51
|
Wang X, Fu YF, Wang RY, Li L, Cao YH, Chen YQ, Zhao HZ, Zhang QQ, Wu JQ, Weng XH, Cheng XJ, Zhu LP. Identification of clinically relevant fungi and prototheca species by rRNA gene sequencing and multilocus PCR coupled with electrospray ionization mass spectrometry. PLoS One 2014; 9:e98110. [PMID: 24835205 PMCID: PMC4024029 DOI: 10.1371/journal.pone.0098110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 04/28/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse. METHODS One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5' end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS. RESULTS For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively. CONCLUSIONS rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Feng Fu
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rui-Ying Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Mycology Lab, Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya-Hui Cao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan-Qiong Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang-Qiang Zhang
- Mycology Lab, Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji-Qin Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Hua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun-Jia Cheng
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li-Ping Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
52
|
Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis 2014; 14:166. [PMID: 24669841 PMCID: PMC3987054 DOI: 10.1186/1471-2334-14-166] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/28/2022] Open
Abstract
Background Invasive fungal infections are very severe infections associated with high mortality rates, despite the availability of new classes of antifungal agents. Based on pathophysiological mechanisms and limited pre-clinical and clinical data, adjunctive immune-stimulatory therapy with interferon-gamma (IFN-γ) may represent a promising candidate to improve outcome of invasive fungal infections by enhancing host defence mechanisms. Methods In this open-label, prospective case series, we describe eight patients with invasive Candida and/or Aspergillus infections who were treated with recombinant IFN-γ (rIFN-γ, 100 μg s.c., thrice a week) for 2 weeks in addition to standard antifungal therapy. Results Recombinant IFN-γ treatment in patients with invasive Candida and/or Aspergillus infections partially restored immune function, as characterized by an increased HLA-DR expression in those patients with a baseline expression below 50%, and an enhanced capacity of leukocytes from treated patients to produce proinflammatory cytokines involved in antifungal defence. Conclusions The present study provides evidence that adjunctive immunotherapy with IFN-γ can restore immune function in fungal sepsis patients, warranting future clinical studies to assess its potential clinical benefit. Trial registration ClinicalTrials.gov - NCT01270490
Collapse
|
53
|
Sharma SK, Hadda V, Mathur P, Gulati V, Sahney C. Profile of micro-organisms in intensive care unit of a level-1 trauma centre: A retrospective study. Indian J Crit Care Med 2013; 17:87-91. [PMID: 23983413 PMCID: PMC3752873 DOI: 10.4103/0972-5229.114827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Patients with trauma usually require highly specialized care in ICU and many times their recovery is complicated by infections. Aim of this study was to determine the profile of pathogens and their impact on outcome among these patients. Materials and Methods: The clinical records of 101 consecutive patients who were admitted for more than 48-hrs in ICU during Jun-Dec 2007 were analyzed. Results: Total of 953 samples from blood, urine, BAL or pus/collection were subjected to cultures. From 276 samples, 299 organisms were isolated. Among pathogens Candida Spp. [89 (29%)] were the most common, followed by Acinetobacter Spp. [69 (23%)], Pseudomonas Spp. [63 (21%)], Klebsiella Spp. [31 (10%)], coagulase negative Staphylococcus aureus [16 (5%)], E coli [12 (4%)], Enterobacter Spp. [7 (2%)], S aureus [6 (2%)], Enterococcus Spp. [5 (2%)], Citrobacter Spp. [2 (0.6%)], S maltophila [1 (0.3%)] and Providentia Spp. [1 (0.3%)]. For gram negative pathogens drug-resistance rates were as follows: Fluoroquinolones, 76%; 3rd generation cephalosporins, 74%; aminoglycosides, 66%; β-lactams/β-lactamase inhibitors combinations, 64%; and carbapenems, 50%. Among these 27% of pathogens were resistant to all 5 classes of drugs. 58% of Staphylococcus aureus were methicillin-resistant whereas 85% of coagulase negative Staphylococcus were methicillin resistant. The mortality was higher among patients in whom pathogens were isolated [Odd's Ratio (OR) 0.185; 95% confidence interval (CI) 0.049-0.640; P = 0.002]. Conclusions: Isolation of multi-drug resistant pathogens is common among trauma patients admitted in ICU and is associated with increased mortality and could impact on the consumption of hospital resources. The importance of high rate of fungal isolation needs to be studied among these patients.
