51
|
Kim MJ, Ku JM, Choi YJ, Lee SY, Hong SH, Kim HI, Shin YC, Ko SG. Reduced HIF-1α Stability Induced by 6-Gingerol Inhibits Lung Cancer Growth through the Induction of Cell Death. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072106. [PMID: 35408505 PMCID: PMC9000891 DOI: 10.3390/molecules27072106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer (LC) is the leading global cause of cancer-related death, and metastasis is a great challenge in LC therapy. Additionally, solid cancer, including lung, prostate, and colon cancer, are characterized by hypoxia. A low-oxygen state is facilitated by the oncogene pathway, which correlates with a poor cancer prognosis. Thus, we need to understand the related mechanisms in solid tumors to improve and develop new anticancer strategies. The experiments herein describe an anticancer mechanism in which heat shock protein 90 (HSP90) stabilizes HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate the efficacy of 6-gingerol and the molecular mechanism by which 6-gingerol inhibits LC metastasis in different oxygen environments. Our results showed that cell proliferation was inhibited after 6-gingerol treatment. Additionally, HIF-1α, a transcriptional regulator, was found to be recruited to the hypoxia response element (HRE) of target genes to induce the transcription of a series of target genes, including MMP-9, vimentin and snail. Interestingly, we found that 6-gingerol treatment suppressed activation of the transcription factor HIF-1α by downregulating HSP90 under both normoxic and hypoxic conditions. Furthermore, an experiment in an in vivo xenograft model revealed decreased tumor growth after 6-gingerol treatment. Both in vitro and in vivo analyses showed the inhibition of metastasis through HIF-1α/HSP90 after 6-gingerol treatment. In summary, our study demonstrates that 6-gingerol suppresses proliferation and blocks the nuclear translocation of HIF-1α and activation of the EMT pathway. These data suggest that 6-gingerol is a candidate antimetastatic treatment for LC.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Jin Mo Ku
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Se Hyang Hong
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Yong Cheol Shin
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
52
|
Li S, Sun Y, Sun Y. A Comparative Study of Systems Pharmacology and Gene Chip Technology for Predicting Targets of a Traditional Chinese Medicine Formula in Primary Liver Cancer Treatment. Front Pharmacol 2022; 13:768862. [PMID: 35308212 PMCID: PMC8926147 DOI: 10.3389/fphar.2022.768862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/08/2022] [Indexed: 01/08/2023] Open
Abstract
Background: The systems pharmacology approach is a target prediction model for traditional Chinese medicine and has been used increasingly in recent years. However, the accuracy of this model to other prediction models is yet to be established. Objective: To compare the systems pharmacology modelwithexperimental gene chip technology by using these models to predict targets of a traditional Chinese medicine formulain the treatment of primary liver cancer. Methods: Systems pharmacology and gene chip target predictions were performed for the traditional Chinese medicine formula ZhenzhuXiaojiTang (ZZXJT). A third square alignment was performed with molecular docking. Results: Identification of systems pharmacology accounted for 17% of targets, whilegene chip-predicted outcomes accounted for 19%.Molecular docking showed that the top ten targets (excludingcommon targets) of the system pharmacology model had better binding free energies than the gene chip model using twocommon targets as a benchmark. For both models, the core drugs predictions were more consistent than the core small molecules predictions. Conclusion:In this study, the identified targets of systems pharmacology weredissimilar to those identified by gene chip technology; whereas the core drug and small molecule predictions were similar.
Collapse
Affiliation(s)
- Songzhe Li
- Department of Biology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Sun
- Department of Biology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Sun
- Department of Biology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
53
|
Zhang J, Gao RF, Li J, Yu KD, Bi KX. Alloimperatorin activates apoptosis, ferroptosis and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem Cell Biol 2022; 100:213-222. [PMID: 35263194 DOI: 10.1139/bcb-2021-0399] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is the most common malignant tumour in women. Our research on alloimperatorin from Angelica dahurica showed that alloimperatorin inhibited breast cancer cell viability in a concentration- and time-dependent manner; it also showed that apoptosis and ferroptosis inhibitors significantly weakened the anti-survival effect of alloimperatorin. Alloimperatorin clearly induced breast cancer cell apoptosis and increased the activities of Caspase-3, Caspase-8, Caspase-9 and PARP; it also caused significant mitochondrial shrinkage, promoted the accumulation of Fe2+, ROS and MDA, and significantly reduced mRNA and protein expression levels of SLC7A11 and GPX4, indicating that alloimperatorin induces ferroptosis. In addition, alloimperatorin significantly promoted Keap1 expression; although it did not affect the expression of PGAM5 and AIFM1, it significantly reduced the phosphorylation level of AIFM1. After downregulating the expression of Keap1, PGAM5 or AIFM1, the inhibitory effect of alloimperatorin on cell viability was significantly weakened, indicating that alloimperatorin regulates the Keap1/PGAM5/AIFM1 pathway to promote oxeiptosis. Alloimperatorin significantly inhibited the invasion of breast cancer cells, while Keap1 siRNA or GPX4 overexpression vectors significantly enhanced cell invasion and effectively reversed the anti-invasive effect of alloimperatorin. Therefore, alloimperatorin induces breast cancer cell apoptosis, ferroptosis and oxeiptosis, thereby inhibiting cell growth and invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Shanxi Provincial People's Hospital, Department of General Surgery, 29# shuangtasi Street, Yingze District, Taiyuan 030012, Shanxi Province, PRC., Taiyuan, China;
| | - Run-Fang Gao
- Shanxi Provincial People's Hospital, Department of General Surgery, Taiyuan, China;
| | - Jie Li
- Shanxi Provincial People's Hospital, Department of General Surgery, Taiyuan, China;
| | - Ke-da Yu
- Fudan University Shanghai Cancer Center, 89667, Shanghai, Shanghai, China;
| | - Kai-Xin Bi
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| |
Collapse
|
54
|
Utilizing Bioinformatics Technology to Explore the Potential Mechanism of Danggui Buxue Decoction against NSCLC. DISEASE MARKERS 2022; 2022:5296830. [PMID: 35256890 PMCID: PMC8898125 DOI: 10.1155/2022/5296830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
While lung cancer poses a serious threat to human health, non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. Danggui Buxue Decoction (DBD) is a classical traditional antitumor medicine commonly used in China. However, the potential mechanism of DBD against NSCLC has not yet been expounded. Therefore, this study clarified the potential molecular mechanism and key targets of DBD in NSCLC treatment through several technological advances, such as network pharmacology, molecular docking, and bioinformatics. Firstly, the relative active ingredients and key DBD targets were analyzed, and subsequently, a drug-ingredient-target-disease network diagram was constructed for NSCLC treatment with DBD, resulting in the identification of five main active ingredients and ten core targets according to the enrichment degree. The enrichment analysis revealed that DBD can achieve the purpose of treating NSCLC through the AGE-RAGE signaling pathway in diabetic complications. Secondly, the molecular docking approach predicted that quercetin and hederagenin have the best working mechanisms with PDE3A and PTGS1, while the survival analysis results depicted that high PDE3A gene expression has a relatively poor prognosis for NSCLC patients (p < 0.05). Additionally, PDE3A is mainly distributed in the LU65 cell line that originated from Asian population. In summary, our study results showed that DBD can treat NSCLC through the synergistic correlation between multiple ingredients, multiple targets, and multiple pathways, thus effectively improving NSCLC prognosis. This study not only reflected the medicinal value of DBD but also provided a solid structural basis for future new drug developments and targeted therapies.
Collapse
|
55
|
Ji H, Li K, Xu W, Li R, Xie S, Zhu X. Prediction of the Mechanisms by Which Quercetin Enhances Cisplatin Action in Cervical Cancer: A Network Pharmacology Study and Experimental Validation. Front Oncol 2022; 11:780387. [PMID: 35070983 PMCID: PMC8770278 DOI: 10.3389/fonc.2021.780387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
Yimucao has been used as an herbal medicine to treat gynecological diseases. Common genes of Yimucao active compounds were investigated using network pharmacology. The components and targets of Yimucao were retrieved from the TCMSP database. Cervical cancer targets were collected from GeneCards, TTD, DisGeNET, and KEGG. Cisplatin-related genes were downloaded from GeneWeaver. The protein-protein interaction (PPI) network was created using the STRING database. A drug-bioactive compound-disease-target network was constructed using Cytoscape. GO and KEGG analyses were performed to investigate common targets of quercetin and cisplatin in cervical cancer. We found that quercetin was the highly bioactive compound in Yimucao. The drug-bioactive compound-disease-target network contained 93 nodes and 261 edges. Drug-related key targets were identified, including EGFR, IL6, CASP3, VEGFA, MYC, CCND1, ERBB2, FOS, PPARG, and CASP8. Core targets were primarily related to the response to metal ions, cellular response to xenobiotic stimulus, and transcription factor complex. The KEGG pathway analysis revealed that quercetin and cisplatin may affect cervical cancer through platinum drug resistance and the p53 and HIF-1 pathways. Furthermore, quercetin combined with cisplatin downregulated the expression of EGFR, MYC, CCND1, and ERBB2 proteins and upregulated CASP8 expression in HeLa and SiHa cells. Functionally, quercetin enhanced cisplatin-induced anticancer activity in cervical cancer cells. Our results indicate that quercetin can be used to overcome cisplatin resistance in cervical cancer cells.
Collapse
Affiliation(s)
- Huihui Ji
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenbin Xu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruyi Li
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangdan Xie
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
56
|
Cheng DH, Liu Y, Wang L. Antitumor Effects of Ethanol Extract from Ventilago leiocarpa Benth on Sarcoma 180 Tumor-Bearing Mice and Possible Immune Mechanism. Chin J Integr Med 2021; 27:905-911. [PMID: 33515397 DOI: 10.1007/s11655-021-3440-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore the antitumor effects of ethanol extract from Ventilago leiocarpa Benth (EEVLB) on sarcoma 180 (S180) tumor-bearing mice and the potential mechanism. METHODS Sixty mice were randomly assigned to 6 groups according to a random number table: normal group, model group, 5-fluorouracil (5-FU) group (0.02 g·kg-1), and high-, medium-, low-dose EEVLB groups (100, 84, and 56 g of raw material·kg-1 body weight, respectively), with 10 mice each group. All treatments were given once daily for 10 consecutive days. Effects of EEVLB on inhibiting tumor growth and immune function in mice were evaluated among all groups after the treatments by detecting tumor inhibition rate, organ index, serum levels of interleukin (IL)-2, -6, -10, CD3+CD4+ T lymphocytes, CD4+/CD8+ ratio, caspase-3 and Bcl-2. RESULTS EEVLB with different concentrations achieved inhibition of tumor growth in vivo, wherein the high-dose group showed the most significant reduction in tumor weight and increased apoptosis of tumor cells (P<0.05). In addition, both net weight gain and spleen index of mice showed uptrend in EEVLB treatment groups (P<0.05). Besides, serum levels of IL-2 and IL-6, percentages of CD3+CD4+ T lymphocytes and ratio of CD4+/CD8+ in peripheral blood were elevated in high- and medium-dose EEVLB groups compared with the model group (P<0.05). Also, upregulation of caspase-3 and downregulation of Bcl-2 were observed at protein levels in the high-dose EEVLB group (P<0.01). CONCLUSIONS EEVLB exhibits promising antitumor activity in vivo. This effect might be due to activation of apoptotic signaling pathway, increase of cytokine levels and enhancement of immune function in tumor-bearing mice.
