mechanisms of human bone marrow mesenchymal stem cells (hBMSCs) on human glioma U251 cells using a co-culture system in vitro. The anti-tumor activity of co-cultured hBMSCs was assessed by morphological changes, the MTT assay, and Hoechst 33258 staining. Cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Cell migration and invasion were evaluated using a 24-well Transwell chamber. A proteomics approach was used to identify differentially expressed proteins after hBMSCs treatment in U251 cells, and quantitative polymerase chain reaction was used to validate the results. Bioinformatics analyses were also implemented to better understand the identified proteins, and Western blotting analyses were used to analyze the associated proteins. The results showed that hBMSCs could inhibit cell proliferation and induce cell cycle arrest in the G1 phase, resulting in apoptosis of U251 cells. Transwell and Matrigel invasion assays showed that hBMSCs reduced the migration and invasion of U251 cells. Using proteomics, 11 differentially expressed proteins were identified and observed. Bioinformatics analyses indicated that the identified proteins participated in several biological processes and exhibited various molecular functions, mainly related to the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Moreover, hBMSCs regulated changes in proteins linked to cell apoptosis and cell cycle progression and inhibited the epithelial-mesenchymal transition (EMT)-like and PI3K/AKT pathway. Taken together, the findings in our study suggest that hBMSCs inhibit U251 cells proliferation and the EMT-like by downregulating the PI3K/AKT signaling pathway, which indicates that hBMSCs have a potential antitumor characteristics and should be further explored in future glioma therapy.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
60
|
Ma Z, Cui X, Lu L, Chen G, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Exosomes from glioma cells induce a tumor-like phenotype in mesenchymal stem cells by activating glycolysis. Stem Cell Res Ther 2019; 10:60. [PMID: 30770778 PMCID: PMC6377719 DOI: 10.1186/s13287-019-1149-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/23/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background Exosomes are nanoscale membrane vesicles secreted by both normal and cancer cells, and cancer cell-derived exosomes play an important role in the cross-talk between cancer cells and other cellular components in the tumor microenvironment. Mesenchymal stem cells (MSCs) have tropism for tumors and have been used as tumor-tropic vectors for tumor therapy; however, the safety of such therapeutic use of MSCs is unknown. In this study, we investigated the role of glioma cell-derived exosomes in the tumor-like phenotype transformation of human bone marrow mesenchymal stem cells (hBMSCs) and explored the underlying molecular mechanisms. Methods The effect of exosomes from U251 glioma cells on the growth of hBMSCs was evaluated with the CCK-8 assay, KI67 staining, and a cell cycle distribution assessment. The migration and invasion of hBMSCs were evaluated with a Transwell assay. A proteomics and bioinformatics approach, together with Western blotting and reverse transcriptase-polymerase chain reaction, was used to investigate the effect of U251 cell-derived exosomes on the proteome of hBMSCs. Results U251 cell-derived exosomes induced a tumor-like phenotype in hBMSCs by enhancing their proliferation, migration, and invasion and altering the production of proteins involved in the regulation of the cell cycle. Moreover, U251 cell-derived exosomes promoted the production of the metastasis-related proteins MMP-2 and MMP-9, glioma marker GFAP, and CSC markers (CD133 and Nestin). The ten differentially expressed proteins identified participated in several biological processes and exhibited various molecular functions, mainly related to the inactivation of glycolysis. Western blotting showed that U251 cell-derived exosomes upregulated the levels of Glut-1, HK-2, and PKM-2, leading to the induction of glucose consumption and generation of lactate and ATP. Treatment with 2-deoxy-d-glucose significantly reversed these effects of U251 cell-derived exosomes on hBMSCs. Conclusions Our data demonstrate that glioma cell-derived exosomes activate glycolysis in hBMSCs, resulting in their tumor-like phenotype transformation. This suggests that interfering with the interaction between exosomes and hBMSCs in the tumor microenvironment has potential as a therapeutic approach for glioma. Graphical abstract ᅟ![]()
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xue Cui
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, Gansu, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, Gansu, China. .,School of Basic Medical Sciences of Lanzhou University, School of Medicine, 205 Tianshui Rd South, Lanzhou, 730000, Gansu, China.
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, Gansu, China. .,School of Basic Medical Sciences of Lanzhou University, School of Medicine, 205 Tianshui Rd South, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
61
|
Serhal R, Saliba N, Hilal G, Moussa M, Hassan GS, El Atat O, Alaaeddine N. Effect of adipose-derived mesenchymal stem cells on hepatocellular carcinoma: In vitro inhibition of carcinogenesis. World J Gastroenterol 2019; 25:567-583. [PMID: 30774272 PMCID: PMC6371009 DOI: 10.3748/wjg.v25.i5.567] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of adipose-derived mesenchymal stem cells (ADMSCs) and their conditioned media (CM) on hepatocellular carcinoma (HCC) cell tumorigenesis.
