51
|
Young adults diagnosed with high grade gliomas: Patterns of care, outcomes, and impact on employment. J Clin Neurosci 2019; 68:45-50. [PMID: 31371189 DOI: 10.1016/j.jocn.2019.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
There is limited information on the patterns of care and outcomes of high grade gliomas (HGGs) in young adults, in particular, the impact it has on a person's employment. We retrospectively identified young adult patients (age ≤ 40 years old) with newly diagnosed high grade gliomas treated between January 2013 and June 2018 across four major neuro-oncology centres in Australia. Patient demographics, tumour characteristics and treatment parameters were collected and outcomes determined. A total of 113 patients were identified with a median follow up of 27.0 months (range 1.0-70.2 months). The median age was 31 years, majority were male (65%) and employed (71.6%). IDH mutations were detected in 66 (62%) cases. The median progression-free survival (PFS) was 38.0 months (95% CI 23.3-52.7 months) and median overall survival (OS) was not reached. Patients with IDH wild type anaplastic astrocytoma and glioblastoma had a significantly shorter median PFS (19.3 months vs. NR, p = 0.001) and median OS (43.5 months vs NR, p = 0.007) than those with IDH mutated grade III anaplastic astrocytoma and oligodendroglioma. There was no significant difference in median OS or PFS between patients who underwent gross or subtotal tumour resection. Significantly, after diagnosis only 36 (32%) patients reported being employed. Young patients with IDH wild type astrocytomas and glioblastoma had better outcomes than reported historical controls. Most patients did not continue in employment post diagnosis.
Collapse
|
52
|
Tamtaji OR, Mirzaei H, Shamshirian A, Shamshirian D, Behnam M, Asemi Z. New trends in glioma cancer therapy: Targeting Na + /H + exchangers. J Cell Physiol 2019; 235:658-665. [PMID: 31250444 DOI: 10.1002/jcp.29014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Glioma is the oneof the most prevalent primarybrain tumors. There is a variety of oxidative stresses, inflammatory pathways, apoptosis signaling, and Na+ /H + exchangers (NHEs) involved in the pathophysiology of glioma. Previous studies have indicated a relationship between NHEs and some molecular pathways in glioma. NHEs, including NHE1, NHE5, and NHE9 affect apoptosis, tumor-associated macrophage inflammatory pathways, matrix metalloproteinases, cancer-cell growth, invasion, and migration of glioma. Also, inhibition of NHEs contributes to increased survival in animal models of glioma. Limited studies, however, have assessed the relationship between NHEs and molecular pathways in glioma. This review summarizes current knowledge and evidence regarding the relationship between NHEs and glioma, and the mechanisms involved.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Shamshirian
- Department of Medical Laboratory Sciences, Student Research Committee, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
53
|
Circ-ZNF264 Promotes the Growth of Glioma Cells by Upregulating the Expression of miR-4493 Target Gene Apelin. J Mol Neurosci 2019; 69:75-82. [PMID: 31114952 DOI: 10.1007/s12031-019-01334-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Glioma is the most common malignant tumor in the brain and nervous system, with high recurrence and high mortality rate. Recent researches have shown that circular RNAs (circRNAs) play key roles in the genesis and progress of glioma. Detection of circRNAs in glioma cells revealed that the expression of circ-ZNF264 was upregulated. At the same time, the expression of miR-4493 was downregulated in glioma cells and had multiple binding sites on the circ-ZNF264 sequence. Dual luciferase reporter gene assay confirmed that miR-4493 could bind to circ-ZNF264 and apelin specifically. MiR-4493 expression was not changed, but its target gene apelin expression could be significantly upregulated by circ-ZNF264. MiR-4493 could inhibit the expression of circ-ZNF264 and apelin. Biological behaviors of glioma cells were detected; circ-ZNF264 promoted cell proliferation and invasion and inhibited apoptosis. MiR-4493 had the opposite effects and could terminate the above effects of circ-ZNF264. When the expression of apelin was downregulated and that of circ-ZNF264 was upregulated, the changes of the above biological behaviors were not obvious. Therefore, in glioma cells, circ-ZNF264 can inhibit the function of miR-4493 and then upregulate its target gene apelin expression, thus regulating glioma cell proliferation, apoptosis, and invasion. This finding provides more evidence for the role of circRNAs in glioma.