Collapse
Affiliation(s)
- Dao-Hai Cheng
- Department of Pharmacy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Liu
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China.
| | - Li Wang
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| |
Collapse
|
57
|
Lv D, Xu J, Qi M, Wang D, Xu W, Qiu L, Li Y, Cao Y. A strategy of screening and binding analysis of bioactive components from traditional Chinese medicine based on surface plasmon resonance biosensor. J Pharm Anal 2021; 12:500-508. [PMID: 35811628 PMCID: PMC9257445 DOI: 10.1016/j.jpha.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Elucidating the active components of traditional Chinese medicine (TCM) is essential for understanding the mechanisms of TCM and promote its rational use as well as TCM-derived drug development. Recent studies have shown that surface plasmon resonance (SPR) technology is promising in this field. In the present study, we propose an SPR-based integrated strategy to screen and analyze the major active components of TCM. We used Radix Paeoniae Alba (RPA) as an example to identify the compounds that can account for its anti-inflammatory mechanism via tumor necrosis factor receptor type 1 (TNF-R1). First, RPA extraction was analyzed using an SPR-based screening system, and the potential active ingredients were collected, enriched, and identified as paeoniflorin and paeonol. Next, the affinity constants of paeoniflorin and paeonol were determined as 4.9 and 11.8 μM, respectively. Then, SPR-based competition assays and molecular docking were performed to show that the two compounds could compete with tumor necrosis factor-α (TNF-α) while binding to the subdomain 1 site of TNF-R1. Finally, in biological assays, the two compounds suppressed cytotoxicity and apoptosis induced by TNF-α in the L929 cell line. These findings prove that SPR technology is a useful tool for determining the active ingredients of TCM at the molecular level and can be used in various aspects of drug development. The SPR-based integrated strategy is reliable and feasible in TCM studies and will shed light on the elucidation of the pharmacological mechanism of TCM and facilitate its modernization. A surface plasmon resonance-based integrated strategy was established to analyze traditional Chinese medicine. Surface plasmon resonance technology can be used for ligand screening, affinity detection, and binding site confirmation. Paeoniflorin and paeonol were identified as TNF-R1-bound ingredients in RPA.
Collapse
Affiliation(s)
- Diya Lv
- Center for Instrumental Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jin Xu
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Minyu Qi
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Dongyao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| | - Yan Cao
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
58
|
Zhang X, Qiu H, Li C, Cai P, Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci Trends 2021; 15:283-298. [PMID: 34421064 DOI: 10.5582/bst.2021.01318] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional Chinese medicine (TCM), especially Chinese herbal medicines and acupuncture, has been traditionally used to treat patients with cancers in China and other East Asian countries. Numerous studies have indicated that TCM not only alleviates the symptoms (e.g., fatigue, chronic pain, anorexia/cachexia, and insomnia) of patients with cancer and improves their quality of life (QOL) but also diminishes adverse reactions and complications caused by chemotherapy, radiotherapy, or targeted-therapy. Therefore, Chinese herbal medicines and acupuncture and other alternative therapies need to be understood by TCM physicians and other health care providers. This review mainly summarizes the experimental results and conclusions from literature published since 2010, and a search of the literature as been performed in the PubMed, MEDLINE, Web of Science, Scopus, Springer, ScienceDirect, and China Hospital Knowledge Database (CHKD) databases. Some Chinese herbal medicines (e.g., Panax ginseng, Panax quinquefolius, Astragali radix, Bu-zhong-yi-qi-tang (TJ-41), Liu-jun-zi-tang (TJ-43), Shi-quan-da-bu-tang (TJ-48), and Ban-xia-xie-xin-tang (TJ-14)) and some acupuncture points (e.g., Zusanli (ST36), Zhongwan (CV12), Neiguan (PC6) and Baihui (GV20)) that are commonly used to treat cancer-related symptoms and/or to reduce the toxicity of chemotherapy, radiotherapy, or targeted-therapy are highlighted and summarized. Through a review of literature, we conclude that TCM can effectively alleviate adverse gastrointestinal reactions (including diarrhea, nausea, and vomiting) to these anti-cancer therapies, decrease the incidence of bone marrow suppression, alleviate cardiotoxicity, and protect against chemotherapy-induced peripheral neuropathy and radiation-induced pneumonitis. Moreover, TCM can alleviate epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-related acneiform eruptions, diarrhea, and other adverse reactions. The hope is that this review can contribute to an understanding of TCM as an adjuvant therapy for cancer and that it can provide useful information for the development of more effective anti-cancer therapies. However, more rigorously designed trials involving cancer treatment must be conducted in the future, including complete quality control and standardized models at the cellular, organic, animal and clinical levels, in order to study TCM in multiple forms and at multiple levels.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Hua Qiu
- Gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Chensheng Li
- Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| |
Collapse
|
59
|
Chen S, Luo K, Bian S, Chen J, Qiu R, Wu X, Li G. Paeonol Ameliorates Abdominal Aortic Aneurysm Progression by the NF-κB Pathway. Ann Vasc Surg 2021; 77:255-262. [PMID: 34411666 DOI: 10.1016/j.avsg.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by localized progressive dilatation. Currently, paeonol has been shown to possess anti-inflammatory and protective cardiovascular properties. Our study aimed to investigate the potential influences of paeonol on AAA progression. METHODS Experimental AAAs were created in C57BL/6J mice by intra-aortic infusion of porcine pancreatic elastase, and then intragastrically administered paeonol (20 mg/kg/day) for 14 days. The effects of paeonol on experimental AAA were measured by ultrasound imaging, histopathology, and western blot analyses. RESULTS Paeonol treatment limited the enlargement of the aneurysmal diameter and alleviated the depletion of elastic fibers and vascular smooth muscle cells (VSMCs). Furthermore, the infiltration of CD68+ macrophages and CD8+ lymphocytes was obviously attenuated after paeonol administration, along with mural neoangiogenesis. Western blot results showed that paeonol inhibited the expression of matrix metalloproteinase (MMP) and the NF-κB pathway activation. CONCLUSIONS Paeonol might prevent experimental AAA progression by inhibiting the NF-κB pathway, which suggests that it is a potential drug for AAA.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/immunology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Disease Progression
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Neovascularization, Pathologic
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kun Luo
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianfeng Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Renfeng Qiu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Vascular Surgery, Shouguang People Hospital, Shouguang, Shandong, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
60
|
Fan XZ, Chen YF, Zhang SB, He DH, Wei SF, Wang Q, Pan HF, Liu YQ. Centipeda minima extract sensitizes lung cancer cells to DNA-crosslinking agents via targeting Fanconi anemia pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153689. [PMID: 34446320 DOI: 10.1016/j.phymed.2021.153689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intrinsic and acquired chemoresistance remains a critical challenge in lung cancer chemotherapy. Fanconi anemia (FA) pathway plays an important role in antagonizing the cytotoxic effects of chemotherapeutics by repairing DNA damage. We recently demonstrated that the traditional Chinese medicinal herb, Centipeda minima (C. minima), possessed anti-inflammatory and antioxidant properties. However, the potential anticancer application of C. minima and the underlying mechanisms remain unclear. PURPOSE We aimed to investigate the combined anticancer effects of the ethanol extract of C. minima (ECM) and DNA-crosslinking agents on non-small cell lung cancer (NSCLC) and elucidate the underlying mechanisms. METHODS Cell viability and flow cytometry assay were performed to determine the synergistic cytotoxicity of ECM and DNA-crosslinking agents, cisplatin (CDDP) or mitomycin C (MMC), in NSCLC cells. Western blotting and immunofluorescence were conducted to examine the effects of ECM on protein expression in DNA damage repair pathway. Comet assay was applied to evaluate DNA damage levels. Subcutaneous xenografts of NSCLC were established to evaluate the combined anticancer effects of ECM and CDDP. RESULTS Combined treatments with ECM and DNA-crosslinking agents exhibited synergistic cytotoxic effects against A549 and H1299 cells. FANCD2 was highly expressed in NSCLC that correlates with poor prognosis of NSCLC patients, based on the online database analysis. ECM significantly inhibited DNA damage-induced monoubiquitination and nuclear foci formation of FANCD2, thereby sensitizing NSCLC to CDDP- or MMC-induced DNA damage and apoptosis, as evidenced by increased expression of γ-H2AX, increased cleavage of caspases-3 and PARP, and enhanced Annexin V-FITC/PI staining. Further, ECM can also decrease the protein level of FANCD2 that contributes to the chemosensitizing effects. Moreover, ECM significantly attenuated CDDP-mediated S-phase arrest by antagonizing the activation of ATR/Chk1 pathway in NSCLC cells. Animal experiments further demonstrated that ECM and CDDP combination treatment synergistically inhibited tumor growth by decreasing FANCD2 protein level in tumor tissues. CONCLUSION Our results demonstrated that ECM can inhibit DNA-crosslinking agents-induced activation of FA pathway by attenuating both the expression and monoubiquitination of FANCD2. ECM and CDDP combination therapy exhibited synergistic anticancer effects both in vitro and in vivo, indicating that ECM and its active components might serve as novel anticancer drugs in the combination chemotherapy.
Collapse
Affiliation(s)
- Xiang-Zhen Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu-Fei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shi-Bing Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan-Hua He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Su-Fen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
61
|
Traditional Chinese medicine for prevention and treatment of hepatocellular carcinoma: A focus on epithelial-mesenchymal transition. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:469-477. [PMID: 34538644 DOI: 10.1016/j.joim.2021.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant cancers worldwide. Epithelial-mesenchymal transition (EMT), which endows epithelial cells with mesenchymal properties, plays an important role in the early stages of metastasis. Conventional cancer therapies have promising effects, but issues remain, such as high rates of metastasis and drug resistance. Thus, exploring and evaluating new therapies is an urgent need. Traditional Chinese medicines (TCMs) have been acknowledged for their multi-target and coordinated intervention effects against HCC. Accumulating evidence indicates that TCM can inhibit the malignancy of cells and the progression of EMT in HCC. However, studies on the effects of TCM on EMT in HCC are scarce. In this review, we summarized recent developments in anti-EMT TCMs and formulae, focusing on their underlying pharmacological mechanisms, to provide a foundation for further research on the exact mechanisms through which TCM affects EMT in HCC.
Collapse
|
62
|
Li ZH, Yu D, Huang NN, Wu JK, Du XW, Wang XJ. Immunoregulatory mechanism studies of ginseng leaves on lung cancer based on network pharmacology and molecular docking. Sci Rep 2021; 11:18201. [PMID: 34521875 PMCID: PMC8440634 DOI: 10.1038/s41598-021-97115-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Panax ginseng is one of the oldest and most generally prescribed herbs in Eastern traditional medicine to treat diseases. Several studies had documented that ginseng leaves have anti-oxidative, anti-inflammatory, and anticancer properties similar to those of ginseng root. The aim of this research was to forecast of the molecular mechanism of ginseng leaves on lung cancer by molecular docking and network pharmacology so as to decipher ginseng leaves' entire mechanism. The compounds associated with ginseng leaves were searched by TCMSP. TCMSP and Swiss Target Prediction databases were used to sort out the potential targets of the main chemical components. Targets were collected from OMIM, PharmGKB, TTD, DrugBank and GeneCards which related to immunity and lung cancer. Ginseng leaves exert its lung cancer suppressive function by regulating the several signaling proteins, such as JUN, STAT3, AKT1, TNF, MAPK1, TP53. GO and KEGG analyses indicated that the immunoreaction against lung cancer by ginseng leaves might be related to response to lipopolysaccharide, response to oxidative stress, PI3K-Akt, MAPK and TNF pathway. Molecular docking analysis demonstrated that hydrogen bonding was interaction's core forms. The results of CCK8 test and qRT-PCR showed that ginseng leaves inhibit cell proliferation and regulates AKT1 and P53 expression in A549. The present study clarifies the mechanism of Ginseng leaves against lung cancer and provides evidence to support its clinical use.
