51
|
Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Drewes AM, Pedersen IS, Krarup H, Thorlacius-Ussing O. Cell-free DNA promoter hypermethylation in plasma as a diagnostic marker for pancreatic adenocarcinoma. Clin Epigenetics 2016; 8:117. [PMID: 27891190 PMCID: PMC5112622 DOI: 10.1186/s13148-016-0286-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a 5-year survival rate of only 5-7%. Difficulties in detecting pancreatic cancer at early stages results in the high mortality and substantiates the need for additional diagnostic tools. Surgery is the only curative treatment and unfortunately only possible in localized tumours. A diagnostic biomarker for pancreatic cancer will have a major impact on patient survival by facilitating early detection and the possibility for curative treatment. DNA promoter hypermethylation is a mechanism of early carcinogenesis, which can cause inactivation of tumour suppressor genes. The aim of this study was to examine promoter hypermethylation in a panel of selected genes from cell-free DNA, as a diagnostic marker for pancreatic adenocarcinoma. METHODS Patients with suspected or biopsy-verified pancreatic cancer were included prospectively and consecutively. Patients with chronic/acute pancreatitis were included as additional benign control groups. Based on an optimized accelerated bisulfite treatment protocol, methylation-specific PCR of a 28 gene panel was performed on plasma samples. A diagnostic prediction model was developed by multivariable logistic regression analysis using backward stepwise elimination. RESULTS Patients with pancreatic adenocarcinoma (n = 95), chronic pancreatitis (n = 97) and acute pancreatitis (n = 59) and patients screened, but negative for pancreatic adenocarcinoma (n = 27), were included. The difference in mean number of methylated genes in the cancer group (8.41 (95% CI 7.62-9.20)) vs the total control group (4.74 (95% CI 4.40-5.08)) was highly significant (p < 0.001). A diagnostic prediction model (age >65, BMP3, RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1 and SFRP2) had an area under the curve of 0.86 (sensitivity 76%, specificity 83%). The model performance was independent of cancer stage. CONCLUSIONS Cell-free DNA promoter hypermethylation has the potential to be a diagnostic marker for pancreatic adenocarcinoma and differentiate between malignant and benign pancreatic disease. This study brings us closer to a clinical useful diagnostic marker for pancreatic cancer, which is urgently needed. External validation is, however, required before the test can be applied in the clinic. TRIAL REGISTRATION ClinicalTrials.gov, NCT02079363.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark ; Department of General Surgery, Hospital of Vendsyssel, Hjørring, Denmark ; Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, 9000 Aalborg, Denmark
| | - Poul Henning Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Christian Larsen
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark
| | - Martin Berg Johansen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, 9000 Aalborg, Denmark ; Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark ; Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, 9000 Aalborg, Denmark
| |
Collapse
|
52
|
RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 2016; 6:24560-70. [PMID: 26009994 PMCID: PMC4695206 DOI: 10.18632/oncotarget.4183] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/02/2015] [Indexed: 12/12/2022] Open
Abstract
Purpose The miniature biodegradable implant siG12D-LODER™ was inserted into a tumor and released a siRNA drug against KRAS(G12D) along four months. This novel siRNA based drug was studied, in combination with chemotherapy, as targeted therapy for Locally Advanced Pancreatic Cancer (LAPC). Methods An open-label Phase 1/2a study in the first-line setting of patients with non-operable LAPC was initiated. In this study patients were assigned to receive a single dose of siG12D-LODERs, in three escalating dose cohorts (0.025mg, 0.75mg and 3.0mg). Gemcitabine was given on a weekly basis, following the siG12D-LODERTM insertion, until disease progression. The recommended dose was further examined with modified FOLFIRINOX. The follow up period was eight weeks and survival until death. Results Fifteen patients with LAPC were enrolled. Among the 15 treated patients, the most frequent adverse events observed were grade 1or 2 in severity (89%); five patients experienced serious adverse events (SAEs). In 12 patients analyzed by CT scans, none showed tumor progression, the majority (10/12) demonstrated stable disease and two showed partial response. Decrease in tumor marker CA19-9 was observed in 70% (7/10) of patients. Median overall survival was 15.12 months; 18 month survival was 38.5%. Conclusions The combination of siG12D-LODER™ and chemotherapy is well tolerated, safe and demonstrated a potential efficacy in patients with LAPC. NCT01188785