Collapse
Affiliation(s)
- Shefali K Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
54
|
She X, Zhang L, Chen H, Calderone R, Li D. Cell surface changes in the Candida albicans mitochondrial mutant goa1Δ are associated with reduced recognition by innate immune cells. Cell Microbiol 2013; 15:1572-84. [PMID: 23490206 DOI: 10.1111/cmi.12135] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 01/09/2023]
Abstract
We have previously characterized several fungal-specific proteins from the human pathogen Candida albicans that either encode subunits of mitochondria Complex I (CI) of the electron transport chain (ETC) or regulate CI activity (Goa1p). Herein, the role of energy production and cell wall gene expression is investigated in the mitochondria mutant goa1Δ. We show that downregulation of cell wall-encoding genes in the goa1Δ results in sensitivity to cell wall inhibitors such as Congo red and Calcofluor white, reduced phagocytosis by a macrophage cell line, reduced recognition by macrophage receptors, and decreased expression of cytokines such as IL-6, IL-10 and IFN-γ. In spite of the reduced recognition by macrophages, the goa1Δ is still killed to the same extent as control strains. We also demonstrate that expression of the epithelial cell receptors E-cadherin and EGFR is also reduced in the presence of goa1Δ. Together, our data demonstrate the importance of mitochondria in the expression of cell wall biomolecules and the interaction of C. albicans with innate immune and epithelial cells. Our underlying premise is thatmitochondrial proteins such as Goa1p and other fungal-specific mitochondrial proteins regulate critical functions in cell growth and in virulence. As such, they remain as valid drug targets for antifungal drug discovery.
Collapse
Affiliation(s)
- Xiaodong She
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | | | | | | | | |
Collapse
|
55
|
Efficient bioconversion of echinocandin B to its nucleus by overexpression of deacylase genes in different host strains. Appl Environ Microbiol 2012; 79:1126-33. [PMID: 23220968 DOI: 10.1128/aem.02792-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anidulafungin, which noncompetitively inhibits β-(1,3)-D-glucan synthase in fungal cell wall biosynthesis, is the newest antifungal drug to be developed. Echinocandin B deacylase from Actinoplanes utahensis NRRL 12052 catalyzes the cleavage of the linoleoyl group of echinocandin B, a key step in the process of manufacturing anidulafungin. Unfortunately, the natural yield of echinocandin B nucleus is low. In our study, the echinocandin B deacylase gene was systematically overexpressed by genetic engineering in its original producer, A. utahensis, and in the heterologous hosts Streptomyces lividans TK24 and Streptomyces albus. The introduction of additional copies of the gene, under the control of PermE* or its native promoter, into hosts showed significant increases in its transcription level and in the efficiency of the bioconversion of echinocandin B to its nucleus. The conditions for the cultivation and bioconversion of A. utahensis have been optimized further to improve production. As a result, while the wild-type strain initially produced 0.36 g/liter, a concentration of 4.21 g/liter was obtained after the generation of a strain with additional copies of the gene and further optimization of the reaction conditions. These results are useful for enhancing echinocandin B nucleus production in A. utahensis. Our study could enable the engineering of commercially useful echinocandin B nucleus-overproducing stains.
Collapse
|
56
|
Kohno S, Izumikawa K, Yoshida M, Takesue Y, Oka S, Kamei K, Miyazaki Y, Yoshinari T, Kartsonis NA, Niki Y. A double-blind comparative study of the safety and efficacy of caspofungin versus micafungin in the treatment of candidiasis and aspergillosis. Eur J Clin Microbiol Infect Dis 2012; 32:387-97. [PMID: 23052987 PMCID: PMC3569581 DOI: 10.1007/s10096-012-1754-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/19/2012] [Indexed: 11/24/2022]
Abstract
The safety and efficacy profile of caspofungin and micafungin in Japanese patients with fungal infections were directly compared in this prospective, randomized, double-blind study. The proportion of patients who developed significant drug-related adverse event(s) (defined as a serious drug-related adverse event or a drug-related adverse event leading to study therapy discontinuation) was compared in 120 patients [caspofungin 50 mg, or 50 mg following a 70-mg loading dose on Day 1 (hereinafter, 70/50 mg) group: 60 patients; micafungin 150 mg: 60 patients]. The overall response rate was primarily evaluated in the per-protocol set (PPS) population. The proportion of patients who developed significant drug-related adverse events was 5.0 % (3/60) in the caspofungin group and 10.0 % (6/60) in the micafungin group [95 % confidence interval (CI) for the difference: -15.9 %, 5.2 %]. The favorable overall response in the PPS population for patients with esophageal candidiasis, invasive candidiasis, and chronic pulmonary aspergillosis including aspergilloma was 100.0 % (6/6), 100.0 % (3/3), and 46.7 % (14/30) in the caspofungin group, and 83.3 % (5/6), 100.0 % (1/1), and 42.4 % (14/33) in the micafungin group, respectively. In Japanese patients with Candida or Aspergillus infections, there was no statistical difference in the safety between caspofungin and micafungin. Consistent with other data on these two agents, the efficacy of caspofungin and micafungin was similar.
Collapse
Affiliation(s)
- S Kohno
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Einollahi B. Epidemiology of invasive fungal infections in kidney transplant patients. Clin Epidemiol 2012; 4:53-55. [PMID: 22442636 PMCID: PMC3307637 DOI: 10.2147/clep.s29722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
58
|
Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2011; 2012:517529. [PMID: 22121367 PMCID: PMC3216317 DOI: 10.1155/2012/517529] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023] Open
Abstract
Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo.
Collapse
|