Collapse
Affiliation(s)
- Zao-Hui Li
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
- Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin, 132101, China
| | - Dan Yu
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Nan-Nan Huang
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Jun-Kai Wu
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiao-Wei Du
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| | - Xi-Jun Wang
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
63
|
Wan H, Xu X, Yang X, Li A, Ma X, Xu A, Yuan X, Wang W, Guo T, Luo G, He X, Li W, Wang Z, Sun Q, Pei J, Guo Y, Zhu Y. Metabolomics Analysis Reveals Interaction of Base-Line Chemotherapy and Shiyiwei Shenqi Tablets in Breast Cancer Treatment. Front Pharmacol 2021; 12:720886. [PMID: 34566645 PMCID: PMC8461015 DOI: 10.3389/fphar.2021.720886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Shiyiwei Shenqi Tablet (SSTs) has been widely used for treatment of different types of cancer including breast cancer. SST has drawn more and more interest due to the low rate of side effects. The aim of this study was to investigate the metabolites in serums of breast cancer patients who received base-line chemotherapy only or combination treatment with SST. An untargeted metabolomics method was developed to investigate the alteration of metabolism in patients' serums using ultra-high-performance liquid chromatography/Q-exactive Orbitrap mass spectrometry. The patients were separated based on the metabolomics data, and further analyses showed that SST treatment can affect the metabolism of glucose, fatty acid, bile acid and amino acid. In particular, SST treatment significantly reduced some short peptides which are potential tumor neoantigens. This study may provide novel insights into the mechanism underlying interaction between SST and base-line chemotherapy in terms of affecting metabolic pathways and thereby changing metabolic products, which might shed new light for clinical medication.
Collapse
Affiliation(s)
- Hong Wan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojun Xu
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowei Yang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Angqing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guangtao Luo
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wang Li
- Department of Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhaorui Wang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jing Pei
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongzhen Guo
- Department of Pathology, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
64
|
Anti-Cancer Effect of Panax Ginseng and Its Metabolites: From Traditional Medicine to Modern Drug Discovery. Processes (Basel) 2021. [DOI: 10.3390/pr9081344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer incidence and mortality rate are growing worldwide. The effectiveness of cancer therapy depends on the degree of cancer development. Anticancer prevention, screening tests, detection of precancerous conditions or cancers at an early stage of development help to prevent the development of cancer, and in the event of cancer development, they provide the best chance for a full recovery. However, in most cases of advanced cancer, there is no method that can fully cure this disease. Recently, natural products have gained more attention in cancer therapy. Panax ginseng (PG), one of the most popular natural products, is reported to have a wide range of pharmacological activities in cancer. Therefore, the anti-cancer effects and mechanisms of PG and its metabolites (compound K, Ginsenoside Rh1, Rh2, Rh3 and F1) in five major cancers (lung cancer, breast cancer, colon cancer, prostate cancer and stomach cancer) are reviewed in this study. It is confirmed that PG and its metabolites regulated apoptosis, epithelial mesenchymal transition (EMT), angiogenesis, cell cycle arrest and multidrug resistance (MDR) in vitro and in vivo cancer models. In particular, ginsenoside Rh2 showed anticancer effects in all five major cancers. This review could improve the understanding of anticancer mechanisms of PG and its metabolites against major five cancers. Further clinical studies are needed for development anti-cancer drugs using PG and its metabolites.
Collapse
|
65
|
Zhu LM, Shi HX, Sugimoto M, Bandow K, Sakagami H, Amano S, Deng HB, Ye QY, Gai Y, Xin XL, Xu ZY. Feiyanning Formula Induces Apoptosis of Lung Adenocarcinoma Cells by Activating the Mitochondrial Pathway. Front Oncol 2021; 11:690878. [PMID: 34277435 PMCID: PMC8284078 DOI: 10.3389/fonc.2021.690878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Feiyanning formula (FYN) is a traditional Chinese medicine (TCM) prescription used for more than 20 years in the treatment of lung cancer. FYN is composed of Astragalus membranaceus, Polygonatum sibiricum, Atractylodes macrocephala, Cornus officinalis, Paris polyphylla, and Polistes olivaceous, etc. All of them have been proved to have anti-tumor effect. In this study, we used the TCM network pharmacological analysis to perform the collection of compound and disease target, the prediction of compound target and biological signal and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. It was found that the activation of mitochondrial pathway might be the molecular mechanism of the anti-lung cancer effect of FYN. The experimental results showed that FYN had an inhibitory effect on the growth of lung cancer cells in a dose-dependent and time-dependent manner. Moreover, FYN induced G2/M cell cycle arrest and apoptotic cell death as early as 6 h after treatment. In addition, FYN significantly induced mitochondrial membrane depolarization and increased calreticulin expression. Metabolomics analysis showed the increase of ATP utilization (assessed by a significant increase of the AMP/ATP and ADP/ATP ratio, necessary for apoptosis induction) and decrease of polyamines (that reflects growth potential). Taken together, our study suggested that FYN induced apoptosis of lung adenocarcinoma cells by promoting metabolism and changing the mitochondrial membrane potential, further supporting the validity of network pharmacological prediction.
Collapse
Affiliation(s)
- Li-Min Zhu
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Xia Shi
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Shinjuku, Japan
| | - Kenjiro Bandow
- Division of Biochemistry, Meikai University School of Dentistry, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Shigeru Amano
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Hai-Bin Deng
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing-Yu Ye
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Gai
- Department of Oncology, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Xin
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Ye Xu
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
66
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
67
|
Li J, Huang L, He Z, Chen M, Ding Y, Yao Y, Duan Y, Zixuan L, Qi C, Zheng L, Li J, Zhang R, Li X, Dai J, Wang L, Zhang QQ. Andrographolide Suppresses the Growth and Metastasis of Luminal-Like Breast Cancer by Inhibiting the NF-κB/miR-21-5p/PDCD4 Signaling Pathway. Front Cell Dev Biol 2021; 9:643525. [PMID: 34249905 PMCID: PMC8261247 DOI: 10.3389/fcell.2021.643525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor growth and metastasis are responsible for breast cancer-related mortality. Andrographolide (Andro) is a traditional anti-inflammatory drug used in the clinic that inhibits NF-κB activation. Recently, Andro has been found in the treatment of various cancers. Andro inhibits breast cell proliferation and invasion and induces apoptosis via activating various signaling pathways. Therefore, the underlying mechanisms with regard to the antitumor effects of Andro still need to be further confirmed. Herein, a MMTV-PyMT spontaneous luminal-like breast cancer lung metastatic transgenic tumor model was employed to estimate the antitumor effects of Andro on breast cancer in vivo. Andro significantly inhibited tumor growth and metastasis in MMTV-PyMT mice and suppressed the cell proliferation, migration, and invasion of MCF-7 breast cancer cells in vitro. Meanwhile, Andro significantly inhibited the expression of NF-κB, and the downregulated NF-κB reduced miR-21-5p expression. In addition, miR-21-5p dramatically inhibited the target gene expression of programmed cell death protein 4 (PDCD4). In the current study, we demonstrated the potential anticancer effects of Andro on luminal-like breast cancer and indicated that Andro inhibits the expression of miR-21-5p and further promotes PDCD4 via NF-κB suppression. Therefore, Andro could be an antitumor agent for the treatment of luminal-like breast cancer in the clinic.
Collapse
Affiliation(s)
- Junchen Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lixun Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zinan He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuying Yao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Youfa Duan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zixuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoming Li
- Department of Pathology, People’s Hospital of Baoan District, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianwei Dai
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
68
|
Wang T, Qi D, Hu X, Li N, Zhang X, Liu H, Zhong C, Zhang J. A novel evodiamine amino derivative as a PI3K/AKT signaling pathway modulator that induces apoptosis in small cell lung cancer cells. Eur J Pharmacol 2021; 906:174215. [PMID: 34081902 DOI: 10.1016/j.ejphar.2021.174215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Evodiamine (EVO) was derivatized to a C10-amino derivative (EVA) using a two-step method suitable for industrializing production. This method has advantages such as a short reaction time, high yield, few byproducts and simple purification. The AUC and Cmax values of EVA were 7.02- and 4.62-fold, while the Tmax and Cl values were one-half and one-eighth that of EVO, respectively. EVA markedly improved the bioavailability, which might be ascribed to the serum albumin deposit effect. EVA was bound to albumin in the same hydrophobic pocket as EVO, but one more hydrogen bond was formed between Asp323 and the amino group at the C10 position. The amino derivative of natural alkaloids showed a substantial increase in antitumor activity on small cell lung cancer (SCLC) cells. The role of the PI3K/AKT signaling pathway in alkaloid/derivative-induced apoptosis in tumor cells was thoroughly described. p-AKT, its downstream effectors Bcl-2, Bax, caspase-3 and its upstream regulator PTEN were regulated by EVA. The interaction between EVO/EVA and the upstream protein PI3K p110 was first investigated with molecular docking. The apoptosis induced by EVA was abrogated after the PI3K/AKT signaling pathway was reactivated by IGF-1. The interaction between EVO/EVA and P-gp was also first studied using docking method. Their binding forces were weak. But EVA might reduce much expression of P-gp than EVO, and ultimately led to reduction of EVA efflux. Our study provides novel insights into a feasible and productive amino derivative of natural alkaloids for SCLC therapy.
Collapse
Affiliation(s)
- Tingting Wang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China; Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 401331, China.
| | - Di Qi
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, PLA, Chongqing 400042, China.
| | - Xueyuan Hu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Na Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Hongming Liu
- Department of Pharmacy, Nanchuan People's Hospital, Chongqing Medical University, Chongqing 408400, China.
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
69
|
Glabridin attenuates atopic dermatitis progression through downregulating the TLR4/MyD88/NF-κB signaling pathway. Genes Genomics 2021; 43:847-855. [PMID: 34021857 DOI: 10.1007/s13258-021-01081-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Glabridin (GB), a bio-available phytoestrogen, displays various biological properties such as anti-inflammatory, antibacterial, and antiviral. OBJECTIVE To explore the role of GB in the process of atopic dermatitis (AD). METHODS CCK8 was used to detect the therapeutic effect of Glabridin in HaCat and NHEK cell inflammatory models. And evaluated the effect on cell proliferation and cell viability. The expression of TLR4, MyD88, P65 and P50 in HaCat and NHEK cell tissues was detected by qRT-PCR and PCR. At the same time, an AD animal model was constructed, and the cell experiment results were verified by hematoxylin-eosin (HE) and Immunohistochemistry staining (IHC). RESULTS Enzyme-linked immunosorbent assay (ELISA) demonstrated that IL-1β, IL-6, and TNF-α upregulated by lipopolysaccharide (LPS) was decreased by treatment with GB. AD progression was further confirmed to be regulated by GB by inhibiting the TLR4/MyD88/NF-κB signaling pathway through real-time PCR and Western blot analyses. An AD-like mouse model demonstrated that GB considerably alleviated epidermal injury, relieve edema, and reduced inflammatory cell infiltration by H&E staining. Concurrently, IHC staining exhibited GB to reduce AD progression by impeding TLR4 expression. CONCLUSION GB was observed to decrease the AD progression by suppressing the TLR4/MyD88/NF-κB signaling pathway, which may likely serve as a novel therapeutic drug for AD management.
Collapse
|
70
|
Chi HT, Thuong NTL, Ly BTK. Sphagneticola Trilobata (L.) Pruski (Asteraceae) Methanol Extract Induces Apoptosis in Leukemia Cells through Suppression of BCR/ABL. PLANTS 2021; 10:plants10050980. [PMID: 34068907 PMCID: PMC8156756 DOI: 10.3390/plants10050980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
We will study the effects of the methanol extract of Sphagneticola trilobata (L.) Pruski (Asteraceae) (MeST) on the growth of leukemia cells that may contain the BCR/ABL gene. This study also clarifies the mechanism of this effect on these cells. For this purpose, the cells harboring wild-type BCR/ABL, imatinib-resistant BCR/ABL (K562 and TCCYT315I), or Ba/F3 cells transfected with wild-type or mutant BCR/ABL genes were used. The results showed that MeST effectively inhibited the viability of leukemia cells in both a dose- and time-dependent manner. The effect of MeST seems to be more sensitive in the cells that carry imatinib-resistant BCR/ABL (especially the T315I BCR/ABL mutation) than those with wild-type BCR/ABL. Furthermore, we have demonstrated that the death caused by MeST is apoptosis and the treatment with MeST could suppress the expression of BCR/ABL, subsequently altering the downstream cascade of BCR/ABL such as AKT and MAPK signaling. In conclusion, MeST has been able to suppress the growth of leukemia cells harboring BCR/ABL. The mechanism of the anti-leukemic effect of MeST on cells harboring imatinib-resistant BCR/ABL mutations could be due to the disruption of the BCR/ABL oncoprotein signaling cascade.