Collapse
|
53
|
Singh A, Patel VK, Jain DK, Patel P, Rajak H. Panobinostat as Pan-deacetylase Inhibitor for the Treatment of Pancreatic Cancer: Recent Progress and Future Prospects. Oncol Ther 2016; 4:73-89. [PMID: 28261641 PMCID: PMC5315073 DOI: 10.1007/s40487-016-0023-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The histone deacetylase (HDAC) inhibitors have been demonstrated as an emerging class of anticancer drugs. HDACs are involved in regulation of gene expression and in chromatin remodeling, thus indicating valid targets for different types of cancer therapeutics. The pan-deacetylase inhibitor panobinostat (Farydac®, LBH589) was developed by Novartis Pharmaceuticals and has been recently approved by the US Food and Drug Administraion (FDA) as a drug to treat multiple myeloma. It is under clinical investigation for a range of haematological and solid tumors worldwide in both oral and intravenous formulations. Panobinostat inhibits tumor cell growth by interacting with acetylation of histones and non-histone proteins as well as various apoptotic, autophagy-mediated targets and various tumorogenesis pathways involved in development of tumors. The optimal combination regimen for pancreatic cancer remains to be fully elucidated with various combination regimens, and should be investigated in clinical trials. This article summarizes the current preclinical and clinical status of panobinostat in pancreatic cancer. Preclinical data suggests that panobinostat has potential inhibitory activity in pancreatic cancer cells by targeting various pathways and factors involved in the development of cancer. Herein, we reviewed the status of mono and combination therapy and the rationale behind the combination therapy undergoing trials, as well as possible future prospective use in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Avineesh Singh
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Vijay K. Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Deepak K. Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Preeti Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| |
Collapse
|
54
|
Selective impact of CDK4/6 suppression on patient-derived models of pancreatic cancer. Oncotarget 2016; 6:15788-801. [PMID: 26158861 PMCID: PMC4599237 DOI: 10.18632/oncotarget.3819] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/01/2015] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) harbors an exceedingly poor prognosis, and is generally considered a therapy-recalcitrant disease due to poor response to conventional chemotherapy coupled with non-actionable genetic drivers (e.g. KRAS mutations). However, PDA frequently loses p16ink4a, thereby leading to deregulation of CDK4/6. Surprisingly, in established cell models and xenografts, CDK4/6 inhibition has a modest effect on proliferation and resistance develops rapidly. To determine if such weak response was an intrinsic feature of PDA, we developed primary tumor explants that maintain the tumor environment and recapitulate feuture of primary PDA. The CDK4/6 inhibitor PD-0332991 was highly efficient at suppressing proliferation in 14 of the 15 explants. In the single resistant explant, we identified the rare loss of the RB tumor suppressor as the basis for resistance. Patient-derived xenografts (PDXs) were developed in parallel, and unlike the xenografts emerging from established cell lines, the PDXs maintained the histoarchitecture of the primary tumor. These PDXs were highly sensitive to CDK4/6 inhibition, yielding a complete suppression of PDA proliferation. Together, these data indicate that primary PDA is sensitive to CDK4/6 inhibition, that specific biomarkers can delineate intrinsic resistance, and that established cell line models may not represent an adequate means for evaluating therapeutic sensitivities.
