51
|
Moreau G, Ramal AF, Letana SD, Horgan FG. Death in the paddy field: Carcass decomposition and associated arthropods in subunits of a rice field landscape. Forensic Sci Int 2022; 335:111288. [PMID: 35397359 DOI: 10.1016/j.forsciint.2022.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Although rice production landscapes are often the scene of homicides, vertebrate decomposition and associated arthropods have never been described from rice paddies. Tropical rice landscapes are typically composed of irrigated/non-irrigated rice fields, fallow land (i.e., uncultivated fields), and low earthen levees (bunds) used as access pathways. The specific microclimatic and environmental conditions associated with each subunit of rice field landscapes are likely to impact carcass decomposition as well as the arthropod species associated with carrion. Here, we tested the hypothesis that the combined effects of constraints on arthropod colonization and survival, scarcity of necromass, limited habitat architecture, and recurrent disturbance limit the ability of carrion-related arthropods to colonize corpses and large carcasses in tropical rice-fields. Our results from monitoring pig carcasses in Philippine rice fields indicated that vertebrate decomposition in irrigated fields was slower and incomplete when compared to non-irrigated fields and bunds. Carcasses were colonized by a small complex of carrion-related arthropods that differed in composition and relative species abundance between dry bunds and relatively humid rice paddies. Fire ants (Solenopsis germinata) were observed frequently on carcasses exposed on bunds, rarely in non-irrigated fields, and almost never in irrigated fields. The presence of fire ants was associated with reduced blow fly (Chrysomya megacephala) abundance. Taken together, this indicates that the arthropod fauna associated with carcasses in tropical rice fields is relatively simple in contrast to the generally high arthropod diversity reported for other ecosystems at tropical latitudes. The limited richness of the community also means that an understanding of the development of one abundant calliphorid blow fly, C. megacephala, may be sufficient to investigate deaths and homicides under conditions similar to the ones described in this study.
Collapse
Affiliation(s)
- Gaétan Moreau
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Angelee Fame Ramal
- Food and Agriculture Organization of the United Nations, Manila 1554, Philippines.
| | - Socrates D Letana
- Bohart Museum of Entomology, University of California, Davis 95616, USA; Natural History Museum of Denmark, University of Copenhagen, København DK-1350, Denmark.
| | - Finbarr G Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, Co. Cork, Ireland; Universidad Católica del Maule, Facultad de Ciencias Agrarias y Forestales, Escuela de Agronomía, Casilla 7-D, Curicó, Chile.
| |
Collapse
|
52
|
Gharnit E, Dammhahn M, Garant D, Réale D. Resource Availability, Sex, and Individual Differences in Exploration Drive Individual Diet Apecialization. Am Nat 2022; 200:1-16. [DOI: 10.1086/719669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
53
|
Hopf JK, Caselle JE, White JW. Recruitment variability and sampling design interact to influence the detectability of protected area effects. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2511. [PMID: 34870882 DOI: 10.1002/eap.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Correctly identifying the effects of a human impact on a system is a persistent challenge in ecology, driven partly by the variable nature of natural systems. This is particularly true in many marine fishery species, which frequently experience large temporal fluctuations in recruitment that produce interannual variations in populations. This variability complicates efforts to maintain stocks at management targets or detect the effects of rebuilding efforts. We address this challenge in the context of no-take marine reserves by exploring how variable larval recruitment could interact with the timing of reserve establishment and choice of sampling design to affect population dynamics and the detectability of reserve effects. To predict population changes in the years following a no-take reserve implementation, we first tested for periodicity in larval recruitment in an important U.S. Pacific coast recreational fishery species (kelp bass, Paralabrax clathratus) and then included that pattern in a population model. We also used this model to determine the detectability of population increases under alternative sampling approaches and minimum age sampled. Kelp bass larval recruitment in the Channel Islands, California, peaked every about six (major) and about two (minor) years. Our model showed that establishing a reserve during a peak or trough enhanced or delayed, respectively, the post-reserve population increases. However, establishing a reserve during a recruitment peak could obscure a failing reserve, that is, a reserve that is unable to secure longer-term metapopulation persistence. Recruitment peaks and troughs also interacted with sampling design to affect the detectability of reserve effects. Designs that compared inside-outside were the most robust to variable recruitment, but failed to capture whether the reserve has improved metapopulation growth. Designs that included a time element (e.g., before-after) are more suited to assessing reserve effectiveness, but were sensitive to recruitment variation and detectability can change year-to-year. Notably, detectability did not always increase monotonically with reserve age; the optimal time for detectability depended on the minimum age of organisms sampled and was greatest when the cohort of a major recruitment peak first appeared in the sampling. We encourage managers to account for variable recruitment when planning monitoring and assessment programs.
Collapse
Affiliation(s)
- Jess K Hopf
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - J Wilson White
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| |
Collapse
|
54
|
Banko PC, Peck RW, Yelenik SG, Paxton EH, Bonaccorso F, Montoya‐Aiona K, Hughes RF, Perakis S. Hypotheses and lessons from a native moth outbreak in a low‐diversity, tropical rainforest. Ecosphere 2022. [DOI: 10.1002/ecs2.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul C. Banko
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Robert W. Peck
- Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo Hawai‘i National Park Hawai'i USA
| | - Stephanie G. Yelenik
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
- Rocky Mountain Research Center U.S. Forest Service Reno Nevada USA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Frank Bonaccorso
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - Kristina Montoya‐Aiona
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawai‘i National Park Hawai'i USA
| | - R. Flint Hughes
- Institute for Pacific Island Forestry U.S. Forest Service Hilo Hawai'i USA
| | - Steven Perakis
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon USA
| |
Collapse
|
55
|
Zhou Z, Zheng M, Xia J, Wang C. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150569. [PMID: 34597552 DOI: 10.1016/j.scitotenv.2021.150569] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition is one of major environmental concerns and alters the microbial communities in the pedosphere. A central debate in governing microbial community is on the relative importance of deterministic (ecological selection) vs. stochastic processes (dispersal, drift, diversification or speciation), which consequently limited our understanding of microbial assembly in response to N addition. Here, we conducted a global analysis of high-throughput sequencing data to reveal the mechanisms of N-addition effects on soil microbial communities. The results show that N addition significantly shifted the microbial community structure and promoted microbial beta diversity, particularly in the N-limited ecosystems. Changes in microbial structure and beta diversity increased significantly as the N addition rate, study duration, and the degree of soil acidification increased. The stochastic processes are more important than the deterministic processes for microbial community assembly, while N addition significantly increase the importance of stochastic processes whether the phylogenetic relationship is considered or not. Overall, the current study highlights the important of ecological stochasticity in regulating microbial assembly under N deposition scenarios.
Collapse
Affiliation(s)
- Zhenghu Zhou
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chuankuan Wang
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
56
|
Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun Biol 2022; 5:66. [PMID: 35046515 PMCID: PMC8770499 DOI: 10.1038/s42003-022-03030-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023] Open
Abstract
Mathematical models that incorporate the temperature dependence of lab-measured life history traits are increasingly being used to predict how climatic warming will affect ectotherms, including disease vectors and other arthropods. These temperature-trait relationships are typically measured under laboratory conditions that ignore how conspecific competition in depleting resource environments—a commonly occurring scenario in nature—regulates natural populations. Here, we used laboratory experiments on the mosquito Aedes aegypti, combined with a stage-structured population model, to investigate this issue. We find that intensified larval competition in ecologically-realistic depleting resource environments can significantly diminish the vector’s maximal population-level fitness across the entire temperature range, cause a ~6 °C decrease in the optimal temperature for fitness, and contract its thermal niche width by ~10 °C. Our results provide evidence for the importance of considering intra-specific competition under depleting resources when predicting how arthropod populations will respond to climatic warming. Huxley et al. use laboratory experiments to examine how environmental resource depletion impacts temperature-dependent traits observed in Aedes aegypti mosquitoes. The authors find that the conspecific competition dynamics of larvae significantly alter how the mosquito’s population-level fitness responds to temperature, shedding light on how arthropods and other disease vectors may respond to environmental change.