Collapse
|
71
|
Zhao F, Zhao Z, Han Y, Li S, Liu C, Jia K. Baicalin suppresses lung cancer growth phenotypes via miR-340-5p/NET1 axis. Bioengineered 2021; 12:1699-1707. [PMID: 33955315 PMCID: PMC8806212 DOI: 10.1080/21655979.2021.1922052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a malignant disease, lung cancer has a high morbidity and mortality rate. Baicalin is derived from Radix Scutellariae and has anti-tumor effects, however, its role in lung cancer remains unknown. Here, functional assays suggested baicalin suppressed in vitro lung cancer phenotypes. We used micro (mi)RNA array analysis to explore baicalin effects on miRNA expression. We observed baicalin increased miR-340-5p expression, whereas inhibition of this expression abolished anti-tumor effects of baicalin. Furthermore, neuroepithelial cell transforming 1 (NET1) functioned as a miR-340-5p target, and acted in a baicalin-dependent manner to regulate lung cancer progression. Thus, baicalin elicited antitumor activities by affecting the miR-340-5p/NET1 axis, suggesting a new approach to lung cancer clinical management.
Collapse
Affiliation(s)
- Fucheng Zhao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Zhenxia Zhao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Yanru Han
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Sujuan Li
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Caili Liu
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Kui Jia
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| |
Collapse
|
72
|
Yuan P, Fu C, Yang Y, Adila A, Zhou F, Wei X, Wang W, Lv J, Li Y, Xia L, Li J. Cistanche tubulosa Phenylethanoid Glycosides Induce Apoptosis of Hepatocellular Carcinoma Cells by Mitochondria-Dependent and MAPK Pathways and Enhance Antitumor Effect through Combination with Cisplatin. Integr Cancer Ther 2021; 20:15347354211013085. [PMID: 33949239 PMCID: PMC8113936 DOI: 10.1177/15347354211013085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cistanche tubulosa is a type of Chinese herbal medicine and
exerts various biological functions. Previous studies have been demonstrated
that Cistanche tubulosa phenylethanoid glycosides (CTPG)
exhibit antitumor effects on a variety of tumor cells. However, the antitumor
effects of CTPG on HepG2 and BEL-7404 hepatocellular carcinoma (HCC) cells are
still elusive. Our study showed that CTPG significantly inhibited the growth of
HepG2 and BEL-7404 cells through the induction of cell cycle arrest and
apoptosis, which was associated with the activation of MAPK pathways
characterized by the up-regulated phosphorylation of p38, JNK, and ERK1/2 and
mitochondria-dependent pathway characterized by the reduction of mitochondrial
membrane potential. The release of cytochrome c and the
cleavage of caspase-3, -7, -9, and PARP were subsequently increased by CTPG
treatment. Moreover, CTPG significantly suppressed the migration of HepG2
through reducing the levels of matrix metalloproteinase-2 and vascular
endothelial growth factor. Interestingly, CTPG not only enhanced the
proliferation of splenocytes but also reduced the apoptosis of splenocytes
induced by cisplatin. In H22 tumor mouse model, CTPG combined with cisplatin
further inhibited the growth of H22 cells and reduced the side effects of
cisplatin. Taken together, CTPG inhibited the growth of HCC through direct
antitumor effect and indirect immunoenhancement effect, and improved the
antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
| | | | - Yi Yang
- Xinjiang University, Urumqi, Xinjiang, China
| | | | | | | | - Weilan Wang
- Xinjiang University, Urumqi, Xinjiang, China
| | - Jie Lv
- Xinjiang University, Urumqi, Xinjiang, China
| | - Yijie Li
- Xinjiang University, Urumqi, Xinjiang, China
| | - Lijie Xia
- Xinjiang University, Urumqi, Xinjiang, China
| | - Jinyao Li
- Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
73
|
Yu S, Gao W, Zeng P, Chen C, Zhang Z, Liu Z, Liu J. Exploring the effect of Gupi Xiaoji Prescription on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments. Biomed Pharmacother 2021; 139:111612. [PMID: 33915505 DOI: 10.1016/j.biopha.2021.111612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE To study the effect of Gupi Xiaoji Prescription (GXP) on hepatitis B virus(HBV)-related liver cancer through network pharmacology coupled with in vitro experiments and explore their related mechanisms. MATERIALS AND METHODS Gupi Xiaoji Prescription's chemical constituents and the action targets of its six medicinal components were identified using several databases. These included the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), the Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM), and the Traditional Chinese Medicine Integrated Database (TCMID), while GeneCards and OMIM were used to compile relevant liver cancer disease targets. Pathway enrichment of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), analysis of potential targets, and analysis of the enriched pathways in literature were executed in R. The Hepatocellular carcinoma (HCC)-derived HepG2.2.15 cell line stably expresses and replicates HBV. In vitro experiments with HepG2.2.15 were used to verify GXP's effects on HBV-related liver cancer, while the human liver cancer cell line HepG2 was used as the control. RESULTS 171 active ingredients and 259 potential drug targets were screened from GXP, involving 181 pathways in vitro. These assays identified Polyphyllin I as an effective GXP component. Notably, GXP inhibited cell proliferation and metastasis in a concentration-dependent manner (P < 0.01). In comparison with the vehicle group, the fluorescence intensity of each drug group was significantly weakened (P < 0.01), while the drug group Mitofusins 1(MFN1) and protein expression level of Mitofusins 2 (MFN2) increased significantly. The protein expression level of Mitochondrial fission protein 1 (FIS1) and Optic Atrophy 1 (OPA1) also showed significant decreases (P < 0.01). Molecular docking revealed Fructus saponins I's high affinity with FIS1, MFN1, MFN2, and OPA1. CONCLUSION The network pharmacology results indicate that Gupi Xiaoji Prescription may treat liver cancer by regulating mitochondrial division and fusion of key genes to disrupt liver cancer cells' energy metabolism. In vitro experiments also verified that GXP could inhibit the proliferation and migration of HepG2.2.15 cells by up-regulating MFN1 and MFN2, down-regulating the expression of FIS1 and OPA1 in addition to damaging mitochondria. Consistent with network pharmacology and molecular docking results, Polyphyllin I may be the most active compound of the formula's components. It also shows that Traditional Chinese medicine (TCM) plays a significant, targeted role in the treatment of HBV-related liver cancer.
Collapse
Affiliation(s)
- Shuxian Yu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, PR China
| | - Wenhui Gao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Puhua Zeng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, PR China.
| | - Chenglong Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhen Zhang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhuo Liu
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, PR China
| | - Jiyong Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Hunan Key Laboratory of TCM Diagnostics,University of Chinese Medicine, Changsha 410208, PR China
| |
Collapse
|
74
|
Efficacy and Safety of a Combination of Shenmai Injection plus Chemotherapy for the Treatment of Lung Cancer: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7929165. [PMID: 33936245 PMCID: PMC8060114 DOI: 10.1155/2021/7929165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/10/2020] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Objective To perform a systematic evaluation of the efficacy and safety of combined treatment of Shenmai injection and chemotherapy for lung cancer. Methods A literature search for randomized controlled trials (RCTs) describing the treatment of lung cancer by Shenmai injection and chemotherapy or chemotherapy alone was performed using the PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), Value In Paper (VIP), China BioMed, and Wanfang databases. The databases were searched for entries published before September 1, 2019. Results Thirty-seven RCTs, comprising a total of 2808 cases, were included in the present meta-analysis. Of these, 1428 cases were treated by Shenmai injection plus chemotherapy, and 1380 cases were treated only by chemotherapy. The results of meta-analysis showed that the combined treatment (Shenmai injection plus chemotherapy) increased the short-term efficacy of treatment (relative risk [RR] = 1.183, 95% confidence interval [CI] = 1.043-1.343, P < 0.01) and improved patients' quality of life (RR = 1.514, 95%CI = 1.211-1.891, P < 0.01) compared with chemotherapy alone. With regard to the adverse effects, the combined treatment markedly reduced the incidence of white blood cell (WBC) reduction (RR = 0.846, 95%CI = 0.760-0.941, P < 0.01), platelet reduction (RR = 0.462, 95% CI = 0.330-0.649, P < 0.01), and hemoglobin reduction (RR = 0.462, 95% CI = 0.330-0.649, P < 0.01) and alleviated drug-induced liver injury (RR = 0.677, 95%CI = 0.463-0.990, P < 0.05). However, it did not offer a significant protective effect (RR = 0.725, 95%CI = 0.358-1.468, P < 0.05). The effect of the combined treatment on the occurrence of vomiting was considerable (RR = 0.889, 95%CI = 0.794-0.996, P < 0.05), and the combined treatment markedly increased the immunity of patients with lung cancer. Conclusion The combined treatment of Shenmai injection plus chemotherapy enhanced the short-term efficacy of chemotherapy, improved the patient quality of life, alleviated the adverse effects of chemotherapeutics, and increased the patient immunity. These results should be confirmed by large-scale, high-quality RCTs.
Collapse
|
75
|
Wang H, Hu X, Li M, Pan Z, Li D, Zheng Q. Daphnoretin induces reactive oxygen species-mediated apoptosis in melanoma cells. Oncol Lett 2021; 21:453. [PMID: 33907563 PMCID: PMC8063224 DOI: 10.3892/ol.2021.12714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Research suggests that daphnoretin exhibits a diverse array of antitumor mechanisms and pharmacological activities. However, there is no definitive explanation for the antitumor mechanisms of daphnoretin in malignant melanoma. In the present study, MTT and colony formation assays demonstrated that daphnoretin significantly inhibited the proliferation of melanoma A375 and B16 cells. Following treatment with daphnoretin, apoptotic bodies were observed in A375 and B16 cells via Hoechst 33258 staining. Furthermore, western blot analysis revealed that the apoptosis-related proteins cleaved caspase-3, cleaved caspase-9, Bax, cytochrome c and apoptotic protease-activating factor 1 were significantly upregulated, while the expression levels of caspase-3, caspase-9 and Bcl-2 were downregulated in A375 and B16 cells. Flow cytometry and fluorescence microscopy revealed that daphnoretin induced higher levels of reactive oxygen species (ROS). Therefore, the results of the present study indicated that daphnoretin induced ROS-mediated mitochondria apoptosis in human (A375) and murine (B16) malignant melanoma cells.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Xue Hu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qiusheng Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, P.R. China.,Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
76
|
Xu G, Zhao H, Xu J, Zhang Y, Qi X, Shi A. Hard antler extract inhibits invasion and epithelial-mesenchymal transition of triple-negative and Her-2 + breast cancer cells by attenuating nuclear factor-κB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113705. [PMID: 33346025 DOI: 10.1016/j.jep.2020.113705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hard antler extract (HAE) is a traditional Chinese medicine and has potent antitumor, antioxidative, anti-inflammatory, and immunomodulatory activities. Previous studies have demonstrated that HAE can inhibit human prostate cancer metastasis and murine breast cancer proliferation. However, the effect of HAE on human breast cancer cells has not been clarified. AIM OF THE STUDY To investigate the effects and underlying mechanism of HAE on self-renewal of stem-like cells and spontaneous and transforming growth factor (TGF)-β1-enhanced wound healing, invasion and epithelial-mesenchymal transition (EMT) in breast cancer cells. METHODS HAE was prepared from sika deer by sequential enzymatic digestions and the active compounds were determined by HPLC. The effects of HAE on the viability, mammosphere formation, wound healing and invasion of MDA-MB-231 and SK-BR3 cells were determined. The impact of HAE treatment on spontaneous and TGF-β1-promoted EMT and the nuclear factor (NF)-κB signaling in breast cancer cells was examined by quantitative RT-PCR and western blotting. RESULTS Treatment with HAE at varying concentrations did not change the viability of breast cancer cells. However, HAE at 0.25 or 0.5 mg/mL significantly reduced the number and size of formed mammospheres, and inhibited spontaneous and TGF-β1-enhanced wound healing, invasion and EMT in MDA-MB-231 and SK-BR3 cells in a dose-dependent manner. TGF-β1 treatment significantly decreased IκBα expression and increased NF-kBp65 phosphorylation in breast cancer cells, indicating that TGF-β1 enhanced NF-κB signaling. In contrast, HAE treatment attenuated the spontaneous and TGF-β1-enhanced NF-κB signaling in breast cancer cells. CONCLUSION Our data indicated that HAE inhibited the self-renewal of stem-like cells and spontaneous and TGF-β1-enhanced wound healing, invasion and EMT in breast cancer cells by attenuating the NF-κB signaling in vitro.