Collapse
|
55
|
KRAS G12D Mutation Subtype Is A Prognostic Factor for Advanced Pancreatic Adenocarcinoma. Clin Transl Gastroenterol 2016; 7:e157. [PMID: 27010960 PMCID: PMC4822095 DOI: 10.1038/ctg.2016.18] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES There is no molecular biomarker available in the clinical practice to assess the prognosis of advanced pancreatic carcinoma. This multicenter prospective study aimed to investigate the role of KRAS mutation subtypes within the primary tumor to determine the prognosis of advanced pancreatic cancer. METHODS The exon-2 KRAS mutation status was tested on endoscopic ultrasound-guided fine-needle aspiration biopsy material (primary tumor; restriction fragment-length polymorphism plus sequencing and TaqMan allelic discrimination) of patients with proven locally advanced and/or metastatic pancreatic ductal carcinoma. We used the Kaplan-Meier method, log-rank test, and Cox's model to evaluate the impact of KRAS status on the overall survival (OS), adjusting for age, stage of disease, clinical performance status, CA 19-9 levels, and treatment. RESULTS A total of 219 patients (men: 116; mean age: 67±9.4 years) were included: 147 harbored a codon-12 KRAS mutation (G12D: 73; G12V: 53; G12R: 21) and 72 had a wild-type KRAS. There was no difference in the OS between patients with a mutant KRAS (8 months; 95% confidence interval (95% CI): 8.7-12.3) and the wild-type (9 months; 95% CI: 8.7-12.8; hazard ratio (HR): 1.03; P=0.82). However, the patients with a G12D mutation had a significantly shorter OS (6 months; 95% CI: 6.4-9.7) compared with the other patients (OS: 9 months; 95% CI: 10-13; HR: 1.47; P=0.003; i.e., wild type: 9 months, G12V: 9 months, G12R: 14 months). Similar results were observed in the subgroup of 162 patients who received chemotherapy (HR: 1.66; P=0.0013; G12D (n=49): 8 months, wild type (n=56): 10 months, G12V (n=38): 10 months, G12R (n=19): 14 months). Multivariate analyses identified KRAS G12D as an independent predictor for worse prognosis within the entire series (HR: 1.44; P=0.01) and in the subgroup of patients that received chemotherapy (HR: 1.84; P=0.02). CONCLUSIONS The KRAS G12D mutation subtype is an independent prognostic marker for advanced pancreatic ductal carcinoma. Codon and amino-acid-specific mutations of KRAS should be considered when evaluating the prognoses as well as in trials testing drugs that target RAS and downstream RAS pathways.
Collapse
|
56
|
Krška Z, Šváb J, Hoskovec D, Ulrych J. Pancreatic Cancer Diagnostics and Treatment--Current State. Prague Med Rep 2016; 116:253-67. [PMID: 26654799 DOI: 10.14712/23362936.2015.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents permanent and ever rising issue worldwide. Five-year survival does not exceed 3 to 6%, i.e. the worst result among solid tumours. The article evaluates the current state of PDAC diagnostics and treatment specifying also development and trends. Percentage of non-resectable tumours due to locally advanced or metastatic condition varies 60-80%, mostly over 80%. Survival with non-resectable PDAC is 4 to 8 months (median 3.5). In contrast R0 resection shows the survival 18-27 months. Laboratory and imaging screening methods are not indicated on large scale. Risk factors are smoking, alcohol abuse, chronic pancreatitis, diabetes mellitus. Genetic background in most PDAC has not been detected yet. Some genes connected with high risk of PDAC (e.g. BRCA2, PALB2) have been identified as significant and highly penetrative, but link between PDAC and these genes can be seen only in 10-20%. This article surveys perspective oncogenes, tumour suppressor genes, microRNA. Albeit CT is still favoured over other imaging methods, involvement of NMR rises. Surgery prefers the "vessel first" approach, which proves to be justified especially in R0 resection. According to EBM immunotherapy same as radiotherapy are not significant in PDAC treatment. Chemotherapy shows limited importance in conversion treatment of locally advanced or borderline tumours or in case of metastatic spread. Unified procedures cannot be defined due to inhomogenous arrays. Surgical resection is the only chance for curative treatment of PDAC and depends mainly on timely indication for surgery and quality of multidisciplinary team in a high-volume centre.