Collapse
|
54
|
Darrigo Júnior LG, Lira RCP, Fedatto PF, Marco Antonio DS, Valera ET, Aguiar S, Yunes JA, Brandalise SR, Neder L, Saggioro FP, Becker AP, de Oliveira RS, Machado HR, Panepucci RA, Tone LG, Scrideli CA. MicroRNA profile of pediatric pilocytic astrocytomas identifies two tumor-specific signatures when compared to non-neoplastic white matter. J Neurooncol 2018; 141:373-382. [PMID: 30570705 DOI: 10.1007/s11060-018-03042-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023]
Abstract
PURPOSES Pilocytic astrocytoma (PA) is a low-grade neoplasm frequently found in childhood. PA is characterized by slow growth and a relatively good prognosis. Genetic mechanisms such as activation of MAPK, BRAF gene deregulation and neurofibromatosis type 1 (NF1) syndrome have been associated with PA development. Epigenetic signature and miRNA expression profile are providing new insights about different types of tumor, including PAs. METHODS In the present study we evaluated global miRNA expression in 16 microdissected pediatric PA specimens, three NF1-associated PAs and 11 cerebral white matter (WM) samples by the microarray method. An additional cohort of 20 PAs was used to validate by qRT-PCR the expression of six miRNAs differentially expressed in the microarray data. RESULTS Unsupervised hierarchical clustering analysis distinguished one cluster with nine PAs, including all NF1 cases and a second group consisting of the WM samples and seven PAs. Among 88 differentially expressed miRNAs between PAs and WM samples, the most underexpressed ones regulate classical pathways of tumorigenesis, while the most overexpressed miRNAs are related to pathways such as focal adhesion, P53 signaling pathway and gliomagenesis. The PAs/NF1 presented a subset of underexpressed miRNAs, which was also associated with known deregulated pathways in cancer such as cell cycle and hippo pathway. CONCLUSIONS In summary, our data demonstrate that PA harbors at least two distinct miRNA signatures, including a subgroup of patients with NF1/PA lesions.
Collapse
Affiliation(s)
- Luiz Guilherme Darrigo Júnior
- Department of Pediatrics, Ribeirão Preto Medical School, University of Sao Paulo - USP, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Paola Fernanda Fedatto
- Department of Pediatrics, Ribeirão Preto Medical School, University of Sao Paulo - USP, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of Sao Paulo - USP, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - José Andres Yunes
- State University of Campinas, Campinas, SP, Brazil.,Boldrini´s Children Center, Campinas, SP, Brazil
| | | | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Paixão Becker
- Department of Pathology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Santos de Oliveira
- Department of Surgery, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Hélio Rubens Machado
- Department of Surgery, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of Sao Paulo - USP, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of Sao Paulo - USP, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
55
|
Durmo F, Rydelius A, Cuellar Baena S, Askaner K, Lätt J, Bengzon J, Englund E, Chenevert TL, Björkman-Burtscher IM, Sundgren PC. Multivoxel 1H-MR Spectroscopy Biometrics for Preoprerative Differentiation Between Brain Tumors. ACTA ACUST UNITED AC 2018; 4:172-181. [PMID: 30588503 PMCID: PMC6299741 DOI: 10.18383/j.tom.2018.00051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated multivoxel proton magnetic resonance spectroscopy (1H-MRS) biometrics for preoperative differentiation and prognosis of patients with brain metastases (MET), low-grade glioma (LGG) and high-grade glioma (HGG). In total, 33 patients (HGG, 14; LGG, 9; and 10 MET) were included. 