Collapse
Affiliation(s)
- Gege Xu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Haiping Zhao
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, 130112, China
| | - Jingdong Xu
- Biology Major, the University of Texas at Austin, Austin, TX, 78705, USA
| | - Yu Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoyan Qi
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, 130112, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
77
|
Li M, Shang H, Wang T, Yang SQ, Li L. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol 2021; 27:939-958. [PMID: 33776365 PMCID: PMC7968131 DOI: 10.3748/wjg.v27.i10.939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in human populations worldwide. Huanglian decoction is one of the most important Chinese medicine formulas, with the potential to treat cancer. AIM To investigate the role and mechanism of Huanglian decoction on HCC cells. METHODS To identify differentially expressed genes (DEGs), we downloaded gene expression profile data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma and Gene Expression Omnibus (GSE45436) databases. We obtained phytochemicals of the four herbs of Huanglian decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. We also established a regulatory network of DEGs and drug target genes and subsequently analyzed key genes using bioinformatics approaches. Furthermore, we conducted in vitro experiments to explore the effect of Huanglian decoction and to verify the predictions. In particular, the CCNB1 gene was knocked down to verify the primary target of this decoction. Through the identification of the expression levels of key proteins, we determined the primary mechanism of Huanglian decoction in HCC. RESULTS Based on the results of the network pharmacological analysis, we revealed 5 bioactive compounds in Huanglian decoction that act on HCC. In addition, a protein-protein interaction network analysis of the target genes of these five compounds as well as expression and prognosis analyses were performed in tumors. CCNB1 was confirmed to be the primary gene that may be highly expressed in tumors and was significantly associated with a worse prognosis. We also noted that CCNB1 may serve as an independent prognostic indicator in HCC. Moreover, in vitro experiments demonstrated that Huanglian decoction significantly inhibited the growth, migration, and invasiveness of HCC cells and induced cell apoptosis and G2/M phase arrest. Further analysis showed that the decoction may inhibit the growth of HCC cells by downregulating the CCNB1 expression level. After Huanglian decoction treatment, the expression levels of Bax, caspase 3, caspase 9, p21 and p53 in HCC cells were increased, while the expression of CDK1 and CCNB1 was significantly decreased. The p53 signaling pathway was also found to play an important role in this process. CONCLUSION Huanglian decoction has a significant inhibitory effect on HCC cells. CCNB1 is a potential therapeutic target in HCC. Further analysis showed that Huanglian decoction can inhibit HCC cell growth by downregulating the expression of CCNB1 to activate the p53 signaling pathway.
Collapse
Affiliation(s)
- Min Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Hua Shang
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Tao Wang
- Department of General Surgery, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Department of Pathology, University of Otago, Dunedin px806, New Zealand
| |
Collapse
|
78
|
Aidi injection, a traditional Chinese biomedical preparation for gynecologic tumors: a systematic review and PRISMA-compliant meta-analysis. Biosci Rep 2021; 41:227925. [PMID: 33624761 PMCID: PMC7937908 DOI: 10.1042/bsr20204457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
Aidi injection (ADI), a traditional Chinese biomedical preparation, is a promising adjuvant therapy for gynecologic tumors (GTs), including cervical cancer (CC), endometrial cancer (EC), and ovarian cancer (OC). Although studies have reported positively on ADI therapy, its exact effects and safety in GT patients remain controversial. Therefore, a wide-ranging systematic search of electronic databases was performed for this meta-analysis. Data from 38 trials including 3309 GT patients were analyzed. The results indicated that the combination of conventional treatment and ADI markedly improved the patients’ overall response rate (P<0.00001), disease control rate (P<0.00001), and quality of life (P<0.05) compared with conventional treatment alone. Furthermore, patient immunity was enhanced with combined treatment, as indicated by significantly increased percentages of CD3+ (P=0.005) and CD4+ (P<0.00001) and increased CD4+/CD8+ ratio (P=0.001). Most of the adverse events caused by radiochemotherapy such as gastrointestinal issues, leukopenia, thrombocytopenia, and hepatotoxicity, (P<0.05 for all) were significantly alleviated when ADI was used in the GT patients. However, other adverse events such as nephrotoxicity, diarrhea, alopecia, and neurotoxicity did not significantly differ between the two groups. Overall, these results suggest that the combination of conventional and ADI treatment is more effective than conventional treatment alone.
Collapse
|
79
|
Liu TJ, Hu S, Qiu ZD, Liu D. Anti-Tumor Mechanisms Associated With Regulation of Non-Coding RNA by Active Ingredients of Chinese Medicine: A Review. Front Oncol 2021; 10:634936. [PMID: 33680956 PMCID: PMC7930492 DOI: 10.3389/fonc.2020.634936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the second leading cause of death worldwide; however, its complex pathogenesis remains largely unclear. Previous research has shown that cancer development and progression are closely associated with various non-coding RNAs, including long non-coding RNAs and microRNAs, which regulate gene expression. Target gene abnormalities are regulated and engaged in the complex mechanism underlying tumor formation, thereby controlling apoptosis, invasion, and migration of tumor cells and providing potentially effective targets for the treatment of malignant tumors. Chemotherapy is a commonly used therapeutic strategy for cancer; however, its effectiveness is limited by general toxicity and tumor cell drug resistance. Therefore, increasing attention has been paid to developing new cancer treatment modalities using traditional Chinese medicines, which exert regulatory effects on multiple components, targets, and pathways. Several active ingredients in Chinese medicine, including ginsenoside, baicalin, and matrine have been found to regulate ncRNA expression levels, thus, exerting anti-tumor effects. This review summarizes the scientific progress made regarding the anti-tumor mechanisms elicited by various active ingredients of Chinese medicine in regulating non-coding RNAs, to provide a theoretical foundation for treating tumors using traditional Chinese medicine.
Collapse
Affiliation(s)
- Tian-Jia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhi-Dong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
80
|
Cai C, Wu Q, Hong H, He L, Liu Z, Gu Y, Zhang S, Wang Q, Fan X, Fang J. In silico identification of natural products from Traditional Chinese Medicine for cancer immunotherapy. Sci Rep 2021; 11:3332. [PMID: 33558586 PMCID: PMC7870934 DOI: 10.1038/s41598-021-82857-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Advances in immunotherapy have revolutionized treatments in many types of cancer. Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant application against cancer, is emerging as an important medical resource for developing innovative cancer treatments, including immunotherapy. In this study, we developed a quantitative and systems pharmacology-based framework to identify TCM-derived natural products for cancer immunotherapy. Specifically, we integrated 381 cancer immune response-related genes and a compound-target interaction network connecting 3273 proteins and 766 natural products from 66 cancer-related herbs based on literature-mining. Via systems pharmacology-based prediction, we uncovered 182 TCM-derived natural products having potential anti-tumor immune responses effect. Importantly, 32 of the 49 most promising natural products (success rate = 65.31%) are validated by multiple evidence, including published experimental data from clinical studies, in vitro and in vivo assays. We further identified the mechanism-of-action of TCM in cancer immunotherapy using network-based functional enrichment analysis. We showcased that three typical natural products (baicalin, wogonin, and oroxylin A) in Huangqin (Scutellaria baicalensis Georgi) potentially overcome resistance of known oncology agents by regulating tumor immunosuppressive microenvironments. In summary, this study offers a novel and effective systems pharmacology infrastructure for potential cancer immunotherapeutic development by exploiting the medical wealth of natural products in TCM.
Collapse
Affiliation(s)
- Chuipu Cai
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515000, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhihong Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Shijie Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
81
|
Zhang Y, Lou Y, Wang J, Yu C, Shen W. Research Status and Molecular Mechanism of the Traditional Chinese Medicine and Antitumor Therapy Combined Strategy Based on Tumor Microenvironment. Front Immunol 2021; 11:609705. [PMID: 33552068 PMCID: PMC7859437 DOI: 10.3389/fimmu.2020.609705] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of malignant tumors encompasses multidisciplinary comprehensive diagnosis and treatment and reasonable combination and arrangement of multidisciplinary treatment, which is not a simple superimposition of multiple treatment methods, but a comprehensive consideration of the characteristics and specific conditions of the patients and the tumor. The mechanism of tumor elimination by restoring the body's immune ability is consistent with the concept of "nourishing positive accumulation and eliminating cancer by itself" in traditional Chinese medicine (TCM). The formation and dynamic changes in the tumor microenvironment (TME) involve many different types of cells and multiple signaling pathways. Those changes are similar to the multitarget and bidirectional regulation of immunity by TCM. Discussing the relationship and mutual influence of TCM and antitumor therapy on the TME is a current research hotspot. TCM has been applied in the treatment of more than 70% of cancer patients in China. Data have shown that TCM can significantly enhance the sensitivity to chemotherapeutic drugs, enhance tumor-suppressing effects, and significantly improve cancer-related fatigue, bone marrow suppression, and other adverse reactions. TCM treatments include the application of Chinese medicine monomers, extracts, classic traditional compound prescriptions, listed compound drugs, self-made compound prescriptions, as well as acupuncture and moxibustion. Studies have shown that the TCM functional mechanism related to the positive regulation of cytotoxic T cells, natural killer cells, dendritic cells, and interleukin-12, while negatively regulating of regulatory T cells, tumor-associated macrophages, myeloid-derived suppressive cells, PD-1/PD-L1, and other immune regulatory factors. However, the application of TCM in cancer therapy needs further study and confirmation. This article summarizes the existing research on the molecular mechanism of TCM regulation of the TME and provides a theoretical basis for further screening of the predominant population. Moreover, it predicts the effects of the combination of TCM and antitumor therapy and proposes further developments in clinical practice to optimize the combined strategy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jingbin Wang
- Department of Spleen and Stomach Disease, Chinese Medicine Shenzhen Hospital, Guangzhou University, Shenzhen, China
| | - Cunguo Yu
- Department of Chinese Medicine, Qinhuangdao Haigang Hospital, Qinhuangdao, China
| | - Wenjuan Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
82
|
Wu J, Luo D, Li S. Network Pharmacology-Oriented Identification of Key Proteins and Signaling Pathways Targeted by Xihuang Pill in the Treatment of Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2020; 12:267-277. [PMID: 33324095 PMCID: PMC7733446 DOI: 10.2147/bctt.s284076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
Purpose The compound traditional Chinese medicine Xihuang pill (XHP) has been adopted to treat breast cancer (BC) for centuries, but its specific mechanism of action is unclear. Materials and Methods The active ingredients and related targets of XHP were screened using the TCMSP and TCMID databases. GSE139038 was downloaded from the GEO database, and differentially expressed genes (DEGs) were analyzed. The intersection of targets and DEGs were chosen to build an ingredients–target genes network. Protein–protein interaction network construction and functional enrichment analysis of target genes were conducted. Results A PPI network of 37 targets was constructed, and seven core nodes (FOS, MYC, JUN, PPARG, MMP9, PTGS2, SERPINE1) were identified. Functional enrichment analysis revealed that the aforementioned targets were mainly enriched in the IL-17, toll-like receptor, and tumor necrosis factor signaling pathways, which are deeply involved in the inflammatory microenvironment of tumors. Conclusion This network pharmacology study indicated that XHP can inhibit the development of BC by targeting a variety of proteins and signaling pathways involved in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Jiafa Wu
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China.,Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Dongping Luo
- The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Shengnan Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, People's Republic of China
| |
Collapse
|
83
|
Huang Y, Lin J, Yi W, Liu Q, Cao L, Yan Y, Fu A, Huang T, Lyu Y, Huang Q, Wang J. Research on the Potential Mechanism of Gentiopicroside Against Gastric Cancer Based on Network Pharmacology. Drug Des Devel Ther 2020; 14:5109-5118. [PMID: 33262572 PMCID: PMC7700081 DOI: 10.2147/dddt.s270757] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer was still one of the commonly diagnosed cancer types and the third-most common cause of cancer-related death in the world. Gentiopicroside, which is extracted from the Gentianella acuta, is commonly used in both traditional treatment and modern clinical care; therefore, its anticancer effects have been attracted more attention. However, the systematic analysis of action mechanism of Gentiopicroside on gastric cancer (GC) has not yet been carried out. AIM A network pharmacology-based strategy combined with molecular docking studies and in vitro validation was employed to investigate potential targets and molecular mechanism of Gentiopicroside against GC. MATERIALS AND METHODS Potential targets of Gentiopicroside, as well as related genes of GC, were acquired from public databases. Potential targets, and signaling pathways were determined through bioinformatic analysis, including protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking and cell experiments were performed to further verify the above findings. RESULTS Our findings revealed that the anticancer activity of Gentiopicroside potentially involves 53 putative identified target genes. In addition, GO, KEGG, and network analyses revealed that these targets were associated with cell proliferation, metabolic process, and other physiological processes. Furthermore, we have proved that critical compound affected the expression of CCND1, CCNE1, p-AKT and p-P38 at protein levels. These findings provide an overview of the anticancer action of Gentiopicroside from a network perspective; meanwhile, it might also set an example for future studies of other materials used in traditional Chinese medicine (TCM). CONCLUSION This study comprehensively illuminated the potential targets and molecular mechanism of Gentiopicroside against GC. It also provided a promising approach to uncover the scientific basis and therapeutic mechanism of TCM treating for disease.