Collapse
|
57
|
Bowersock NR, Litt AR, Merkle JA, Gunther KA, van Manen FT. Responses of American black bears to spring resources. Ecosphere 2021. [DOI: 10.1002/ecs2.3773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nathaniel R. Bowersock
- Department of Ecology Montana State University P.O. Box 173460 Bozeman Montana 59717‐3460 USA
| | - Andrea R. Litt
- Department of Ecology Montana State University P.O. Box 173460 Bozeman Montana 59717‐3460 USA
| | - Jerod A. Merkle
- Department of Zoology and Physiology University of Wyoming Department 3166 1000 East University Avenue Laramie Wyoming 82071 USA
| | - Kerry A. Gunther
- Bear Management Office Yellowstone Center for Resources Yellowstone National Park P.O. Box 168 Yellowstone National Park Wyoming 82190 USA
| | - Frank T. van Manen
- Interagency Grizzly Bear Study Team U.S. Geological Survey Northern Rocky Mountain Science Center 2327 University Way, Suite 2 Bozeman Montana 59715 USA
| |
Collapse
|
58
|
Riggi LG, Lundin O, Berggren Å. Mass-flowering red clover crops have positive effects on bumblebee richness and diversity after bloom. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Schubert SC, Walters EL. Subannual phenology and the effect of staggered fruit ripening on dispersal competition. Biotropica 2021. [DOI: 10.1111/btp.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Spencer C. Schubert
- Department of Biological Sciences Old Dominion University Norfolk Virginia USA
| | - Eric L. Walters
- Department of Biological Sciences Old Dominion University Norfolk Virginia USA
| |
Collapse
|
60
|
Malfi RL, Crone E, Rundlöf M, Williams NM. Early resources lead to persistent benefits for bumble bee colony dynamics. Ecology 2021; 103:e03560. [PMID: 34657285 DOI: 10.1002/ecy.3560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022]
Abstract
Conditions experienced early in development can affect the future performance of individuals and populations. Demographic theories predict persistent population impacts of past resources, but few studies have experimentally tested such carry-over effects across generations or cohorts. We used bumble bees to test whether resource timing had persistent effects on within-colony dynamics over sequential cohorts of workers. We simulated a resource pulse for field colonies either early or late in their development and estimated colony growth rates during pulse- and non-pulse periods. During periods when resources were not supplemented, early-pulse colonies grew faster than late-pulse colonies; early-pulse colonies grew larger as a result. These results revealed persistent effects of past resources on current growth and support the importance of transient dynamics in natural ecological systems. Early-pulse colonies also produced more queen offspring, highlighting the critical nature of resource timing for the population, as well as colony, dynamics of a key pollinator.
Collapse
Affiliation(s)
- Rosemary L Malfi
- Department of Entomology, University of California, Davis, California, 95616, USA
| | - Elizabeth Crone
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, USA
| | - Maj Rundlöf
- Department of Entomology, University of California, Davis, California, 95616, USA.,Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Neal M Williams
- Department of Entomology, University of California, Davis, California, 95616, USA
| |
Collapse
|
61
|
Oro D, Sanz-Aguilar A, Carbonell F, Grajera J, Torre I. Multi-species prey dynamics influence local survival in resident and wintering generalist predators. Oecologia 2021; 197:437-446. [PMID: 34550444 PMCID: PMC8505301 DOI: 10.1007/s00442-021-05042-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022]
Abstract
Stochasticity in food availability influences vital rates such as survival and fertility. Life-history theory predicts that in long-lived organisms, survival should be buffered against environmental stochasticity showing little temporal variability. Furthermore, to optimize survival prospects, many animal species perform migrations to wintering areas where food availability is larger. Species with large latitudinal distribution ranges may show populations that migrate and others that are resident, and they may co-occur in winter. One example of these species is the predatory raptor buzzard Buteo buteo. Here, we test whether temporal variability in the density of five small mammal species of prey inhabiting different habitats (shrubland and forests) influences local annual survival of buzzards in a wintering area depending on their age and residency status (residents versus wintering individuals). We found that prey density explained a considerable amount of annual changes in local survival, which was higher for older and resident birds. This difference in local survival likely corresponded to philopatry to the wintering area, which was larger for residents and increased when prey density was larger. The total density of prey inhabiting open shrublands was the variable explaining more variance in temporal variability of local survival, even though the study area is mostly occupied by woodlands. Temporal population dynamics of the different small mammals inhabiting shrublands were not synchronous, which suggests that buzzards preyed opportunistically on the most abundant prey each winter. Generalist predation may buffer the impact of resource unpredictability for pulsed and asynchronous prey dynamics, typical of small mammals in winter.
Collapse
Affiliation(s)
- Daniel Oro
- Theoretical and Computational Ecology Group, Center for Advanced Studies of Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300, Blanes, Spain.
| | - Ana Sanz-Aguilar
- Animal Demography and Ecology Unit, IMEDEA (CSIC-UIB), Miquel Marques 21, 07190, Esporles, Spain.,Applied Zoology and Conservation Group, University of the Balearic Islands, Crtra. Valldemossa s/n, 07122, Palma, Spain
| | | | - Joan Grajera
- Catalan Ornithological Institute, Girona 168, 08037, Barcelona, Spain
| | - Ignasi Torre
- BiBio Research Group, Natural Sciences Museum of Granollers, Francesc Macià 51, 08402, Granollers, Spain
| |
Collapse
|
62
|
Stillman AN, Lorenz TJ, Siegel RB, Wilkerson RL, Johnson M, Tingley MW. Conditional natal dispersal provides a mechanism for populations tracking resource pulses after fire. Behav Ecol 2021. [DOI: 10.1093/beheco/arab106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Animals that persist in spatially structured populations face the challenge of tracking the rise and fall of resources across space and time. To combat these challenges, theory predicts that species should use conditional dispersal strategies that allow them to emigrate from patches with declining resources and colonize new resource patches as they appear. We studied natal dispersal movements in the black-backed woodpecker (Picoides arcticus), a species known for its strong association with recent post-fire forests in western North America. We radio-tracked juveniles originating from seven burned areas and tested hypotheses that environmental and individual factors influence dispersal distance and emigration rates—investigating emigration while additionally accounting for imperfect detection with a novel Bayesian model. We found that juveniles were more likely to leave natal areas and disperse longer distances if they were heavier or hatched in older burned areas where resources are increasingly scarce. Juveniles were also more likely to leave their natal burn if they hatched in a nest closer to the fire perimeter. While dispersing across the landscape, black-backed woodpeckers selected for burned forest relative to unburned available habitat. Together, these results strongly support the hypothesis that black-backed woodpecker populations track resource pulses across fire-prone landscapes, with conditional natal dispersal acting as a mechanism for locating and colonizing newly burned areas. Lending empirical support to theoretical predictions, our findings suggest that changes in resource distribution may shape dispersal patterns and, consequently, the distribution and persistence of spatially structured populations.