METHODS The proliferation rate of HepG2 and PLC-PRF-5 HCC cancer cells was measured using the trypan blue exclusion method and confirmed using the cell-counting kit 8 (commonly known as CCK-8) assay. Apoptosis was detected by flow cytometry using annexin V-FITC. Protein and mRNA expression was quantified by ELISA and real time PCR, respectively. Migration and invasion rates were performed by Transwell migration and invasion assays. Wound healing was examined to confirm the data obtained from the migration assays.
RESULTS Our data demonstrated that when co-culturing HCC cell lines with ADMSCs or treating them with ADMSC CM, the HCC cell proliferation rate was significantly inhibited and the apoptosis rate increased. The decreased proliferation rate was accompanied by an upregulation of P53 and Retinoblastoma mRNA and a downregulation of c-Myc and hTERT mRNA levels. More notably, ADMSCs and their CM suppressed the expression of the two important markers of HCC carcinogenicity, alpha-fetoprotein and Des-gamma-carboxyprothrombin. In addition, the migration and invasion levels of HepG2 and PLC-PRF-5 cells significantly decreased, potentially through increased expression of the tissue inhibitor metalloproteinases TIMP-1, TIMP-2 and TIMP-3.
CONCLUSION These findings shed new light on a protective and therapeutic role for ADMSCs and their CM in controlling HCC invasiveness and carcinogenesis.
Collapse
Affiliation(s)
- Rim Serhal
- Regenerative Medicine Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Nagib Saliba
- Surgery Department, Faculty of Medicine, Saint-Joseph University and Hotel-Dieu de France, Beirut 1107 2180, Lebanon
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Campus of Medical Sciences, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Mayssam Moussa
- Regenerative Medicine Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Ghada S Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Oula El Atat
- Regenerative Medicine Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Nada Alaaeddine
- Regenerative Medicine Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
62
|
Herea DD, Labusca L, Radu E, Chiriac H, Grigoras M, Panzaru OD, Lupu N. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:666-676. [PMID: 30423753 DOI: 10.1016/j.msec.2018.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) functionalized with different therapeutics delivered by mesenchymal stem cells represent a promising approach to improve the typical drug delivery methods. This innovative method, based on the "Trojan horse" principle, faces however important challenges related to the viability of the MNPs-loaded cells and drug stability. In the present study we report about an in vitro model of adipose-derived stem cells (ADSCs) loaded with palmitate-coated MNPs (MNPsPA) as antitumor drug carriers targeting a 3D tissue-like osteosarcoma cells. Cell viability, MNPsPA-drug loading capacity, cell speed, drug release rate, magnetization and zeta potential were determined and analysed. The results revealed that ADSCs loaded with MNPsPA-drug complexes retained their viability at relatively high drug concentrations (up to 1.22 pg antitumor drug/cell for 100% cell viability) and displayed higher speed compared to the targeted tumor cells in vitro. The magnetization of the sterilized MNPsPA complexes was 67 emu/g within a magnetic field corresponding to induction values of clinical MRI devices. ADSCs payload was around 9 pg magnetic material/cell, with an uptake rate of 6.25 fg magnetic material/min/cell. The presented model is a proof-of-concept platform for stem cells-mediated MNPs-drug delivery to solid tumors that could be further correlated with MRI tracking and magnetic hyperthermia for theranostic applications.
Collapse
Affiliation(s)
- Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Luminita Labusca
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania.
| | - Ecaterina Radu
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Horia Chiriac
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Marian Grigoras
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Oana Dragos Panzaru
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Nicoleta Lupu
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| |
Collapse
|
63
|
An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2018; 38:2885-2898. [PMID: 30568223 PMCID: PMC6755962 DOI: 10.1038/s41388-018-0637-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a complex multistep process that involves critical interactions between cancer cells and a variety of stromal components in the tumor microenvironment, which profoundly influence the different aspects of the metastatic cascade and organ tropism of disseminating cancer cells. Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Evidence has demonstrated that ovarian cancer possesses specific metastatic tropism for the adipose-rich omentum, which has a pivotal role in the creation of the metastatic tumor microenvironment in the intraperitoneal cavity. Considering the distinct biology of ovarian cancer metastasis, the elucidation of the cellular and molecular mechanisms underlying the reciprocal interplay between ovarian cancer cells and surrounding stromal cell types in the adipose-rich metastatic microenvironment will provide further insights into the development of novel therapeutic approaches for patients with advanced ovarian cancer. Herein, we review the biological mechanisms that regulate the highly orchestrated crosstalk between ovarian cancer cells and various cancer-associated stromal cells in the metastatic tumor microenvironment with regard to the omentum by illustrating how different stromal cells concertedly contribute to the development of ovarian cancer metastasis and metastatic tropism for the omentum.