Collapse
Affiliation(s)
- Yanxia Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiatong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weimin Yi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Qinghua Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Linhui Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yongcong Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Anqi Fu
- Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, People’s Republic of China
| | - Tingxuan Huang
- Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, People’s Republic of China
| | - Yingcheng Lyu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qihui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
84
|
Network Pharmacology-Based Study on the Mechanism of Scutellariae Radix for Hepatocellular Carcinoma Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8897918. [PMID: 33163086 PMCID: PMC7607277 DOI: 10.1155/2020/8897918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 10/17/2020] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor without effective therapeutic drugs for most patients in advanced stages. Scutellariae Radix (SR) is a well-known anti-inflammatory and anticarcinogenic herbal medicine. However, the mechanism of SR against HCC remains to be clarified. In the present study, network pharmacology was utilized to characterize the mechanism of SR on HCC. The active components of SR and their targets were collected from the traditional Chinese medicine systems pharmacology database and the traditional Chinese medicine integrated database. HCC-related targets were acquired from the liver cancer databases OncoDB.HCC and Liverome. The gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. Component-component target and protein-protein interaction networks were set up. A total of 143 components of SR were identified, and 37 of them were considered as candidate active components. Fifty targets corresponding to 29 components of SR were mapped with targets of HCC. Functional enrichment analysis indicated that SR exerted an antihepatocarcinoma effect by regulating pathways in cancer, hepatitis B, viral carcinogenesis, and PI3K-Akt signaling. The holistic approach of network pharmacology can provide novel insights into the mechanistic study and therapeutic drug development of SR for HCC treatment.
Collapse
|
85
|
Chan DW, Yung MMH, Chan YS, Xuan Y, Yang H, Xu D, Zhan JB, Chan KKL, Ng TB, Ngan HYS. MAP30 protein from Momordica charantia is therapeutic and has synergic activity with cisplatin against ovarian cancer in vivo by altering metabolism and inducing ferroptosis. Pharmacol Res 2020; 161:105157. [DOI: 10.1016/j.phrs.2020.105157] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
|
86
|
Ji D, Zheng W, Huang P, Yao Y, Zhong X, Kang P, Wang Z, Shi G, Xu Y, Cui Y. Huaier Restrains Cholangiocarcinoma Progression in vitro and in vivo Through Modulating lncRNA TP73-AS1 and Inducing Oxidative Stress. Onco Targets Ther 2020; 13:7819-7837. [PMID: 32848417 PMCID: PMC7425108 DOI: 10.2147/ott.s257738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Huaier, the fruiting body of Trametes robiniophila Murr, is a kind of traditional Chinese medicine. Recently, many studies have confirmed that Huaier has antitumor effects on various malignancies. Moreover, studies have demonstrated that long noncoding RNAs play an important regulatory role in the occurrence and progression of malignancies. Our present study was to explore whether Huaier has a potential antitumor effect in cholangiocarcinoma and reveal the relationship between lncRNAs and Huaier-induced tumor inhibition. Methods Microarray assay was performed to identify the candidate lncRNAs regulated by Huaier. Quantitative real-time PCR was applied to assess the effect of Huaier on TP73-AS1 expression. The effect of Huaier on the cell viability, proliferation, migration and invasion was evaluated by CCK-8, colony formation, wound healing and Transwell assays, respectively. The ratio of cell apoptosis was determined using AO/EB, Hoechst 33342 and flow cytometry. The effect of Huaier on oxidative stress was revealed using DCFH-DA, mito-SOX, JC-1 probes and Western blotting. In addition, the effect of Huaier on tumor growth and metastasis was explored using subcutaneous tumor model and lung metastatic tumor model in nude mice. Results In vitro, Huaier inhibited the proliferation, migration and invasion of cholangiocarcinoma cells by down-regulating TP73-AS1 and induced apoptosis through mitochondrial apoptotic pathway. In vivo, Huaier suppressed the growth and metastasis of cholangiocarcinoma by modulating the expression of proliferation and EMT-associated proteins. Conclusion Huaier could inhibit cell proliferation, invasion and metastasis by modulating the expression of TP73-AS1, meanwhile promote apoptosis of CCA cells through disturbing mitochondrial function, inducing oxidative stress and activating caspases in vitro. In addition, Huaier could suppress tumor growth and metastasis by regulating the expression of proliferation and EMT-related proteins. In the meantime, Huaier prolonged the survival of nude mice in lung metastatic model with acceptable drug safety.
Collapse
Affiliation(s)
- Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Yue Yao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Guojing Shi
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
87
|
Kong MY, Li LY, Lou YM, Chi HY, Wu JJ. Chinese herbal medicines for prevention and treatment of colorectal cancer: From molecular mechanisms to potential clinical applications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:369-384. [PMID: 32758397 DOI: 10.1016/j.joim.2020.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Worldwide, colorectal cancer (CRC) is one of the most common malignant tumors, leading to immense social and economic burdens. Currently, the main treatments for CRC include surgery, chemotherapy, radiotherapy and immunotherapy. Despite advances in the diagnosis and treatment of CRC, the prognosis for CRC patients remains poor. Furthermore, the occurrence of side effects and toxicities severely limits the clinical use of these therapies. Therefore, alternative medications with high efficacy but few side effects are needed. An increasing number of modern pharmacological studies and clinical trials have supported the effectiveness of Chinese herbal medicines (CHMs) for the prevention and treatment of CRC. CHMs may be able to effectively reduce the risk of CRC, alleviate the adverse reactions caused by chemotherapy, and prolong the survival time of patients with advanced CRC. Studies of molecular mechanisms have provided deeper insight into the roles of molecules from CHMs in treating CRC. This paper summarizes the current understanding of the use of CHMs for the prevention and treatment of CRC, the main molecular mechanisms involved in these processes, the role of CHMs in modulating chemotherapy-induced adverse reactions, and CHM's potential role in epigenetic regulation of CRC. The current study provides beneficial information on the use of CHMs for the prevention and treatment of CRC in the clinic, and suggests novel directions for new drug discovery against CRC.
Collapse
Affiliation(s)
- Mu-Yan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Le-Yan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yan-Mei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Hong-Yu Chi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|
88
|
Han Z, He J, Zou M, Chen W, Lv Y, Li Y. Small interfering RNA target for long noncoding RNA PCGEM1 increases the sensitivity of LNCaP cells to baicalein. Anat Rec (Hoboken) 2020; 303:2077-2085. [PMID: 32445497 DOI: 10.1002/ar.24454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
The objective of this study is to investigate the inhibitory effect and mechanism of long noncoding RNA PCGEM1 siRNA combined with baicalein on prostate cancer LNCaP cells. LNCaP cells transfected with small hairpin RNA lentiviral vector targeting PCGEM1 were constructed and their expression in LNCaP cells was absent. The stable cell line of LNCaP cells infected with LV3-shRNA-PCGEM1 was successfully constructed. In addition, LV3-shRNA-PCGEM1 was able to increase the baicalein-induced inhibitory effects on LNCaP cells, and the susceptibility was 2.3 fold higher than that of baicalein alone. LV3-shRNA-PCGEM1 combined with baicalein also inhibited the colony formation, increased G2 and S phase cells, inhibited the expression of PCGEM1, and induced autophagy of LNCaP cells. In summary, LV3-shRNA-PCGEM1 may improve the sensitivity of LNCaP cells to baicalein, and the molecular mechanism may be associated with the decrease of PCGEM1 expression and the induction of autophagy. Our findings provided an experimental basis for the combined treatment of Chinese traditional and Western medicine on prostate cancer in a clinical setting.
Collapse
Affiliation(s)
- Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Maoxian Zou
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Weiming Chen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Yubing Lv
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
89
|
Xu C, Guo X, Zhou C, Zhang H. Brucea javanica oil emulsion injection (BJOEI) as an adjunctive therapy for patients with advanced colorectal carcinoma: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21155. [PMID: 32629751 PMCID: PMC7337478 DOI: 10.1097/md.0000000000021155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Brucea javanica oil emulsion injection (BJOEI) has been widely applied as a promising adjunctive drug for colorectal carcinoma (CRC). However, the exact effects and safety of BJOEI remains controversial. In this study, we aimed to summarize the efficacy and safety of BJOEI for the treatment of advanced CRC through the meta-analysis, in order to provide scientific reference for the design of future clinical trials. METHODS Eligible prospective controlled clinical trials were searched from PubMed, Cochrane Library, Google Scholar, Medline, Web of Science (WOS), Excerpt Medica Database (Embase), Chinese BioMedical Database (CBM), China Scientific Journal Database (VIP), China National Knowledge Infrastructure (CNKI) and Wanfang Database. Papers in English or Chinese published from January 2000 to May 2020 will be included without any restrictions. The clinical outcomes including therapeutic effects, quality of life (QoL), immune function and adverse events, were systematically evaluated.Study selection and data extraction will be performed independently by 2 reviewers. Review Manager 5.3 and Stata 14.0 were used for data analysis, and a fixed or random-effect model will be used depending upon the heterogeneity observed between trials. Subgroup and meta-regression analysis will be carried out depending on the availability of sufficient data. RESULTS The results of this systematic review will be published in a peer-reviewed journal. CONCLUSION Our study will draw an objective conclusion of the effects and safety of BJOEI for advanced CRC, and provide a helpful evidence for clinicians to formulate the best postoperative adjuvant treatment strategy for CRC patients.INPLASY registration number: INPLASY202060014.