1H-MRS imaging (MRSI) data were assessed and neurochemical profiles for metabolites N-acetyl aspartate (NAA) + NAAG(NAA), Cr + PCr(total creatine, tCr), Glu + Gln(Glx), lactate (Lac), myo-inositol(Ins), GPC + PCho(total choline, tCho), and total lipids, and macromolecule (tMM) signals were estimated. Metabolites were reported as absolute concentrations or ratios to tCho or tCr levels. Voxels of interest in an MRSI matrix were labeled according to tissue. Logistic regression, receiver operating characteristic, and Kaplan-Meier survival analysis was performed. Across HGG, LGG, and MET, average Ins/tCho was shown to be prognostic for overall survival (OS): low values (≤1.29) in affected hemisphere predicting worse OS than high values (>1.29), (log rank < 0.007). Lip/tCho and Ins/tCho combined showed 100% sensitivity and specificity for both HGG/LGG (P < .001) and LGG/MET (P < .001) measured in nonenhancing/contrast-enhancing lesional tissue. Combining tCr/tCho in perilesional edema with tCho/tCr and NAA/tCho from ipsilateral normal- appearing tissue yielded 100% sensitivity and 81.8% specificity (P < .002) for HGG/MET. Best single biomarker: Ins/tCho for HGG/LGG and total lipid/tCho for LGG/MET showed 100% sensitivity and 75% and 100% specificity, respectively. HGG/MET; NAA/tCho showed 75% sensitivity and 84.6% specificity. Multivoxel 1H-MRSI provides prognostic information for OS for HGG/LGG/MET and a multibiometric approach for differentiation may equal or outperform single biometrics.
Collapse
Affiliation(s)
- Faris Durmo
- Departments of Clinical Sciences/Division of Radiology
| | - Anna Rydelius
- Clinical Sciences/Division of Neurology, Lund University, Lund, Sweden
| | | | | | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
| | - Johan Bengzon
- Departments of Clinical Sciences/Division of Neurosurgery
| | - Elisabet Englund
- Clinical Sciences/Division of Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Isabella M Björkman-Burtscher
- Departments of Clinical Sciences/Division of Radiology.,Center for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
| | - Pia C Sundgren
- Departments of Clinical Sciences/Division of Radiology.,Center for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden.,Department of Radiology, University of Michigan, Ann Arbor, MI; and.,LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
| |
Collapse
|
56
|
Foster CH, Morone PJ, Cohen-Gadol A. Awake craniotomy in glioma surgery: is it necessary? J Neurosurg Sci 2018; 63:162-178. [PMID: 30259721 DOI: 10.23736/s0390-5616.18.04590-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The awake craniotomy has evolved from its humble beginnings in ancient cultures to become one of the most eloquent modern neurosurgical procedures. The development of intraoperative mapping techniques like direct electrostimulation of the cortex and subcortical white matter have further argued for its place in the neurosurgeon's armamentarium. Yet the suitability of the awake craniotomy with intraoperative functional mapping (ACWM) to optimize oncofunctional balance after peri-eloquent glioma resection continues to be a topic of active investigation as new methods of intraoperative monitoring and some unfavorable outcome data question its necessity. EVIDENCE ACQUISITION The neurosurgery and anesthesiology literatures were scoured for English-language studies that analyzed or reviewed the ACWM or its components as applied to glioma surgery via the PubMed, ClinicalKey, and OvidMEDLINE® databases or via direct online searches of journal archives. EVIDENCE SYNTHESIS Information on background, conceptualization, standard techniques, and outcomes of the ACWM were provided and compared. We parceled the procedure into its components and qualitatively described positive and negative outcome data for each. Findings were presented in the context of each study without attempt at quantitative analysis or reconciliation of heterogeneity between studies. Certain illustrative studies were highlighted throughout the review. Overarching conclusions were drawn based on level of evidence, expert opinion, and predominate concordance of data across studies in the literature. CONCLUSIONS Most investigators and studies agree that the ACWM is the best currently available approach to optimize oncofunctional balance in this difficult-to-treat patient population. This qualitative review synthesizes the most currently available data on the topic to provide contemporaneous insight into how and why the ACWM has become a favorite operation of neurosurgeons worldwide for the resection of gliomas from eloquent brain.