Collapse
|
64
|
Camorani S, Fedele M, Zannetti A, Cerchia L. TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities. Pharmaceuticals (Basel) 2018; 11:ph11040123. [PMID: 30428522 PMCID: PMC6316260 DOI: 10.3390/ph11040123] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2), and no alternative targetable molecules have been identified so far. The high biological and clinical heterogeneity adds a further challenge to TNBC management and requires the identification of new biomarkers to improve detection by imaging, thus allowing the specific treatment of each individual TNBC subtype. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique holds great promise to the search for novel targetable biomarkers, and aptamer-based molecular approaches have the potential to overcome obstacles of current imaging and therapy modalities. In this review, we highlight recent advances in oligonucleotide aptamers used as imaging and/or therapeutic agents in TNBC, discussing the potential options to discover, image and hit new actionable targets in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | | | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| |
Collapse
|
65
|
Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression. J Cell Physiol 2018; 234:3394-3409. [PMID: 30362503 DOI: 10.1002/jcp.27326] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.
Collapse
Affiliation(s)
- Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Maj M, Kokocha A, Bajek A, Drewa T. The interplay between adipose-derived stem cells and bladder cancer cells. Sci Rep 2018; 8:15118. [PMID: 30310111 PMCID: PMC6181926 DOI: 10.1038/s41598-018-33397-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering approaches offer alternative strategies for urinary diversion after radical cystectomy. Possible triggering of cancer recurrence remains, however, a significant concern in the application of stem-cell based therapies for oncological patients. Soluble mediators secreted by stem cells induce tissue remodelling effects, but may also promote cancer cells growth and metastasis. We observed a substantial increase in the concentration of IL-6 and IL-8 in the secretome of adipose-derived stem cells (ASCs) co-cultured with bladder cancer cells. Concentrations of GM-CSF, MCP-1 and RANTES were also elevated. Bioactive molecules produced by ASCs increased the viability of 5637 and HT-1376 cells by respectively 15.4% and 10.4% (p < 0.0001). A trend in reduction of adhesion to ECM components was also noted, even though no differences in β-catenin expression were detected. When HT-1376 cells were co-cultured with ASCs their migration and invasion increased by 24.5% (p < 0.0002) and 18.2% (p < 0.002). Expression of p-ERK1/2 increased in 5637 cells (2.2-fold; p < 0.001) and p-AKT in HB-CLS-1 cells (2.0-fold; p < 0.001). Our results confirm that ASCs crosstalk with bladder cancer cells in vitro what influences their proliferation and invasive properties. Since ASCs tropism to tumour microenvironment is well documented their application towards post-oncologic reconstruction should be approached with caution.
Collapse
Affiliation(s)
- Malgorzata Maj
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland.
| | - Anna Kokocha
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Anna Bajek
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| |
Collapse
|
67
|
Wu SY, Huang YJ, Tzeng YM, Huang CYF, Hsiao M, Wu ATH, Huang TH. Destruxin B Suppresses Drug-Resistant Colon Tumorigenesis and Stemness Is Associated with the Upregulation of miR-214 and Downregulation of mTOR/β-Catenin Pathway. Cancers (Basel) 2018; 10:cancers10100353. [PMID: 30257507 PMCID: PMC6209980 DOI: 10.3390/cancers10100353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Drug resistance represents a major challenge for treating patients with colon cancer. Accumulating evidence suggests that Insulin-like growth factor (IGF)-associated signaling promotes colon tumorigenesis and cancer stemness. Therefore, the identification of agents, which can disrupt cancer stemness signaling, may provide improved therapeutic efficacy. Methods: Mimicking the tumor microenvironment, we treated colon cancer cells with exogenous IGF1. The increased stemness of IGF1-cultured cells was determined by ALDH1 activity, side-population, tumor sphere formation assays. Destruxin B (DB) was evaluated for its anti-tumorigenic and stemness properties using cellular viability, colony-formation tests. The mimic and inhibitor of miR-214 were used to treat colon cancer cells to show its functional association to DB treatment. In vivo mouse models were used to evaluate DB’s ability to suppress colon tumor-initiating ability and growth inhibitory function. Results: IGF1-cultured colon cancer cells showed a significant increase in 5-FU resistance and enhanced stemness properties, including an increased percentage of ALDH1+, side-population cells, tumor sphere generation in vitro, and increased tumor initiation in vivo. In support, using public databases showed that increased IGF1 expression was significantly associated with a poorer prognosis in patients with colon cancer. DB, a hexadepsipeptide mycotoxin, was able to suppress colon tumorigenic phenotypes, including colony and sphere formation. The sequential treatment of DB, followed by 5-FU, synergistically inhibited the viability of colon cancer cells. In vivo studies showed that DB suppressed the tumorigenesis by 5-FU resistant colon cells, and in a greater degree when combined with 5-FU. Mechanistically, DB treatment was associated with decreased the mammalian target of rapamycin (mTOR) and β-catenin expression and an increased miR-214 level. Conclusion: We provided evidence of DB as a potential therapeutic agent for overcoming 5-FU resistance induced by IGF1, and suppressing cancer stem-like properties in association with miR-214 regulation. Further investigation is warranted for its translation to clinical application.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 112, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Alexander T H Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan.