Collapse
Affiliation(s)
- Andrew N Stillman
- Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Teresa J Lorenz
- USDA Forest Service, Pacific Northwest Research Station, 3625 93rd Ave. SW, Olympia, WA 98512, USA
| | - Rodney B Siegel
- The Institute for Bird Populations, P.O. Box 518, Petaluma, CA 94953, USA
| | - Robert L Wilkerson
- The Institute for Bird Populations, P.O. Box 518, Petaluma, CA 94953, USA
| | - Matthew Johnson
- U.S. National Park Service, Southern Colorado Plateau Network - Inventory & Monitoring Division, 2255 N Gemini Dr, Flagstaff, AZ 86001, USA
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California – Los Angeles, 621 Charles E Young Dr S #951606, Los Angeles, CA 90095, USA
| |
Collapse
|
63
|
Tao Z, Shen C, Qin W, Gui Y, Wang Y, Siemann E, Huang W. Magnitude and timing of resource pulses interact to affect plant invasion. OIKOS 2021. [DOI: 10.1111/oik.08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
| | - Changchao Shen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Wenchao Qin
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Yinfeng Gui
- College of Horticulture and Forestry Sciences, Huazhong Agricultural Univ. Wuhan Hubei China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan Univ. Kunming China
| | | | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences Wuhan Hubei China
| |
Collapse
|
64
|
Cumming GS, Henry DAW, Mutumi GL, Ndlovu M. Understanding arid‐region waterbird community dynamics during lake dry‐downs. Ecosphere 2021. [DOI: 10.1002/ecs2.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Graeme S. Cumming
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
| | - Dominic A. W. Henry
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- Endangered Wildlife Trust Johannesburg 1685 South Africa
- Statistics in Ecology, Environment and Conservation Department of Statistical Sciences University of Cape Town Cape Town 7701 South Africa
| | - Gregory L. Mutumi
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- Life and Environmental Sciences University of California–Merced Merced California USA
| | - Mduduzi Ndlovu
- FitzPatrick Institute DST/NRF Centre of Excellence University of Cape Town Rondebosch 7701 South Africa
- School of Biology and Environmental Sciences University of Mpumalanga Mbombela 1200 South Africa
| |
Collapse
|
65
|
Insect-mediated apparent competition between mammals in a boreal food web. Proc Natl Acad Sci U S A 2021; 118:2022892118. [PMID: 34282006 DOI: 10.1073/pnas.2022892118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the important role of animal-mediated interactions in the top-down restructuring of plant communities is well documented, less is known of their ensuing repercussions at higher trophic levels. We demonstrate how typically decoupled ecological interactions may become intertwined such that the impact of an insect pest on forest structure and composition alters predator-prey interactions among large mammals. Specifically, we show how irruptions in a common, cyclic insect pest of the boreal forest, the spruce budworm (Choristoneura fumiferana), modulated an indirect trophic interaction by initiating a flush in deciduous vegetation that benefited moose (Alces alces), in turn strengthening apparent competition between moose and threatened boreal caribou (Rangifer tarandus caribou) via wolf (Canis lupus) predation. Critically, predation on caribou postoutbreak was exacerbated by human activity (salvage logging). We believe our observations of significant, large-scale reverberating consumer-producer-consumer interactions are likely to be common in nature.
Collapse
|
66
|
Gamelon M, Touzot L, Baubet É, Cachelou J, Focardi S, Franzetti B, Nivois É, Veylit L, Sæther B. Effects of pulsed resources on the dynamics of seed consumer populations: a comparative demographic study in wild boar. Ecosphere 2021. [DOI: 10.1002/ecs2.3395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Marlène Gamelon
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1 VilleurbanneF‐69622France
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim7491Norway
| | - Laura Touzot
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1 VilleurbanneF‐69622France
| | - Éric Baubet
- DRAS‐Unité Ongulés Sauvages Office Français de la Biodiversité Monfort Birieux01330France
| | - Jessica Cachelou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1 VilleurbanneF‐69622France
- DRAS‐Unité Ongulés Sauvages Office Français de la Biodiversité Monfort Birieux01330France
| | - Stefano Focardi
- Istituto dei Sistemi Complessi del CNR via Madonna del Piano 10 Sesto Fiorentino50019Italy
| | - Barbara Franzetti
- Istituto Superiore per la Protezione e la Ricerca Ambientale via Brancati 60 Roma00148Italy
| | - Éveline Nivois
- DRAS‐Unité Ongulés Sauvages Office Français de la Biodiversité Chemin du Longeau Rozérieulles57160France
| | - Lara Veylit
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim7491Norway
| | - Bernt‐Erik Sæther
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim7491Norway
| |
Collapse
|
67
|
Gao FL, He QS, Xie RQ, Hou JH, Shi CL, Li JM, Yu FH. Interactive effects of nutrient availability, fluctuating supply, and plant parasitism on the post-invasion success of Bidens pilosa. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02555-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
68
|
Pavey CR. A nomadic avian predator displays flexibility in prey choice during episodic outbreaks of rodents in arid Australia. Oecologia 2021; 196:211-222. [PMID: 33934187 DOI: 10.1007/s00442-021-04926-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
In environments driven by unpredictable resource pulses, populations of many consumer species experience dramatic fluctuations in abundance and spatial extent. Predator-prey relationships in these acyclic systems are poorly understood in particular with respect to the level of prey specialisation shown by nomadic predators. To understand the dynamics of such a system I examined the response to rodent outbreaks by the letter-winged kite (Elanus scriptus) in the Simpson Desert, Australia; a region that experiences major pulses in primary productivity, driven by unpredictable rainfall events. The kite feeds on small mammals and is the only night-hunting species in the Accipitridae. Letter-winged kites irrupted in the area on only three occasions during 20 years of sampling (1999-2019) and remained for a maximum of 20 months. Each period of kite occupation occurred only during the increase and/or peak phase of rodent population cycles (which occurred three times during the study). During each period kite diet was dominated by small (10-50 g body mass) quadrupedal rodents (Pseudomys australis, P. hermannsburgensis, Mus musculus). Abundance of these species varied across the three outbreaks and kites typically captured them in proportion to availability. The large body mass (134 g) long-haired rat (Rattus villosissimus) was abundant during one outbreak but was infrequently consumed. The bipedal spinifex hopping-mouse (Notomys alexis) was within the kites' favoured prey size range (35 g) but was consistently avoided. The flexibility in prey selection by letter-winged kites appears to be an important adaptation for survival and reproduction by species exploiting acyclic rodent outbreaks.
Collapse
Affiliation(s)
- Chris R Pavey
- CSIRO Land and Water, Winnellie, PMB 44, Darwin, NT, 0822, Australia.
| |
Collapse
|
69
|
Nicholson CC, J-M Hayes J, Connolly S, Ricketts TH. Corridors through time: Does resource continuity impact pollinator communities, populations, and individuals? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02260. [PMID: 33185959 DOI: 10.1002/eap.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Spatial aspects of connectivity have received considerable attention from ecologists and conservationists, yet temporal connectivity, the periodic linking of habitats, plays an equally important, but largely overlooked role. Different biological and biophysical attributes of ecosystems underpin temporal connectivity, but here we focus on resource continuity, the uninterrupted availability of foraging sites. We test the response of pollinators to resource continuity at community, population, and individual levels using a novel natural experiment consisting of farms with either single or sequential cropping systems. We found significant effects at the population level; colony density of an important crop pollinator (Bombus impatiens L.) was greater when crop floral resources were continuously available. However, we did not find significant effects at the community or individual level; wild bee abundance, diversity and body size did not respond to resource continuity. Raspberry farms with greater early season resources provided by blueberry had greater bumble bee populations, suggesting beneficial effects on resource availability due to crop diversity. Better understanding the impact of resource continuity via crop diversity on broader patterns of biodiversity is essential for the co-management of biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Charlie C Nicholson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Jen J-M Hayes
- Department of Horticulture, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Samantha Connolly
- Department of Computer Science, University of Vermont, Burlington, Vermont, 05405, USA
| | - Taylor H Ricketts
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
70
|
Frontier N, de Bettignies F, Foggo A, Davoult D. Sustained productivity and respiration of degrading kelp detritus in the shallow benthos: Detached or broken, but not dead. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105277. [PMID: 33592375 DOI: 10.1016/j.marenvres.2021.105277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 05/06/2023]
Abstract
Temperate kelp forests contribute significantly to marine primary productivity and fuel many benthic and pelagic food chains. A large proportion of biomass is exported from kelp forests as detritus into recipient marine ecosystems, potentially contributing to Blue Carbon sequestration. The degradation of this organic material is slow and recent research has revealed the preservation of photosynthetic functions over time. However, the physiological correlates of detrital breakdown in Laminaria spp. have not yet been studied. The warming climate threatens to reshuffle the species composition of kelp forests and perturb the dynamics of these highly productive ecosystems. The present study compares the physiological response of degrading detritus from two competing North East Atlantic species; the native Boreal Laminaria hyperborea and the thermally tolerant Boreal-Lusitanian L. ochroleuca. Detrital fragment degradation was measured by a mesocosm experiment across a gradient of spectral attenuation (a proxy for depth) to investigate the changes in physiological performance under different environmental conditions. Degradation of fragments was quantified over 108 days by measuring the biomass, production and respiration (by respirometry) and efficiency of Photosystem II (by PAM fluorometry). Data indicated that whilst degrading, the photosynthetic performance of the species responded differently to simulated depths, but fragments of both species continued to produce oxygen for up to 56 days and sustained positive net primary production. This study reveals the potential for ostensibly detrital kelp to contribute to Blue Carbon fixation through sustained primary production which should be factored into Blue Carbon management. Furthermore, the physiological response of kelp detritus is likely dependent upon the range of habitats to which it is exported. In the context of climate change, shifts in species composition of kelp forests and their detritus are likely to have wide-reaching effects upon the cycling of organic matter in benthic ecosystems.