Collapse
Affiliation(s)
- Chase H Foster
- Department of Neurological Surgery, George Washington University Hospital, Washington D.C., USA -
| | - Peter J Morone
- Department of Neurological Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Aaron Cohen-Gadol
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
57
|
Blionas A, Giakoumettis D, Klonou A, Neromyliotis E, Karydakis P, Themistocleous MS. Paediatric gliomas: diagnosis, molecular biology and management. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:251. [PMID: 30069453 PMCID: PMC6046297 DOI: 10.21037/atm.2018.05.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 01/14/2023]
Abstract
Paediatric gliomas represent the most common brain tumour in children. Early diagnosis and treatment greatly improve survival. Histological grade is the most significant classification system affecting treatment planning and prognosis. Paediatric gliomas depend on pathways and genes responsible for mitotic activity and cell proliferation as well as angiogenesis (MAPK, VEGF, EFGR pathways). Symptoms such as focal neurologic deficit or seizures can facilitate diagnosis, but they are not always present and therefore diagnosis is occasionally delayed. Imaging has adequate diagnostic accuracy (surpassing 90%), and novel imaging techniques such as MR spectroscopy and PET increase only slightly this percentage. Low grade gliomas (LGG) can be approached conservatively but most authors suggest surgical excision. High grade gliomas (HGG) are always operated with exception of specific contradictions including butterfly or extensive dominant hemisphere gliomas. Surgical excision is universally followed by radiotherapy and chemotherapy, which slightly increase survival. Inoperable cases can be managed with or without radiosurgery depending on location and size, with adjunctive use of radiotherapy and chemotherapy. Surgical excision must be aggressive and gross total resection (GTR) should be attempted, if possible, since it can triple survival. Radiosurgery is effective on smaller tumours of <2 cm2. Surgical excision is always the treatment of choice, but glioma recurrences, and residual tumours in non-critical locations are candidates for radiosurgery especially if tumour volume is low. Management of recurrences includes surgery, radiosurgery and chemoradiotherapy and it should be individualized according to location and size. In combination with molecular targeted therapeutic schemes, glioma management will be immensely improved in the next years.
Collapse
Affiliation(s)
- Alexandros Blionas
- Department of Neurosurgery, G. Gennimatas General Hospital, Athens, Greece
| | - Dimitrios Giakoumettis
- Department of Neurosurgery, University of Athens Medical School, “Evangelismos” General Hospital, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
58
|
Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells. Biochem Biophys Rep 2018; 14:104-113. [PMID: 29872742 PMCID: PMC5986551 DOI: 10.1016/j.bbrep.2018.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Hypoxia, a hallmark characteristic of glioblastoma (GBM) induces changes in the transcriptome and the proteome of tumor cells. We discovered that hypoxic stress produces significant qualitative and quantitative changes in the protein content of secreted exosomes from GBM cells. Among the proteins found to be selectively elevated in hypoxic exosomes were protein-lysine 6-oxidase (LOX), thrombospondin-1 (TSP1), vascular derived endothelial factor (VEGF) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), well studied contributors to tumor progression, metastasis and angiogenesis. Our findings demonstrate that hypoxic exosomes induce differential gene expression in recipient glioma cells. Glioma cells stimulated with hypoxic exosomes showed a marked upregulation of small nucleolar RNA, C/D box 116–21 (SNORD116-21) transcript among others while significantly downregulated the potassium voltage-gated channel subfamily J member 3 (KCNJ3) message. This differential expression of certain genes is governed by the protein cargo being transferred via exosomes. Additionally, compared to normoxic exosomes, hypoxic exosomes increased various angiogenic related parameters vis-à-vis, overall tube length, branching intervals and length of isolated branches studied in tube formation assay with endothelial progenitor cells (EPCs). Thus, the intercellular communication facilitated via exosomes secreted from hypoxic GBM cells induce marked changes in the expression of genes in neighboring normoxic tumor cells and possibly in surrounding stromal cells, many of which are involved in cancer progression and treatment resistance mechanisms. In GBM, hypoxic stress induces profound changes in the protein content of secreted exosomes. Hypoxic exosomal contents induce angiogenesis and significant changes in recipient GBM cell transcriptome. Hypoxic exosomes play a major role leading to tumor proliferation, tumor growth and cell survival.
Collapse
|