Collapse
Affiliation(s)
- Zdeněk Krška
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | - Jan Šváb
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Ulrych
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
57
|
Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur J Cancer 2016; 54:75-83. [DOI: 10.1016/j.ejca.2015.11.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
|
58
|
Baines A, Martin P, Rorie C. Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:277-320. [DOI: 10.1016/bs.pmbts.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Thompson MJ, Rubbi L, Dawson DW, Donahue TR, Pellegrini M. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One 2015; 10:e0128814. [PMID: 26039411 PMCID: PMC4454596 DOI: 10.1371/journal.pone.0128814] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.
Collapse
Affiliation(s)
- Michael J. Thompson
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - Timothy R. Donahue
- Department of Surgery, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, 90095, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, United States of America
- * E-mail:
| |
Collapse
|
60
|
Nouveautés dans la biologie du cancer du pancréas. Bull Cancer 2015; 102:S53-61. [DOI: 10.1016/s0007-4551(15)31218-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023]
|
61
|
Zhu Z, Liu T, Han F, Zhan SD, Wang CY. Mutations in the p16 gene in DMBA-induced pancreatic intraepithelial neoplasia and pancreatic cancer in rats. Hepatobiliary Pancreat Dis Int 2015; 14:208-14. [PMID: 25865695 DOI: 10.1016/s1499-3872(15)60331-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND 7, 12-dimethylbenzanthracene (DMBA)-induced pancreatic intraepithelial neoplasia (PanIN) and pancreatic cancer in rats provide a classic model for uncovering the molecular mechanisms underlying pancreatic cancer. However, this model has not been characterized genetically, and in particular, the major genetic alterations in the p16 gene are unknown. METHODS Lesions of PanIN and pancreatic cancer were induced with DMBA implantation in 40 rats, and control pancreatic tissue was obtained from 10 age-matched rats without exposure to DMBA. Pancreatic tissue was harvested three months after DMBA implantation and DNA was extracted. Homozygous deletions and point mutations of the p16 (exons 1 and 2) gene were detected by PCR amplification and direct sequencing. RESULTS DMBA implantation in the 40 rats induced 26 PanINs and 9 carcinomas. The overall frequency of p16 alterations in the pancreatic tissue of these rats was 42.86% (15/35), and the changes were point mutations, not homozygous deletions. p16 mutations were present in 30.77% (8/26) of the rats with PanIN and 77.78% (7/9) of the rats with carcinoma (P<0.05). The increasing incidence of p16 alterations was detected in 20.00% (1/5) of PanIN-1, 28.57% (2/7) of PanIN-2 and 35.71% (5/14) of PanIN-3 lesions. CONCLUSION Our findings indicated that p16 alteration is a common event in the carcinogenesis of this model and that the mutation pattern is analogous to that of human lesions.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Pancreatic Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | |
Collapse
|
62
|
Ploidy and DNA index as prognostic factors in resected pancreatic ductal adenocarcinoma - a review of the literature. GASTROENTEROLOGY REVIEW 2015; 9:313-6. [PMID: 25653724 PMCID: PMC4300345 DOI: 10.5114/pg.2014.47892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/20/2013] [Accepted: 11/30/2013] [Indexed: 12/02/2022]
Abstract
In Poland, pancreatic cancer is the seventh most common cause of cancer-related death amongst men and the sixth amongst women. Pancreatic cancer has an extremely poor prognosis. Radical surgery still remains the only way of curing pancreatic cancer, and this is possible to perform in just 20% of cases, i.e. those that present localised disease upon diagnosis. An average survival of ∼20 months post-resection and adjuvant chemotherapy has been observed in 10–15% of patients with tumours limited to the pancreas at the time of presentation. It is necessary to define strong prognostic factors to determine individual treatment and prognosis. In this paper we submit a review of the literature concerning the prognostic impact of the ploidy and the DNA index on the survival of patients who underwent resection of pancreatic ductal adenocarcinoma. However, the presented studies have produced conflicting results. Pancreatic cancer still remains a great challenge in medicine.