Collapse
Affiliation(s)
- Nadia Frontier
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France
| | - Andy Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France
| |
Collapse
|
71
|
Miller AD, Inamine H, Buckling A, Roxburgh SH, Shea K. How disturbance history alters invasion success: biotic legacies and regime change. Ecol Lett 2021; 24:687-697. [PMID: 33506576 PMCID: PMC8048489 DOI: 10.1111/ele.13685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023]
Abstract
Disturbance is a key factor shaping ecological communities, but little is understood about how the effects of disturbance processes accumulate over time. When disturbance regimes change, historical processes may influence future community structure, for example, by altering invasibility compared to communities with stable regimes. Here, we use an annual plant model to investigate how the history of disturbance alters invasion success. In particular, we show how two communities can have different outcomes from species introduction, solely due to past differences in disturbance regimes that generated different biotic legacies. We demonstrate that historical differences can enhance or suppress the persistence of introduced species, and that biotic legacies generated by stable disturbance history decay over time, though legacies can persist for unexpectedly long durations. This establishes a formal theoretical foundation for disturbance legacies having profound effects on communities, and highlights the value of further research on the biotic legacies of disturbance.
Collapse
Affiliation(s)
- Adam D. Miller
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Hidetoshi Inamine
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Angus Buckling
- Department of BiosciencesUniversity of ExeterPenryn CampusPenryn, CornwallTR10 9FEUK
| | | | - Katriona Shea
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
72
|
Beltran RS, Kilpatrick AM, Breed GA, Adachi T, Takahashi A, Naito Y, Robinson PW, Smith WO, Kirkham AL, Burns JM. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc Biol Sci 2021; 288:20202817. [PMID: 33726591 PMCID: PMC8059541 DOI: 10.1098/rspb.2020.2817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators. We integrated data on Weddell seal diving behaviour, diet stable isotopes, feeding success and mass gain to examine shifts in vertical foraging throughout ice break-out and the resulting phytoplankton bloom each year. We also tested hypotheses about the likely location of phytoplankton bloom origination (advected or produced in situ where seals foraged) based on sea ice break-out phenology and advection rates from several locations within 150 km of the seal colony. In early summer, seals foraged at deeper depths resulting in lower feeding rates and mass gain. As sea ice extent decreased throughout the summer, seals foraged at shallower depths and benefited from more efficient energy intake. Changes in diving depth were not due to seasonal shifts in seal diets or horizontal space use and instead may reflect a change in the vertical distribution of prey. Correspondence between the timing of seal shallowing and the resource pulse was variable from year to year and could not be readily explained by our existing understanding of the ocean and ice dynamics. Phytoplankton advection occurred faster than ice break-out, and seal dive shallowing occurred substantially earlier than local break-out. While there remains much to be learned about the marine ecosystem, it appears that an increase in prey abundance and accessibility via shallower distributions during the resource pulse could synchronize life-history phenology across trophic levels in this high-latitude ecosystem.
Collapse
Affiliation(s)
- Roxanne S Beltran
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775, USA.,Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Greg A Breed
- Institute of Arctic Biology, University of Alaska Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA
| | - Taiki Adachi
- Department of Biological Sciences, University of Tokyo, 2-11-16 Yayoi, Bunkyō, Tokyo 113-0032, Japan
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Yasuhiko Naito
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Walker O Smith
- Virginia Institute of Marine Science, College of William and Mary, 1375 Greate Rd, Gloucester Point, VA 23062, USA.,Institute of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200240, People's Republic of China
| | - Amy L Kirkham
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA.,Department of Biological Sciences, Texas Tech University, Box 43131 Lubbock, TX 79409, USA
| |
Collapse
|
73
|
Grenier-Potvin A, Clermont J, Gauthier G, Berteaux D. Prey and habitat distribution are not enough to explain predator habitat selection: addressing intraspecific interactions, behavioural state and time. MOVEMENT ECOLOGY 2021; 9:12. [PMID: 33743833 PMCID: PMC7981948 DOI: 10.1186/s40462-021-00250-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Movements and habitat selection of predators shape ecological communities by determining the spatiotemporal distribution of predation risk. Although intraspecific interactions associated to territoriality and parental care are involved in predator habitat selection, few studies have addressed their effects simultaneously with those of prey and habitat distribution. Moreover, individuals require behavioural and temporal flexibility in their movement decisions to meet various motivations in a heterogeneous environment. To untangle the relative importance of ecological determinants of predator fine-scale habitat selection, we studied simultaneously several spatial, temporal, and behavioural predictors of habitat selection in territorial arctic foxes (Vulpes lagopus) living within a Greater snow goose (Anser caerulescens atlantica) colony during the reproductive season. METHODS Using GPS locations collected at 4-min intervals and behavioural state classification (active and resting), we quantified how foxes modulate state-specific habitat selection in response to territory edges, den proximity, prey distribution, and habitats. We also assessed whether foxes varied their habitat selection in response to an important phenological transition marked by decreasing prey availability (goose egg hatching) and decreasing den dependency (emancipation of cubs). RESULTS Multiple factors simultaneously played a key role in driving habitat selection, and their relative strength differed with respect to the behavioural state and study period. Foxes avoided territory edges, and reproductive individuals selected den proximity before the phenological transition. Higher goose nest density was selected when foxes were active but avoided when resting, and was less selected after egg hatching. Selection for tundra habitats also varied through the summer, but effects were not consistent. CONCLUSIONS We conclude that constraints imposed by intraspecific interactions can play, relative to prey distribution and habitat characteristics, an important role in the habitat selection of a keystone predator. Our results highlight the benefits of considering behavioural state and seasonal phenology when assessing the flexibility of predator habitat selection. Our findings indicate that considering intraspecific interactions is essential to understand predator space use, and suggest that using predator habitat selection to advance community ecology requires an explicit assessment of the social context in which movements occur.