Collapse
Affiliation(s)
| | | | - Changhui Zhou
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | | |
Collapse
|
90
|
Zhou S, Luo Q, Tan X, Huang W, Feng X, Zhang T, Chen W, Yang C, Li Y. Erchen decoction plus huiyanzhuyu decoction inhibits the cell cycle, migration and invasion and induces the apoptosis of laryngeal squamous cell carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112638. [PMID: 32007633 DOI: 10.1016/j.jep.2020.112638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laryngeal carcinoma (LC) is one of the most common malignant head and neck cancers with high incidence and mortality rates. Erchen decoction plus Huiyanzhuyu decoction (EHD) is commonly used for treating LC patients and produces beneficial results. However, the mechanisms underlying the effects of EHD remain unclear. AIM OF THE STUDY The present study aimed to analyse the anticancer effects of EHD on the LC cell cycle, apoptosis, migration and invasion in vitro and to explore the underlying biological mechanisms. MATERIALS AND METHODS TU212 and Hep-2 cells were used. The antitumour effects of EHD were detected by CCK8, microscopy, flow cytometry, EdU incorporation, Hoechst 33342 staining, wound-healing, and transwell assays to assess viability, morphology, apoptosis, cell cycle, migration and invasion, respectively. Furthermore, STAT3 and related proteins were evaluated in laryngeal squamous cell carcinoma (LSCC) cells by Western blot (WB) analysis. RESULTS EHD treatment significantly decreased STAT3 and p-STAT3 protein expression levels in LSCC cells. EHD blocked the cell cycle at the G0/G1 phase and induced LSCC apoptosis. Moreover, the viability, migration, and invasion of LSCC cells were markedly inhibited by EHD. In addition, the expression of the cell cycle-related proteins cyclin D1 and cyclin B1 was downregulated in LSCC cells, but P27 expression was increased after EHD treatment. Regarding apoptosis-related proteins, EHD also reduced Bcl-2 expression but upregulated Bax and caspase-3 expression in LSCC cells. In the migration- and invasion-related protein analyses, EHD downregulated MMP-9 expression and upregulated E-cadherin expression. CONCLUSIONS These results suggest that EHD has an anticancer effect in LSCC. EHD treatment induces apoptosis and inhibits the cell cycle, migration and invasion of LSCC cells, but further work is warranted to address the mechanisms.
Collapse
Affiliation(s)
- Shiqing Zhou
- Otorhinolaryngology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Qiulan Luo
- Otorhinolaryngology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Xi Tan
- Otorhinolaryngology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Wei Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Xiaocong Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Tingting Zhang
- Chinese Medicine Department, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Wenyong Chen
- Otorhinolaryngology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chaojie Yang
- Otorhinolaryngology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yunying Li
- Otorhinolaryngology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
91
|
Fuling-Guizhi Herb Pair in Coronary Heart Disease: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1489036. [PMID: 32508942 PMCID: PMC7251461 DOI: 10.1155/2020/1489036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Abstract
The Fuling (Poria cocos)-Guizhi (Cinnamomi ramulus) herb pair (FGHP) is a commonly used traditional Chinese herbal formula with coronary heart disease (CHD) treatment potential. However, the mechanism of FGHP in the treatment of CHD was still unclear. In this study, the action targets and underlying mechanism of FGHP against CHD were successfully achieved by combined network pharmacology prediction with experimental verification. 76 common targets were screened out by overlapping the chemical-protein data of FGHP and CHD-related targets. Then, two key targets were further selected for verification by using western blot analysis after analyzing PPI, GO function, and KEGG pathway. Results indicated FGHP could alleviate CHD syndromes and regulate inflammatory responses in acute myocardial ischemia rats, and the reduction of expression of TNF-α and IL-6 in myocardial tissue would be one of its possible underlying mechanisms. Our work demonstrated that network pharmacology combined with experimental verification provides a credible method to elucidate the pharmacological mechanism of FGHP against CHD.
Collapse
|
92
|
Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, Zhang XB, Zhang W, Li ZY, Zhou RR, Yang HJ, Wang XJ, Huang LQ. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2020; 47:D976-D982. [PMID: 30365030 PMCID: PMC6323948 DOI: 10.1093/nar/gky987] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023] Open
Abstract
Traditional Chinese medicine (TCM) is not only an effective solution for primary health care, but also a great resource for drug innovation and discovery. To meet the increasing needs for TCM-related data resources, we developed ETCM, an Encyclopedia of Traditional Chinese Medicine. ETCM includes comprehensive and standardized information for the commonly used herbs and formulas of TCM, as well as their ingredients. The herb basic property and quality control standard, formula composition, ingredient drug-likeness, as well as many other information provided by ETCM can serve as a convenient resource for users to obtain thorough information about a herb or a formula. To facilitate functional and mechanistic studies of TCM, ETCM provides predicted target genes of TCM ingredients, herbs, and formulas, according to the chemical fingerprint similarity between TCM ingredients and known drugs. A systematic analysis function is also developed in ETCM, which allows users to explore the relationships or build networks among TCM herbs, formulas,ingredients, gene targets, and related pathways or diseases. ETCM is freely accessible at http://www.nrc.ac.cn:9090/ETCM/. We expect ETCM to develop into a major data warehouse for TCM and to promote TCM related researches and drug development in the future.
Collapse
Affiliation(s)
- Hai-Yu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Qiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tong Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuan-Yu Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shi-Huan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Bo Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Yong Li
- China Minority Traditional Medical Center, Minzu University of China, Beijing 100081, China
| | - Rong-Rong Zhou
- China Minority Traditional Medical Center, Minzu University of China, Beijing 100081, China
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Networks, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
93
|
Tenacissoside H Induces Apoptosis and Inhibits Migration of Colon Cancer Cells by Downregulating Expression of GOLPH3 Gene. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2824984. [PMID: 32454851 PMCID: PMC7229548 DOI: 10.1155/2020/2824984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Objective Tenacissoside H (TDH) is a Chinese medicine monomer extracted from Marsdenia tenacissima extract (MTE), which has been confirmed to have antitumor effects, but its mechanism is still unclear. The aim of this study was to investigate the effect and mechanism of TDH on human colon cancer LoVo cell proliferation and migration and explore the correlation of TDH treatment with the expression of GOLPH3 and cell signaling pathways in LoVo cells. Methods LoVo cells were treated with TDH at 0.1, 1, 10, and 100 μg/mL for 24, 48, and 72 h. The proliferation rate of LoVo cells was evaluated by MTT assay. Recombinant plasmid p-CMV-2-GOLPH3 was constructed, and p-CMV-2-GOLPH3 and p-CMV-2 empty plasmids were transfected into LoVo cells by lipofection. Western blotting was used to detect the transfection efficiency and the expression of p-p70S6K, p70S6K, β-catenin, and GOLPH3. The apoptosis rate was analyzed with Annexin V-FITC/PI double-staining method, and cell migration assessed by transwell assay. Results TDH inhibited the proliferation of LoVo cells in a concentration-dependent manner. The IC50 of TDH treatment in LoVo cells at 24, 48, and 72 h was 40.24, 13.00, and 5.73 μg/mL, respectively. TDH treatment significantly induced apoptosis and suppressed the viability and migration of human colon cancer LoVo cells. The effect of TDH on induction of apoptosis and inhibition of migration in LoVo cells decreased significantly after activating the PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways with agonists. Additionally, the expression of GOLPH3 protein downregulated significantly in LoVo cells under TDH treatment. Overexpression of the GOLPH3 gene increased the expression of key proteins in PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways and blocked the antitumor activity of TDH. Conclusion Collectively, the present results indicated that TDH can inhibit the proliferation vitality of colon cancer LoVo cells through downregulating GOLPH3 expression and activity of PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways.
Collapse
|
94
|
Zheng Y, Wang N, Wang S, Yang B, Situ H, Zhong L, Lin Y, Wang Z. XIAOPI formula inhibits the pre-metastatic niche formation in breast cancer via suppressing TAMs/CXCL1 signaling. Cell Commun Signal 2020; 18:48. [PMID: 32213179 PMCID: PMC7098160 DOI: 10.1186/s12964-020-0520-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent findings suggested that premetastatic niche (PMN) is a prerequisite in mediating cancer metastasis. Previously we demonstrated that XIAOPI formula could inhibit breast cancer lung metastasis via inhibiting tumor associated macrophages (TAMs)-secreted CXCL1. Herein, we aimed to explore the effects of XIAOPI formula on preventing breast cancer PMN formation and its underlying molecular mechanisms. Methods CXCL1 expression of TAMs was detected by qPCR and Western blotting assay. The influences of XIAOPI formula on the proliferation of TAMs and 4 T1 in the co-culture system were tested by CCK8 or EdU staining. Transwell experiment was applied to determine the effects of XIAOPI formula on the invasion ability of HSPCs and 4 T1. Breast cancer xenografts were built by inoculating 4 T1 cells into the mammary pads of Balb/c mice and lung metastasis was monitored by luciferase imaging. Immune fluorescence assay was used to test the epithelial-mesenchymal transition process and PMN formation in the lung tissues. The effects of XIAOPI formula on TAMs phenotype, hematopoietic stem/progenitor cells (HSPCs) and myeloid-derived suppressor cells (MDSCs) were determined by flow cytometry. Results It was found that XIAOPI formula could inhibit the proliferation and polarization of M2 phenotype macrophages, and reduce CXCL1 expression in a dose-dependent manner. However, M1 phenotype macrophages were not significantly affected by XIAOPI formula. TAMs/CXCL1 signaling was subsequently found to stimulate the recruitment of c-Kit+/Sca-1+ HSPCs and their differentiation into CD11b+/Gr-1+ MDSCs, which were symbolic events accounting for PMN formation. Moreover, XIAOPI formula was effective in inhibiting HSPCs activation and suppressing the proliferation and metastasis of breast cancer cells 4 T1 induced by HSPCs and TAMs co-culture system, implying that XIAOPI was effective in preventing PMN formation in vitro. Breast cancer xenograft experiments further demonstrated that XIAOPI formula could inhibit breast cancer PMN formation and subsequent lung metastasis in vivo. The populations of HSPCs in the bone marrow and MDSCs in the lung tissues were all remarkably declined by XIAOPI formula treatment. However, the inhibitory effects of XIAOPI formula could be relieved by CXCL1 overexpression in the TAMs. Conclusions Taken together, our study provided preclinical evidence supporting the application of XIAOPI formula in preventing breast cancer PMN formation, and highlighted TAMs/CXCL1 as a potential therapeutic strategy for PMN targeting therapy. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Bowen Yang
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Honglin Situ
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Lidan Zhong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region, China
| | - Yi Lin
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, the Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
95
|
Xie Y, Zhang Y, Wei X, Zhou C, Huang Y, Zhu X, Chen Y, Wen H, Huang X, Lin J, Wang Z, Ren Y, Fan B, Deng X, Tan W, Wang C. Jianpi Huayu Decoction Attenuates the Immunosuppressive Status of H 22 Hepatocellular Carcinoma-Bearing Mice: By Targeting Myeloid-Derived Suppressor Cells. Front Pharmacol 2020; 11:16. [PMID: 32140106 PMCID: PMC7042893 DOI: 10.3389/fphar.2020.00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-induced immunosuppressive microenvironment in which myeloid-derived suppressor cells (MDSCs) plays an important role, remains an obstacle for effective oncotherapy currently. Inducing MDSCs into maturation was confirmed as an effective method to reduce the tumor-bearing host's immunosuppression. Traditional Chinese medicines (TCM) possess characteristics of alleviating immunosuppression of cancer patients and low toxicity. Jianpi Huayu Decoction (JHD) was an experienced formula of TCM for oncotherapy based on TCM theory and clinical practice. We previously observed that JHD attenuated the expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) in tumor. IL-10 and TGF-β were found to be cytokines positively related to immunosuppression induced by MDSCs. Here, our study was designed to further investigate the regulation of JHD on the immune system in the H22 liver-cancer mouse model. Mainly, flow cytometry was used to detect the proportion of immune cells, to analyze the apoptosis, differentiation and reactive oxygen species of MDSCs. We found that JHD significantly reduced the destruction of spleen structure, reduced the proportion of regulatory T cells (Treg) and T helper 17 cells (Th17), and increased the proportion of cytotoxic T lymphotes (CTL), Dendritic cells (DC) and CD11b+Gr-1+cells in spleen, but with no significant change of T helper 1 cells (Th1), T helper 2 cells (Th2) and macrophages. In vitro experiments showed that apoptosis of MDSCs was decreased as the time of JHD stimulation increased, which partly explained the increase of CD11b+Gr-1+cells in the spleen. Meanwhile, JHD could promote the differentiation of MDSCs into macrophages and dendritic cells, attenuate expression of ROS in MDSCs and reduce its inhibition on the proliferation of CD4+ T cells, in vitro. Therefore, that the proportion of CD11b+Gr-1+ cells increased in the spleen of tumor-bearing hosts may not be villainy after treatment, when these drugs suppress the immunosuppressive ability of CD11b+Gr-1+ cells and promote it mature to replenish dendritic cell, at the same time. Generally, JHD may be a complementary and alternative drug for attenuating the immunosuppressive status induced by hepatocellular carcinoma, possibly by promoting differentiation and inhibiting the immunosuppressive activity of MDSCs.