Collapse
|
63
|
Pharmacological activation of myosin II paralogs to correct cell mechanics defects. Proc Natl Acad Sci U S A 2015; 112:1428-33. [PMID: 25605895 DOI: 10.1073/pnas.1412592112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior.
Collapse
|
64
|
Chen F, Guo Y, Wang L. The Emerging Genetic Basis and Its Clinical Implication in Pancreatic Cancer. Gastrointest Tumors 2015. [DOI: 10.1159/000435764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Pancreatic cancer is one of the most devastating diseases without early detection, effective screening biomarkers and therapeutic treatments. In the past decades, genetic studies have indicated various genes related to this malignancy. <b><i>Summary:</i></b> Genetic alterations have been involved in the initiation, progression and invasion of pancreatic cancer, which might indicate promising targets for early screening, diagnosis and future intervention. Here we will review genetic changes in pancreatic cancer and analyze their correlations with several common precursors and familial syndromes. <b><i>Key Message:</i></b> Genetic analysis for pancreatic cancer or its precursors might help us to characterize patients into subtype individuals in the future and have significant implications for individualized treatments. <b><i>Practical Implications:</i></b> At present, pancreatic cancer is regarded as a disease with a wide range of genetic alterations, including germline and somatic mutations. Some genetic alterations such as <i>KRAS</i>, <i>p16</i><sup><i>CDKN2A</i></sup>, <i>TP53</i> and <i>SMAD4</i> were specifically correlated with different types of histological precursors of pancreatic cancer and some familial syndromes highly related to pancreatic cancer. Moreover, genetic changes also predict drug sensitivity and implicate novel therapeutic targets.
Collapse
|
65
|
Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 2014; 20:12062-12081. [PMID: 25232244 PMCID: PMC4161795 DOI: 10.3748/wjg.v20.i34.12062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
Collapse
|
66
|
Nones K, Waddell N, Song S, Patch AM, Miller D, Johns A, Wu J, Kassahn KS, Wood D, Bailey P, Fink L, Manning S, Christ AN, Nourse C, Kazakoff S, Taylor D, Leonard C, Chang DK, Jones MD, Thomas M, Watson C, Pinese M, Cowley M, Rooman I, Pajic M, Butturini G, Malpaga A, Corbo V, Crippa S, Falconi M, Zamboni G, Castelli P, Lawlor RT, Gill AJ, Scarpa A, Pearson JV, Biankin AV, Grimmond SM. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer 2014; 135:1110-8. [PMID: 24500968 DOI: 10.1002/ijc.28765] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/20/2013] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.
Collapse
Affiliation(s)
- Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Gayral M, Jo S, Hanoun N, Vignolle-Vidoni A, Lulka H, Delpu Y, Meulle A, Dufresne M, Humeau M, Rieu MCD, Bournet B, Sèlves J, Guimbaud R, Carrère N, Buscail L, Torrisani J, Cordelier P. MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20:11199-209. [PMID: 25170204 PMCID: PMC4145758 DOI: 10.3748/wjg.v20.i32.11199] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/06/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Despite tremendous efforts from scientists and clinicians worldwide, pancreatic adenocarcinoma (PDAC) remains a deadly disease due to the lack of early diagnostic tools and reliable therapeutic approaches. Consequently, a majority of patients (80%) display an advanced disease that results in a low resection rate leading to an overall median survival of less than 6 months. Accordingly, robust markers for the early diagnosis and prognosis of pancreatic cancer, or markers indicative of survival and/or metastatic disease are desperately needed to help alleviate the dismal prognosis of this cancer. In addition, the discovery of new therapeutic targets is mandatory to design effective treatments. In this review, we will highlight the translational studies demonstrating that microRNAs may soon translate into clinical applications as long-awaited screening tools and therapeutic targets for PDAC.