Collapse
Affiliation(s)
- Alexis Grenier-Potvin
- Chaire de recherche du Canada en biodiversité nordique and Centre d'Études Nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | - Jeanne Clermont
- Chaire de recherche du Canada en biodiversité nordique and Centre d'Études Nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Gilles Gauthier
- Département de biologie and Centre d'études nordiques, Université Laval, 2325 Rue de l'Université, Québec, Québec, G1V 0A6, Canada
| | - Dominique Berteaux
- Chaire de recherche du Canada en biodiversité nordique and Centre d'Études Nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| |
Collapse
|
74
|
Toscano BJ, Figel AS, Rudolf VHW. Ontogenetic development underlies population response to mortality. OIKOS 2021. [DOI: 10.1111/oik.07796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin J. Toscano
- Dept of Biology, Trinity College Hartford CT USA
- BioSciences, Rice Univ. Houston TX USA
| | | | | |
Collapse
|
75
|
Sato T, Ueda R, Takimoto G. The effects of resource subsidy duration in a detritus-based stream ecosystem: A mesocosm experiment. J Anim Ecol 2021; 90:1142-1151. [PMID: 33560517 DOI: 10.1111/1365-2656.13440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022]
Abstract
Most resource subsidies are temporally variable, dynamically affecting the consumer populations, community structures and ecosystem functions of recipient ecosystems. Temporally variable resource subsidies are characterized by the duration, magnitude, timing and frequency of resource subsidy inputs. These different characteristics may have different mechanisms by which to affect recipient ecosystems. Few studies have examined the duration of resource subsidy inputs on recipient ecosystems, although there exist previous studies focusing on magnitude, timing and frequency. We provide the first experimental test of the effects of subsidy duration on a stream ecosystem by using an outdoor mesocosm experiment, in which we directly manipulated the subsidy duration (pulsed vs. prolonged) of terrestrial invertebrate input into the mesocosm. Given the same overall amount of terrestrial invertebrate subsidy was added, a prolonged subsidy allowed large-stage fish to effectively monopolize the subsidy over small-stage fish, which led small-stage fish to maintain their predation pressure on in-situ prey, that is, benthic invertebrates. On the other hand, a pulsed subsidy allowed small-stage fish to increase their feeding rate of the subsidy and to become away from foraging in-situ prey. Consequently, weaker indirect positive effects on in-situ benthic prey and leaf break-down rate were found with the prolonged versus pulsed subsidy. However, these indirect effects varied by the dominant benthic prey species, which differed in edibility for fish. Such predator-specific vulnerability of benthic prey can be important in mediating trophic cascades in detritus-based stream food webs. Phenological events that generate temporal subsidies (e.g. salmon spawning run and arthropod emergence) can be synchronized (pulsed) or desynchronized (prolonged) within and among species, depending on the degree of spatial and temporal environmental heterogeneity. The effects of subsidy duration would thus be important to better understand ecological processes in spatially and temporally coupled ecosystems.
Collapse
Affiliation(s)
- Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe, Japan
| | - Rui Ueda
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe, Japan
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
76
|
Morin A, Chamaillé-Jammes S, Valeix M. Climate Effects on Prey Vulnerability Modify Expectations of Predator Responses to Short- and Long-Term Climate Fluctuations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.601202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate changes affect the distribution and abundance of organisms, often via changes in species interactions. Most animals experience predation, and a number of models have investigated how climate fluctuations can influence predator–prey dynamics by affecting prey abundance through changes in resource availability. However, field studies have shown that prey vulnerability is a key feature determining the outcome of predator–prey interactions, which also varies with climatic conditions, via changes in prey body condition or in habitat characteristics (e.g. vegetation cover). In this theoretical work, we explore, with large mammals of African savannas in mind, how the interplay between climate-induced changes in prey abundance and climate-induced changes in prey vulnerability affects the immediate and long-term responses of predator populations. We account for prey body condition and habitat effects on prey vulnerability to predation. We show that predictions on how predator abundance responds to climate fluctuations differ depending on how climate influences prey vulnerability (habitat characteristics vs. prey body condition). We discuss how species traits influence the relative importance of the different sources of vulnerability. For example, our results suggest that populations of cursorial predators (such as spotted hyaenas) are expected to fare better than populations of ambush predators (such as African lions) in African ecosystems that will be characterised by an aridification. This study highlights the importance of understanding, and accounting for, the vulnerability factors associated to a given predator–prey pair, and improves our comprehension of predator–prey relationships in a changing climate.
Collapse
|
77
|
Yeung M, Saingam P, Xu Y, Xi J. Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness. MICROBIOME 2021; 9:14. [PMID: 33436067 PMCID: PMC7805145 DOI: 10.1186/s40168-020-00944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The ozonation of biofilters is known to alleviate clogging and pressure drop issues while maintaining removal performances in biofiltration systems treating gaseous volatile organic compounds (VOCs). The effects of ozone on the biofilter microbiome in terms of biodiversity, community structure, metabolic abilities, and dominant taxa correlated with performance remain largely unknown. METHODS This study investigated two biofilters treating high-concentration toluene operating in parallel, with one acting as control and the other exposed to low-dosage (200 mg/m3) ozonation. The microbial community diversity, metabolic rates of different carbon sources, functional predictions, and microbial co-occurrence networks of both communities were examined. RESULTS Consistently higher biodiversity of over 30% was observed in the microbiome after ozonation, with increased overall metabolic abilities for amino acids and carboxylic acids. The relative abundance of species with reported stress-tolerant and biofilm-forming abilities significantly increased, with a consortium of changes in predicted biological pathways, including shifts in degradation pathways of intermediate compounds, while the correlation of top ASVs and genus with performance indicators showed diversifications in microbiota responsible for toluene degradation. A co-occurrence network of the community showed a decrease in average path distance and average betweenness with ozonation. CONCLUSION Major degrading species highly correlated with performance shifted after ozonation. Increases in microbial biodiversity, coupled with improvements in metabolizing performances of multiple carbon sources including organic acids could explain the consistent performance commonly seen in the ozonation of biofilters despite the decrease in biomass, while avoiding acid buildup in long-term operation. The increased presence of stress-tolerant microbes in the microbiome coupled with the decentralization of the co-occurrence network suggest that ozonation could not only ameliorate clogging issues but also provide a microbiome more robust to loading shock seen in full-scale biofilters. Video abstract.
Collapse
Affiliation(s)
- Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Prakit Saingam
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
- Department of Civil and Environmental Engineering, University of Hawaiʻi at Mānoa, 2500 Campus Rd, Honolulu, HI 96822 USA
| | - Yang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
78
|
Mourant A, Lecomte N, Moreau G. Size matters: When resource accessibility by ecosystem engineering elicits wood-boring beetle demographic responses. Ecol Evol 2021; 11:784-795. [PMID: 33520166 PMCID: PMC7820143 DOI: 10.1002/ece3.7079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 11/10/2022] Open
Abstract
Episodic natural disturbances play a key role in ecosystem renewal, and ecological engineering could do so by transforming resource accessibility. While such coupling creates nontrophic and lasting interactions between resource consumers and ecosystem engineers, it is unclear how large the disturbance must be to sustain such coupling. Natural disturbances that occur from the ecological engineering by the Canadian beaver (Castor canadensis) modulate deadwood dynamics in many forest ecosystems. Relying on such episodes of fresh woody debris, primary wood-boring beetles, organisms that dig tunnels into those debris for reproduction, act as important deadwood decomposers in the ecosystem. Here, we investigate how the age and size of beaver disturbances act as predictors for primary wood-boring beetle abundance and species richness around beaver-altered habitat patches. To do so, we sampled beetles around 16 beaver-disturbed and unaltered watercourses within the Kouchibouguac National Park (Canada) and modeled beetle demographic responses to site conditions and their physical characteristics, distance from the watercourse, deadwood biomass, and the geographical location of the sites. Our results indicate that the size of the disturbance is positively associated with beetle abundance, which highlights unique deadwood dynamics inherent to large beaver ponds. The role of beavers in forest ecosystems by reaching multiple taxa at multiple spatiotemporal scales further exemplifies the need to study nontrophic interactions and their complex consequences in ecosystem management.
Collapse
Affiliation(s)
- Alexandre Mourant
- Département de biologieUniversité de MonctonMonctonNBCanada
- Canada Research Chair in Polar and Boreal EcologyUniversité de MonctonMonctonNBCanada
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal EcologyUniversité de MonctonMonctonNBCanada
| | - Gaétan Moreau
- Département de biologieUniversité de MonctonMonctonNBCanada
| |
Collapse
|
79
|
Simon FW, Vasseur DA. Variation cascades: resource pulses and top-down effects across time scales. Ecology 2020; 102:e03277. [PMID: 33354775 DOI: 10.1002/ecy.3277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022]
Abstract
Top-down and bottom-up theories of trophic control have been fundamental to our understanding of community dynamics and structure. However, most ecological theories have focused on equilibrium dynamics and do not provide predictions for communities' responses in temporally fluctuating environments. By deriving the frequency response of populations in different trophic communities, we extend the top-down and bottom-up theories of ecology to include how temporal fluctuations in potential primary productivity percolate up the food chain and are re-expressed as population variability. Moreover, by switching from a time-based representation into the frequency domain, we provide a unified method to compare how the time scale of perturbations determines communities' responses. At low frequencies, primary producers and secondary consumers have the highest temporal variability, while the primary consumers are relatively stable. Similar to the Exploitation Ecosystem Hypothesis, top-down effects drive this alternating pattern of variability. We define the top-down effect of consumers on the variability of lower trophic levels as a variation cascade. However, at intermediate frequencies, variation cascades can amplify temporal variation up the food chain. At high frequencies, variation cascades weaken, and fluctuations are attenuated up the food chain. In summary, we provide a novel theory for how communities will respond to fluctuations in productivity, and we show that indirect species interactions play a crucial role in determining community dynamics across the frequency spectrum.