- Graduate Institute of Medical Sciences, National Defence Medical Center, Taipei 114, Taiwan.
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 204 Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 23741, Taiwan.
| |
Collapse
|
68
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
69
|
Bhattacharya R, Panda CK, Nandi S, Mukhopadhyay A. An insight into metastasis: Random or evolving paradigms? Pathol Res Pract 2018; 214:1064-1073. [PMID: 30078401 DOI: 10.1016/j.prp.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Mechanical or fostered molecular events define metastatic cascade. Three distinct sets of molecular events characterize metastasis, viz invasion of extracellular matrix; angiogenesis, vascular dissemination and anoikis resistance; tumor homing and relocation of tumor cells to selective organ. Invasion of extracellular matrix requires epithelial to mesenchymal transition through disrupted lamellopodia formation and contraction of actin cytoskeleton; aberration of Focal adhesion complex formation involving integrins and the extracellular matrix; degradation of extracellular matrix by matrix metalloproteases; faulty immune surveillance in tumor microenvironment and an upregulated proton efflux pump NHE1 in tumors. Vascular dissemination and anoikis resistance depend upon upregulation of integrins, phosphorylation of CDCP1, attenuated apoptotic pathways and upregulation of angiogenesis. Tumor homing depends on recruitment of mesenchymal stem cells, expression on chemokines and growth factors, upregulated stem cell renewal pathways. Despite of many potential challenges in curbing metastasis, future targeted therapies involving immunotherapy, stem cell engineered and oncolytic virus based therapy, pharmacological activation of circadian clock are held promising. To sum up, metastasis is a complex cascade of events and warrants detailed molecular understanding for development of therapeutic strategies.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P Mukherjee Road, Kolkata, 700026, India.
| | - Sourav Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Ashis Mukhopadhyay
- Department of Haemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| |
Collapse
|
70
|
Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 2018. [PMID: 29849930 DOI: : 10.4252/wjsc.v10.i5.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
Collapse
Affiliation(s)
- Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency County Hospital Saint Spiridon Iasi Romania, Iasi 700000, Romania
| | - Dumitru Daniel Herea
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Bioinformatics and Modelling SBIM, Frankfurt 45367, Germany
| |
Collapse
|
71
|
Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 2018; 10:43-56. [PMID: 29849930 PMCID: PMC5973910 DOI: 10.4252/wjsc.v10.i5.43] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
Collapse
Affiliation(s)
- Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency County Hospital Saint Spiridon Iasi Romania, Iasi 700000, Romania
| | - Dumitru Daniel Herea
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Bioinformatics and Modelling SBIM, Frankfurt 45367, Germany
| |
Collapse
|
72
|
Del Vecchio F, Lee GH, Hawezi J, Bhome R, Pugh S, Sayan E, Thomas G, Packham G, Primrose J, Pichler M, Mirnezami A, Calin G, Bullock M. Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Lett 2018; 421:94-102. [PMID: 29458141 DOI: 10.1016/j.canlet.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNA transcripts which have limited protein coding potential. They perform a variety of cellular functions in health, but have also been implicated during malignant transformation. A further theme in recent years is the critical role of the tumour microenvironment and the dynamic interactions between cancer and stromal cells in promoting invasion and disease progression. Whereas the contribution of deregulated lncRNAs within cancer cells has received considerable attention, their significance within the tumour microenvironment is less well understood. The tumour microenvironment consists of cancer-associated stromal cells and structural extracellular components which interact with one another and with the transformed epithelium via complex extracellular signalling pathways. LncRNAs are directly and indirectly involved in tumour/stroma cross-talk and help stimulate a permissive tumour microenvironment which is more conducive for invasive tumour growth. Furthermore, lncRNAs play key roles in determining the phenotype of cancer associated stromal cells and contribute to angiogenesis and immune evasion pathways, extracellular-matrix (ECM) turnover and the response to hypoxic stress. Here we explore the multifaceted roles of lncRNAs within the tumour microenvironment and their putative pathophysiological effects.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gui Han Lee
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Joamir Hawezi
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Rahul Bhome
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Sian Pugh
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Emre Sayan
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gareth Thomas
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Graham Packham
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - John Primrose
- Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Mirnezami
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - George Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Marc Bullock
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK.