Collapse
Affiliation(s)
- Yingjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Yuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Zhou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yajing Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingwang Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yongxu Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Huihong Wen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Ziying Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Ren
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baochao Fan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Tan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Changjun Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
96
|
Gao G, Liang X, Ma W. Sinomenine restrains breast cancer cells proliferation, migration and invasion via modulation of miR-29/PDCD-4 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3839-3846. [PMID: 31556312 DOI: 10.1080/21691401.2019.1666861] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sinomenine (Sino) is diffusely applied in heal rheumatoid arthritis and neuralgia. Howbeit, the activities of Sino in breast cancer cells remain confused. The research attempted to probe the anti-tumor function of Sino in breast cancer cells and divulge the feasible molecular mechanism. Sion at the 1-16 μM concentrations was exploited for the exposure of MDA-MB-231 or MCF7 cells, and cell growth, migration, invasion, cell cycle-relevant and apoptosis-correlative factors were estimated. Micro RNA (miR)-29 expression was evaluated via enforcing qRT-PCR, and the actions of miR-29 in MDA-MB-231 cells growth, migration and invasion were appraised after the overexpressed or suppressed vectors transfection. The functions of PDCD-4 in JNK and MEK/ERK pathways were estimated by employing western blot. We found that, Sino exposure impeded cell proliferation, provoked cell apoptosis and barricaded cell migration and invasion in MDA-MB-231 and MCF7 cells. Enhancement of miR-29 was observed in Sino-managed cells, and miR-29 overexpression further potentiated the activities of Sino in MDA-MB-231 cells. Additionally, Sino remarkably enhanced PCDC-4 expression via adjusting miR-29 in MDA-MB-231 cells. Beyond that, overexpressed PCDC-4 obstructed JNK and MEK/ERK pathways in MDA-MB-231 cells. Taken together, the explorations unveiled that Sino restrained MDA-MB-231 cells proliferation, migration, invasion, and provoked apoptosis through modulation of miR-29/PDCD-4 axis. Highlight Sino inhibits MDA-MB-231 and MCF7 cells proliferation and provokes apoptosis; Sino restrains MDA-MB-231 and MCF7 cells migration and invasion; Sino ascends miR-29 expression in MDA-MB-231 and MCF7 cells; Sino adjusts cell growth, migration and invasion via modulating miR-29; Sino up-regulates PDCD-4 expression through mediating miR-29; PDCD-4 obstructs JNK and MEK/ERK pathways in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Guanglei Gao
- Department of Galactophore, Linyi Central Hospital , Linyi , China
| | - Xiaolin Liang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University , Shenzhen , China
| | - Wenyan Ma
- Department of Pharmacy, Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
97
|
Tang M, Wang S, Zhao B, Wang W, Zhu Y, Hu L, Zhang X, Xiong S. Traditional Chinese Medicine Prolongs Progression-Free Survival and Enhances Therapeutic Effects in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI)Treated Non-Small-Cell Lung Cancer (NSCLC) Patients Harboring EGFR Mutations. Med Sci Monit 2019; 25:8430-8437. [PMID: 31704907 PMCID: PMC6865232 DOI: 10.12659/msm.917251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the most common cause of cancer-associated deaths worldwide. This study aimed to investigate the efficacy and safety of Traditional Chinese Medicine combining EGFR-TKIs in treatment of NSCLC patients harboring EGFR mutations. Material/Methods This study involved 153 advanced-stage NSCLC patients harboring EGFR mutations. Patients were divided into a Control group (administered EGFR-TKI, n=61) and an Experimental group (administered Traditional Chinese Medicine combining EGFR and TKI, n=92). Progression-free survival (PFS) was evaluated for exon 19 deletion and/or 21 deletion patients. Disease control rate (DCR) was assessed to observe therapeutic effects. Adverse effects, including rashes, diarrhea, ALT/AST increase, dental ulcers, and onychia lateralis, were also evaluated. Results TCM combining EGFR-TKI (90.11%) demonstrated no DCR improvement compared to single EGFR-TKI (83.33%) (p>0.05). Median PFS (mPFS) of TCM combining EGFR-TKI (13 months) was significantly longer compared to that in the single EGFR-TKI group (8.8 months) (p=0.001). For 19DEL mutant NSCLC, the mPFS (11 months) in TCM combining EGFR-TKI was significantly longer compared to single EGFR-TKI (8.5 months) (p=0.007). The mPFS of L858 mutant NSCLC patients in EGFR-TKI combining CTM (14 months) was significantly longer compared to single EGFR-TKI (9.5 months) (p=0.015). TCM combining EGFR-TKI was more inclined to prolong mPFS of NSCLC with exon 21 deletion. TCM combining EGFR-TKI illustrated no additional adverse effects in NSCLC patients (p=0.956). Conclusions Application of Traditional Chinese Medicine prolonged progression-free survival and enhanced therapeutic effect in NSCLC patients harboring EGFR mutations receiving EGFR-TKI treatment. Meanwhile, adjunctive Chinese medicine combining EGFR-TKI in NSCLC with EGFR mutations caused no adverse effects.
Collapse
Affiliation(s)
- Mo Tang
- School of Traditional Chinese Medicine University, Chongqing, China (mainland)
| | - Shumei Wang
- School of Traditional Chinese Medicine University, Chongqing, China (mainland)
| | - Bin Zhao
- School of Traditional Chinese Medicine University, Chongqing, China (mainland)
| | - Wei Wang
- Department of Traditional Chinese Medicine, Chongqing Cancer Hospital, Chongqing University Cancer Hospital, Chongqing, China (mainland)
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lingjing Hu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China (mainland)
| | - Xianquan Zhang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Shaoquan Xiong
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China (mainland)
| |
Collapse
|
98
|
Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao Z, Wang W, Lin X, Lai J, Yu Z, Lai G. Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci 2019; 239:116879. [PMID: 31682849 DOI: 10.1016/j.lfs.2019.116879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Lung cancer is the largest cause of morbidity and mortality among tumor diseases. Traditional first-line chemotherapeutic drugs are frequently accompanied by serious side effects when used to treat tumors, thus, novel drugs with reduced toxic effects may improve a patients' quality of life. Icariin, an extract of herba epimedii, has been demonstrated to exhibit multiple antitumor effects with low toxicity. In the present study, cell cycle analysis, apoptosis assays, DAPI staining, CCK8 assays, xenograft tumor models, mitochondrial membrane potential analysis, western blotting and reverse transcription-quantitative PCR were performed to determine the molecular mechanism underlying icariin activity in the human lung adenocarcinoma cell lines, A549 and H1975. The results showed that icariin reduced proliferation of A549 and H1975 cells in a time- and dose-dependent manner in vitro to a greater degree than the control BEAS-2B cells, and this was associated with increased apoptosis, but not with cell cycle progression. In vivo experiments showed that icariin treatment significantly decreased proliferation of H1975 cells in a xenograft mouse model. Mechanistically, icariin activated the mitochondrial pathway by inhibiting the activation of the PI3K-Akt pathway-associated kinase, Akt, resulting in the activation of members of the caspase family of proteins, and thus inducing apoptosis of A549 cells. Taken together, the results revealed that icariin has anti-cancer properties in lung cancer in vitro and in vivo without any noticeable toxic effects on normal lung epithelial cells. Icariin in combination with conventional anti-cancer agents may be an effective therapeutic strategy for treatment of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Wencui Kong
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Xiaoyan Qi
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong Province, 255020, PR China
| | - Shuiliang Wang
- Department of Urology, 900th Hospital of the Joint Logistics Team Support Force, Fujian Medical University, Fuzhou, Fujian Province, 350025, PR China; Fujian Key Laboratory of Transplant Biology, Affiliated Dongfang Hospital, Xiamen University School of Medicine, Fuzhou, Fujian Province, 350025, PR China
| | - Ying Chen
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Zhongquan Zhao
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Wenwu Wang
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, 350014, PR China
| | - Jinhuo Lai
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, PR China
| | - Zongyang Yu
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China; Fujian Medical University Affiliated Dongfang Hospital, Fuzhou, Fujian Province, 350025, PR China; Xiamen University School of Medicine, Xiamen, Fujian Province, 361102, PR China; Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China.
| | - Guoxiang Lai
- Department of Respiratory and Critical Care Medicine, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China.
| |
Collapse
|
99
|
Deng LJ, Lei YH, Chiu TF, Qi M, Gan H, Zhang G, Peng ZD, Zhang DM, Chen YF, Chen JX. The Anticancer Effects of Paeoniflorin and Its Underlying Mechanisms. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19876409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Paeoniflorin (PF) is an important pharmacological component of some Chinese traditional herbal formulas, such as Bai Shao, Chi Shao, and Dan Pi, which have been clinically used for centuries. Although many experimental studies have explored a wide range of pharmacological properties of PF, including anticancer, anti-inflammatory, antioxidant, immunoregulatory, and prevention of insulin resistance, there is no review to describe these reported effects systematically, especially the antitumor effect and the underlying mechanisms. In this review, we summarize the recent progress on the anticancer profiles both in vitro and in vivo of PF. Moreover, we highlight the integrated molecular mechanisms of PF and contemplate its future prospects as a potential anticancer drug.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| | - Yu-He Lei
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P.R. China
| | - Tsz-Fung Chiu
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| | - Ming Qi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Hua Gan
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| | - Ge Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P.R. China
| | - Zhi-Da Peng
- Ji Chuang Health Technology Development (Guangzhou) Co., Ltd, P.R. China
| | - Dong-Mei Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yan-Fen Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P.R. China
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
100
|
Yang W, Kang Y, Zhao Q, Bi L, Jiao L, Gu Y, Lu J, Yao J, Zhou D, Sun J, Zhao X, Xu L. Herbal formula Yangyinjiedu induces lung cancer cell apoptosis via activation of early growth response 1. J Cell Mol Med 2019; 23:6193-6202. [PMID: 31237749 PMCID: PMC6714142 DOI: 10.1111/jcmm.14501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used in clinical practices and proven to be effective against cancer. However, the underlying mechanisms remain to be investigated. In this study, we examined the anticancer activities of Chinese herbal formula Yangyinjiedu (YYJD) and found that YYJD exhibits cytotoxicity against lung cancer cells. Transcriptome analysis indicated that 2178 genes were differentially expressed (P < 0.05) upon YYJD treatment, with 1464 being (67.2%) up‐regulated. Among these, we found that the tumour suppressor early growth response 1 (EGR1) is the most activated. We demonstrated that EGR1 contributes to YYJD‐induced apoptosis in A549. Through dissecting EGR1‐associated transcriptional network, we identified 275 genes as EGR1 direct targets, some targets are involved in apoptosis. Lastly, we observed that YYJD enhances EGR1 expression and induces cell death in tumour xenografts. Collectively, these findings suggest that YYJD exerts its anticancer activities through EGR1 activation, thus providing the evidence for its potential clinical application for lung cancer patients.
Collapse
Affiliation(s)
- Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhao Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|