Collapse
Affiliation(s)
- Franz W Simon
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 06520, USA
| | - David A Vasseur
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 06520, USA
| |
Collapse
|
80
|
Drivers of Spruce Bark Beetle (Ips typographus) Infestations on Downed Trees after Severe Windthrow. FORESTS 2020. [DOI: 10.3390/f11121290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research Highlights: Bark beetles are important agents of disturbance regimes in temperate forests, and specifically in a connected wind-bark beetle disturbance system. Large-scale windthrows trigger population growth of the European spruce bark beetle (Ips typographus L.) from endemic to epidemic levels, thereby allowing the killing of Norway spruce trees over several consecutive years. Background and Objectives: There is a lack of evidence to differentiate how outbreaks are promoted by the effects of environmental variables versus beetle preferences of trees from endemic to outbreak. However, little is known about how individual downed-tree characteristics and local conditions such as tree orientation and solar radiation affect beetle colonization of downed trees. Materials and Methods: To answer this question, we investigated the infestation rates and determined tree death categories (uprooted, broken, and stump) in wind-damaged areas in Western Tatra Mts. in Carpathians (Slovakia) from 2014–2016, following a windthrow in May 2014. In total, we investigated 225 trees over eight transects. For every tree, we measured its morphological (tree height, crown characteristics), environmental (solar radiation, terrain conditions, trunk zenith), temporal (time since wind damage), and beetle infestation (presence, location of attack, bark desiccation) parameters. We applied Generalized Additive Mixed Models (GAMM) to unravel the main drivers of I. typographus infestations. Results: Over the first year, beetles preferred to attack broken trees and sun-exposed trunk sides over uprooted trees; the infestation on shaded sides started in the second year along with the infestation of uprooted trees with lower desiccation rates. We found that time since wind damage, stem length, and incident solar radiation increased the probability of beetle infestation, although both solar radiation and trunk zenith exhibited nonlinear variability. Our novel variable trunk zenith appeared to be an important predictor of bark beetle infestation probability. We conclude that trunk zenith as a simple measure defining the position of downed trees over the terrain can anticipate beetle infestation. Conclusions: Our findings contribute to understanding of the bark beetle’s preferences to colonize windthrown trees in the initial years after the primary wind damage. Further, our findings can help to identify trees that are most susceptible to beetle infestation and to prioritize management actions to control beetle population while maintaining biodiversity.
Collapse
|
81
|
McCary MA, Phillips JS, Ramiadantsoa T, Nell LA, McCormick AR, Botsch JC. Transient top‐down and bottom‐up effects of resources pulsed to multiple trophic levels. Ecology 2020; 102:e03197. [DOI: 10.1002/ecy.3197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Matthew A. McCary
- Department of Entomology University of Wisconsin Madison Wisconsin53706USA
| | - Joseph S. Phillips
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Tanjona Ramiadantsoa
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Lucas A. Nell
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Amanda R. McCormick
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| | - Jamieson C. Botsch
- Department of Integrative Biology University of Wisconsin Madison Wisconsin53706USA
| |
Collapse
|
82
|
Grønkjaer P, Ottosen R, Joensen T, Reeve L, Nielsen EE, Hedeholm R. Intra-annual variation in feeding of Atlantic cod Gadus morhua: the importance of ephemeral prey bursts. JOURNAL OF FISH BIOLOGY 2020; 97:1507-1519. [PMID: 32875592 DOI: 10.1111/jfb.14520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Seasonal prey bursts are important for the life cycles and energy budgets of many predators. This study documents the diet and, especially, the importance of the ephemeral occurrence of capelin as prey for Atlantic cod (Gadus morhua) in Godthaabsfjord, west Greenland, over an annual cycle. The cod showed clear differences in diet composition on the 11 sampling dates resulting in a spring-summer, late summer-autumn and winter cluster. Moreover, a single sampling date, 12 May, was defined by cod gorge feeding on spawning capelin, which led to average stomach contents 4.3 times higher than the average for the remaining sampling dates. Changes in nitrogen stable isotope values from 22 April to 7 July in cod liver and muscle tissue were used to calculate the consumption of capelin. Based on this, the consumption of capelin varied between 538 and 658 g wet weight for a 1.3 kg cod. Using published consumption/biomass estimates and observed growth rates, the capelin intake corresponds to 10.1%-33.3% of the annual food consumption and accounts for 28.1%-34.5% of the annual growth of the cod. The present study documents the omnivorous feeding mode of Atlantic cod but highlights the utilization and importance of ephemeral prey bursts for the annual energy budget of the cod. It is hypothesized that access to capelin is critical for the postspawning recovery of Godthaabsfjord cod.
Collapse
Affiliation(s)
- Peter Grønkjaer
- Department of Bioscience, Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus Ottosen
- Department of Bioscience, Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Thor Joensen
- Department of Bioscience, Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Lee Reeve
- Department of Bioscience, Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Einar E Nielsen
- Institute for Aquatic Resources, Danish Technical University, Silkeborg, Denmark
| | | |
Collapse
|
83
|
Dantzer B, McAdam AG, Humphries MM, Lane JE, Boutin S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J Anim Ecol 2020; 89:2397-2414. [PMID: 32929740 DOI: 10.1111/1365-2656.13341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
Long-term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context. Many previous studies have only investigated life-history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness-relevant traits to better understand their population-level responses to those environmental fluctuations. For the past 32 years, we have conducted a long-term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi-year field experiments to examine the physiological and life-history responses of individual red squirrels to fluctuations in food abundance and conspecific density. Our long-term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change. As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life-history plasticity, as does experimental food supplementation. Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life-history plasticity. Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life-history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology. We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life-history plasticity.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew G McAdam
- Department for Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Murray M Humphries
- Natural Resource Sciences Department, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
84
|
Michel ES, Strickland BK, Demarais S, Belant JL, Kautz TM, Duquette JF, Beyer DE, Chamberlain MJ, Miller KV, Shuman RM, Kilgo JC, Diefenbach DR, Wallingford BD, Vreeland JK, Ditchkoff SS, DePerno CS, Moorman CE, Chitwood MC, Lashley MA. Relative reproductive phenology and synchrony affect neonate survival in a nonprecocial ungulate. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric S. Michel
- Minnesota Department of Natural Resources Division of Fish and Wildlife Madelia MN USA
| | - Bronson K. Strickland
- Department of Wildlife, Fisheries and Aquaculture Mississippi State University Mississippi State MS USA
| | - Stephen Demarais
- Department of Wildlife, Fisheries and Aquaculture Mississippi State University Mississippi State MS USA
| | - Jerrold L. Belant
- Global Wildlife Conservation Center State University of New York College of Environmental Science and Forestry Syracuse NY USA
| | - Todd M. Kautz
- Global Wildlife Conservation Center State University of New York College of Environmental Science and Forestry Syracuse NY USA
| | - Jared F. Duquette
- Illinois Department of Natural Resources Wildlife Division Forbes Natural History Building Champaign IL USA
| | - Dean E. Beyer
- Customer Service Center Michigan Department of Natural Resources Marquette MI USA
| | | | - Karl V. Miller