| |
Collapse
|
73
|
Pelagalli A, Nardelli A, Lucarelli E, Zannetti A, Brunetti A. Autocrine signals increase ovine mesenchymal stem cells migration through Aquaporin-1 and CXCR4 overexpression. J Cell Physiol 2018; 233:6241-6249. [PMID: 29345324 DOI: 10.1002/jcp.26493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Sheep is a relevant large animal model that is frequently used to test innovative tissue engineering (TE) approaches especially for bone reconstruction. Mesenchymal stem cells (MSCs) are used in TE applications because they represent key component of adult tissue repair. Importantly, MSCs from different species show similar characteristics, which facilitated their application in translational studies using animal models. Nowadays, many researches are focusing on the use of ovine mesenchymal stem cells (oMSCs) in orthopedic preclinical settings for regenerative medicine purposes. Therefore, there is a need to amplify our knowledge on the mechanisms underlying the behaviour of these cells. Recently, several studies have shown that MSC function is largely dependent on factors that MSCs release in the environment, as well as, in conditioned medium (CM). It has been demonstrated that MSCs through autocrine and paracrine signals are able to stimulate proliferation, migration, and differentiation of different type of cells including themselves. In this study, we investigated the effects of the CM produced by oMSCs on oMSCs themselves and we explored the signal pathways involved. We observed that CM caused an enhancement of oMSC migration. Furthermore, we found that CM increased levels of two membrane proteins involved in cell migration, Aquaporin 1 (AQP1), and C-X-C chemokine receptor type 4 (CXCR4), and activated Akt and Erk intracellular signal pathways. In conclusion, taken together our results suggest the high potential of autologous CM as a promising tool to modulate behaviour of MSCs thus improving their use in therapeutically approaches.
Collapse
Affiliation(s)
- Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.,Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Anna Nardelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
74
|
Angelico G, Caltabiano R, Loreto C, Ieni A, Tuccari G, Ledda C, Rapisarda V. Immunohistochemical Expression of Aquaporin-1 in Fluoro-Edenite-Induced Malignant Mesothelioma: A Preliminary Report. Int J Mol Sci 2018; 19:E685. [PMID: 29495596 PMCID: PMC5877546 DOI: 10.3390/ijms19030685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/11/2018] [Accepted: 02/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The immunohistochemical expression of aquaporin-1 (AQP1) in asbestos-related malignant pleural mesothelioma (MPM) is emerging as a useful prognostic indicator of improved survival. A significantly increased incidence of MPM in a small town in southern Italy was ascribed to exposure to fluoro-edenite (FE), a naturally occurring asbestos fiber. We investigated the immunohistochemical expression of AQP1 in patients affected by FE-related MPM; taking into consideration its suggested independent prognostic role, its possible correlation with clinicopathological parameters and patient outcome was also evaluated. METHODS Ten patients were selected for this study, as neoplastic tissue blocks, clinical and follow-up data were available. The immunohistochemical overexpression of AQP1 was defined as ≥50% of tumor cells showing membranous staining. RESULTS Six cases showed AQP1 expression in ≥50% of tumor cells; in this group, a significant association of AQP1 overexpression with an increased median overall survival (OS) of 26.3 months was observed. By contrast, four patients exhibited an AQP1 score of <50% of stained cells, with a shorter median OS of 8.9 months. CONCLUSIONS The present study represents further confirmation of the hypothesized prognostic role of AQP1, which seems a reliable prognostic indicator.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Anatomic Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, 98122 Messina, Italy.
| | - Rosario Caltabiano
- Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, 95124 Catania, Italy.
| | - Carla Loreto
- Anatomy and Histology, Department of Biomedical Sciences and Biotechnologies, University of Catania, 95124 Catania, Italy.
| | - Antonio Ieni
- Anatomic Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, 98122 Messina, Italy.
| | - Giovanni Tuccari
- Anatomic Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, 98122 Messina, Italy.
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|