- Warnell School of Forestry and Natural Resources University of Georgia Athens GA USA
| | | | - John C. Kilgo
- USDA Forest Service Southern Research Station New Ellenton SC USA
| | - Duane R. Diefenbach
- U.S. Geological Survey Pennsylvania Cooperative Fish and Wildlife Research Unit Pennsylvania State University University Park PA USA
| | | | | | | | - Christopher S. DePerno
- Fisheries, Wildlife, and Conservation Biology Program North Carolina State University Raleigh NC USA
| | - Christopher E. Moorman
- Fisheries, Wildlife, and Conservation Biology Program North Carolina State University Raleigh NC USA
| | - M. Colter Chitwood
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Marcus A. Lashley
- Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
| |
Collapse
|
85
|
Seyer Y, Gauthier G, Fauteux D, Therrien JF. Resource partitioning among avian predators of the Arctic tundra. J Anim Ecol 2020; 89:2934-2945. [PMID: 32965060 DOI: 10.1111/1365-2656.13346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Interspecific competition can play a key role in structuring ecological communities. The Arctic tundra is a low productivity ecosystem supporting simple food webs, but several predators often feed on the same prey species, lemmings, known for their large-amplitude population fluctuations. We examined mechanisms involved in reducing intra-guild competition and allowing coexistence of four avian predators (snowy owls, glaucous gulls, rough-legged hawks and long-tailed jaegers) feeding on a pulsed resource (brown and collared lemmings). We compared the size and species of prey consumed by predators to see if resource partitioning occurred. We also verified if spatial segregation in nesting areas could be another mechanism allowing coexistence. Finally, we tested if the absence of the snowy owl, a dominant and irruptive species, triggered a competitive release on the smallest predator, the jaeger, with respect to prey size and nesting area used. We monitored the breeding of predators and lemming abundance over a 14-year period on Bylot Island, Canada. We mapped their nesting sites and collected regurgitation pellets to recover lemming mandibles, which were used to infer prey species and size. The size of lemmings consumed varied among species with the largest predators consuming the largest lemmings and the smallest predators consuming the smallest lemmings. All predators consumed more collared than brown lemmings compared to their availability although owls and jaegers consumed relatively more brown lemmings compared to gulls and hawks. Jaegers consumed larger lemmings in the absence of owls than in their presence, suggestive of a short-term competitive release. We found moderate to low overlap in nesting areas among predators and no evidence of their expansion in the absence of owls, suggesting that spatial distribution is caused by species-specific habitat preferences. The main mechanism to partition food resources among these avian predators is spatial segregation, and secondarily prey size and species. However, we found evidence that food competition is still present and leads to a niche shift in the smallest predator of the guild. Interspecific competition may thus be a pervasive force in simple, low productivity food webs characterized by pulsed resources.
Collapse
Affiliation(s)
- Yannick Seyer
- Department of Biology and Centre d'études nordiques, Université Laval, Québec, QC, Canada
| | - Gilles Gauthier
- Department of Biology and Centre d'études nordiques, Université Laval, Québec, QC, Canada
| | - Dominique Fauteux
- Department of Biology and Centre d'études nordiques, Université Laval, Québec, QC, Canada.,Canadian Museum of Nature, Ottawa, ON, Canada
| | | |
Collapse
|
86
|
Iuliano B, Gratton C. Temporal Resource (Dis)continuity for Conservation Biological Control: From Field to Landscape Scales. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
87
|
Bailey CJ, Moore JW. Resource pulses increase the diversity of successful competitors in a multi‐species stream fish assemblage. Ecosphere 2020. [DOI: 10.1002/ecs2.3211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Colin J. Bailey
- Earth to Ocean Research Group Simon Fraser University 8888 University Dr. Burnaby British ColumbiaV5A 1S6USA
| | - Jonathan W. Moore
- Earth to Ocean Research Group Simon Fraser University 8888 University Dr. Burnaby British ColumbiaV5A 1S6USA
| |
Collapse
|
88
|
Touzot L, Schermer É, Venner S, Delzon S, Rousset C, Baubet É, Gaillard JM, Gamelon M. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02134. [PMID: 32299142 DOI: 10.1002/eap.2134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Mast seeding in temperate oak populations shapes the dynamics of seed consumers and numerous communities. Mast seeding responds positively to warm spring temperatures and is therefore expected to increase under global warming. We investigated the potential effects of changes in oak mast seeding on wild boar population dynamics, a widespread and abundant consumer species. Using long-term monitoring data, we showed that abundant acorn production enhances the proportion of breeding females. With a body-mass-structured population model and a fixed hunting rate of 0.424, we showed that high acorn production over time would lead to an average wild boar population growth rate of 1.197 whereas non-acorn production would lead to a stable population. Finally, using climate projections and a mechanistic model linking weather data to oak reproduction, we predicted that mast seeding frequency might increase over the next century, which would lead to increase in both wild boar population size and the magnitude of its temporal variation. Our study provides rare evidence that some species could greatly benefit from global warming thanks to higher food availability and therefore highlights the importance of investigating the cascading effects of changing weather conditions on the dynamics of wild animal populations to reliably assess the effects of climate change.
Collapse
Affiliation(s)
- Laura Touzot
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Éliane Schermer
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | | | - Cyril Rousset
- Direction de la Recherche et de l'Appui Scientifique - Unité Ongulés Sauvages, Office Français de la Biodiversité, 2 bis rue des Religieuses, Châteauvillain, 52120, France
| | - Éric Baubet
- Direction de la Recherche et de l'Appui Scientifique - Unité Ongulés Sauvages, Office Français de la Biodiversité, Birieux, 01330, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Marlène Gamelon
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| |
Collapse
|
89
|
Hoskins HM, McCann NP, Jocque M, Reid N. Rapid defaunation of terrestrial mammals in a protected Neotropical cloud forest remnant. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
90
|
Wright AN, Yang LH, Piovia-Scott J, Spiller DA, Schoener TW. Consumer Responses to Experimental Pulsed Subsidies in Isolated versus Connected Habitats. Am Nat 2020; 196:369-381. [PMID: 32813995 DOI: 10.1086/710040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIncreases in consumer abundance following a resource pulse can be driven by diet shifts, aggregation, and reproductive responses, with combined responses expected to result in faster response times and larger numerical increases. Previous work in plots on large Bahamian islands has shown that lizards (Anolis sagrei) increased in abundance following pulses of seaweed deposition, which provide additional prey (i.e., seaweed detritivores). Numerical responses were associated with rapid diet shifts and aggregation, followed by increased reproduction. These dynamics are likely different on isolated small islands, where lizards cannot readily immigrate or emigrate. To test this, we manipulated the frequency and magnitude of seaweed resource pulses on whole small islands and in plots within large islands, and we monitored lizard diet and numerical responses over 4 years. We found that seaweed addition caused persistent increases in lizard abundance on small islands regardless of pulse frequency or magnitude. Increased abundance may have occurred because the initial pulse facilitated population establishment, possibly via enhanced overwinter survival. In contrast with a previous experiment, we did not detect numerical responses in plots on large islands, despite lizards consuming more marine resources in subsidized plots. This lack of a numerical response may be due to rapid aggregation followed by disaggregation or to stronger suppression of A. sagrei by their predators on the large islands in this study. Our results highlight the importance of habitat connectivity in governing ecological responses to resource pulses and suggest that disaggregation and changes in survivorship may be underappreciated drivers of pulse-associated dynamics.
Collapse
|
91
|
Ramirez‐Parada T, Cabrera D, Diaz‐Martin Z, Browne L, Karubian J. Resource‐related variables drive individual variation in flowering phenology and mediate population‐level flowering responses to climate in an asynchronously reproducing palm. Biotropica 2020. [DOI: 10.1111/btp.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tadeo Ramirez‐Parada
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
| | - Domingo Cabrera
- Foundation for the Conservation of the Tropical Andes Quito Ecuador
| | - Zoe Diaz‐Martin
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
- Foundation for the Conservation of the Tropical Andes Quito Ecuador
| | - Luke Browne
- Foundation for the Conservation of the Tropical Andes Quito Ecuador
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability University of California Los Angeles Los Angeles CA USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
- Foundation for the Conservation of the Tropical Andes Quito Ecuador
| |
Collapse
|
92
|
Uno H, Pneh S. Effect of source habitat spatial heterogeneity and species diversity on the temporal stability of aquatic‐to‐terrestrial subsidy by emerging aquatic insects. Ecol Res 2020. [DOI: 10.1111/1440-1703.12125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiromi Uno
- Department of Integrative Biology University of California Berkeley Berkeley California USA
- Center for Ecological Research Kyoto University Kyoto Japan
| | - Shelley Pneh
- Department of Integrative Biology University of California Berkeley Berkeley California USA
| |
Collapse
|
93
|
Bovendorp RS, Heming NM, Percequillo AR. Bottom-up effect: a rodent outbreak following the bamboo blooming in a Neotropical rainforest. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00505-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
94
|
Tanaka R, Hirashima K, Kunishima T, Uno H, Sato T. Phenological diversity of freshwater migration can prolong assemblage‐level migration period in amphidromous fishes in a temperate river system in Japan. Ecol Res 2020. [DOI: 10.1111/1440-1703.12132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryosuke Tanaka
- Department of Biology, Graduate School of Sciences Kobe University Japan
| | | | | | - Hiromi Uno
- Center for Ecological Research Kyoto University Japan
| | - Takuya Sato
- Department of Biology, Graduate School of Sciences Kobe University Japan
| |
Collapse
|
95
|
Fong CR, Gaynus CJ, Carpenter RC. Complex interactions among stressors evolve over time to drive shifts from short turfs to macroalgae on tropical reefs. Ecosphere 2020. [DOI: 10.1002/ecs2.3130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Caitlin R. Fong
- Department of Biology California State University Northridge Northridge California USA
| | - Camille J. Gaynus
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | - Robert C. Carpenter
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
96
|
LaMontagne JM, Pearse IS, Greene DF, Koenig WD. Mast seeding patterns are asynchronous at a continental scale. NATURE PLANTS 2020; 6:460-465. [PMID: 32341539 DOI: 10.1038/s41477-020-0647-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Resource pulses are rare events with a short duration and high magnitude that drive the dynamics of both plant and animal populations and communities1. Mast seeding is perhaps the most common type of resource pulse that occurs in terrestrial ecosystems2, is characterized by the synchronous and highly variable production of seed crops by a population of perennial plants3,4, is widespread both taxonomically and geographically5, and is often associated with nutrient scarcity6. The rare production of abundant seed crops (mast events) that are orders of magnitude greater than crops during low seed years leads to high reproductive success in seed consumers and has cascading impacts in ecosystems2,7. Although it has been suggested that mast seeding is potentially synchronized at continental scales8, studies are largely constrained to local areas covering tens to hundreds of kilometres. Furthermore, summer temperature, which acts as a cue for mast seeding9, shows patterns at continental scales manifested as a juxtaposition of positive and negative anomalies that have been linked to irruptive movements of boreal seed-eating birds10,11. Here, we show a breakdown in synchrony of mast seeding patterns across space, leading to asynchrony at the continental scale. In an analysis of synchrony for a transcontinental North America tree species spanning distances of greater than 5,200 km, we found that mast seeding patterns were significantly asynchronous at distances of greater than 2,000 km apart (all P < 0.05). Other studies have shown declines in synchrony across distance, but not asynchrony. Spatiotemporal variation in summer temperatures at the continental scale drives patterns of synchrony in mast seeding, and we anticipate that this affects the spatial dynamics of numerous seed-eating communities, from insects to small mammals to the large-scale migration patterns of boreal seed-eating birds.
Collapse
Affiliation(s)
| | - Ian S Pearse
- Illinois Natural History Survey, Champaign, IL, USA
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | - David F Greene
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| | - Walter D Koenig
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
97
|
Zuckerberg B, Strong C, LaMontagne JM, St. George S, Betancourt JL, Koenig WD. Climate Dipoles as Continental Drivers of Plant and Animal Populations. Trends Ecol Evol 2020; 35:440-453. [DOI: 10.1016/j.tree.2020.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
|
98
|
Burpee BT, Saros JE. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1166-1189. [PMID: 32159183 DOI: 10.1039/c9em00528e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmental change is continuing to affect the flow of nutrients, material and organisms across ecosystem boundaries. These cross-system flows are termed ecosystem subsidies. Here, we synthesize current knowledge of cross-ecosystem nutrient subsidies between remote lakes and their surrounding terrain, cryosphere, and atmosphere. Remote Arctic and alpine lakes are ideal systems to study the effects of cross ecosystem subsidies because (a) they are positioned in locations experiencing rapid environmental changes, (b) they are ecologically sensitive to even small subsidy changes, (c) they have easily defined ecosystem boundaries, and (d) a variety of standard methods exist that allow for quantification of lake subsidies and their impacts on ecological communities and ecosystem functions. We highlight similarities and differences between Arctic and alpine systems and identify current knowledge gaps to be addressed with future work. It is important to understand the dynamics of nutrient and material flows between lakes and their environments in order to improve our ability to predict ecosystem responses to continued environmental change.
Collapse
Affiliation(s)
- Benjamin T Burpee
- Climate Change Institute and School of Biology and Ecology, University of Maine, Orono, ME, USA.
| | | |
Collapse
|
99
|
Merrill L, Stewart Merrill TE, Barger AM, Benson TJ. Avian Health across the Landscape: Nestling Immunity Covaries with Changing Landcover. Integr Comp Biol 2020; 59:1150-1164. [PMID: 31086961 DOI: 10.1093/icb/icz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape composition of an organism's home range or territory should influence aspects of its condition, including measures of immune function. Changes in immunocompetence arising from variation in landcover may provide important links between habitat changes and patterns of disease spread. To establish a baseline understanding for whether immune measures covary with changes in landcover, we examined associations between immunological parameters and landcover composition for adults and nestlings of five shrubland bird species. Specifically, we examined the bacteria-killing ability (BKA) of the blood plasma and profiles of the five avian leukocytes as our measures of immune function, and assessed the proportion of area around each bird's nest that was composed of the four major landcover types in the Midwestern USA: row crop agriculture, developed, forest, and grass/shrub. We performed landcover assessments at 100 and 1000 m radius buffers to identify whether associations between habitat and immune function differed at the two spatial scales. As part of this work, we examined age and species-related immunological variation, as well as associations among the immune parameters. There was little evidence linking variation in immune function to landcover composition for the adults at either spatial scale, but there were numerous associations for nestlings, and these were stronger at the 1000 than 100 m spatial scale. The proportion of grass/shrub around the nest had the largest impact on immune function, although the effect varied by immune parameter and species. BKA and basophils were inversely associated with grass/shrub for all species, whereas lymphocytes were positively associated with grass/shrub for all species. We also documented species-level differences among adults and nestlings for BKA and all leukocytes except monocytes. As expected, we found that nestlings had reduced levels of BKA, lymphocytes, monocytes, and elevated heterophils compared with adults (except for field sparrow-Spizella pusilla-nestlings, which had higher lymphocytes). Basophils generally did not differ by age class, and eosinophils exhibited species-specific patterns, in which they were higher for nestling American robins (Turdus migratorius) and gray catbirds (Dumetella carolinensis) compared with adults, but lower in the other nestlings. Heterophils and lymphocytes were inversely associated for all species and age classes, and basophil levels were positively associated with BKA across species and age classes. Together, these findings bolster our understanding of age and species-specific variation in immune function, and provide evidence that immune measures can covary with changes in landcover.
Collapse
Affiliation(s)
- L Merrill
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, 61801, USA
| | - T E Stewart Merrill
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | - A M Barger
- College of Veterinary Medicine, University of Illinois, Urbana-Champaign, 61802, USA
| | - T J Benson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, 61820, USA
| |
Collapse
|
100
|
Affiliation(s)
- Louie H. Yang
- Department of Entomology and Nematology University of California Davis California
| |
Collapse
|