Collapse
|
68
|
Korsunsky I, McGovern K, LaGatta T, Olde Loohuis L, Grosso-Applewhite T, Griffeth N, Mishra B. Systems biology of cancer: a challenging expedition for clinical and quantitative biologists. Front Bioeng Biotechnol 2014; 2:27. [PMID: 25191654 PMCID: PMC4137540 DOI: 10.3389/fbioe.2014.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/18/2014] [Indexed: 11/25/2022] Open
Abstract
A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.
Collapse
Affiliation(s)
- Ilya Korsunsky
- Department of Computer Science, Courant Institute, New York University, New York, NY, USA
| | - Kathleen McGovern
- Department of Mathematics and Statistics, Hunter College, City University of New York, New York, NY, USA
| | - Tom LaGatta
- Department of Mathematics, Courant Institute, New York University, New York, NY, USA
| | - Loes Olde Loohuis
- Department of Computer Science, The Graduate Center, City University of New York, New York, NY, USA
| | - Terri Grosso-Applewhite
- Department of Computer Science, The Graduate Center, City University of New York, New York, NY, USA
| | - Nancy Griffeth
- Department of Mathematics and Computer Science, Lehman College, City University of New York, New York, NY, USA
| | - Bud Mishra
- Department of Computer Science, Courant Institute, New York University, New York, NY, USA
- Department of Mathematics, Courant Institute, New York University, New York, NY, USA
| |
Collapse
|
69
|
Paini M, Crippa S, Partelli S, Scopelliti F, Tamburrino D, Baldoni A, Falconi M. Molecular pathology of intraductal papillary mucinous neoplasms of the pancreas. World J Gastroenterol 2014; 20:10008-10023. [PMID: 25110429 PMCID: PMC4123331 DOI: 10.3748/wjg.v20.i29.10008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Since the first description of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas in the eighties, their identification has dramatically increased in the last decades, hand to hand with the improvements in diagnostic imaging and sampling techniques for the study of pancreatic diseases. However, the heterogeneity of IPMNs and their malignant potential make difficult the management of these lesions. The objective of this review is to identify the molecular characteristics of IPMNs in order to recognize potential markers for the discrimination of more aggressive IPMNs requiring surgical resection from benign IPMNs that could be observed. We briefly summarize recent research findings on the genetics and epigenetics of intraductal papillary mucinous neoplasms, identifying some genes, molecular mechanisms and cellular signaling pathways correlated to the pathogenesis of IPMNs and their progression to malignancy. The knowledge of molecular biology of IPMNs has impressively developed over the last few years. A great amount of genes functioning as oncogenes or tumor suppressor genes have been identified, in pancreatic juice or in blood or in the samples from the pancreatic resections, but further researches are required to use these informations for clinical intent, in order to better define the natural history of these diseases and to improve their management.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/classification
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Papillary/classification
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- DNA Methylation
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genetic Testing
- Humans
- Neoplasms, Cystic, Mucinous, and Serous/classification
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Pancreatic Neoplasms/classification
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phenotype
- Predictive Value of Tests
- Signal Transduction
Collapse
|
70
|
Ribeiro A, Peng J, Casas C, Fan YS. Endoscopic ultrasound guided fine needle aspiration with fluorescence in situ hybridization analysis in 104 patients with pancreatic mass. J Gastroenterol Hepatol 2014; 29:1654-8. [PMID: 24628622 DOI: 10.1111/jgh.12575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM Diagnosis of pancreatic malignancy is often based on cytological specimens collected by endoscopic ultrasound guided fine needle aspiration (EUS FNA). Several factors can decrease sensitivity of EUS FNA for pancreatic cancer: well-differentiated tumors, pancreatitis, blood, necrosis and slides with low cellularity. The objective of this study is to report on the use of fluorescence in situ hybridization (FISH) analysis combined with cytology in pancreatic masses. METHODS EUS database and medical records of patients referred for EUS between January 2009 through august 2013 were reviewed. Data on cytology, FISH and surgical pathology were reviewed. Surgical pathology, death or extended clinical follow-up were used to verify correct diagnosis of malignancy. FISH performed using a four-set DNA probe for chromosomes 3, 7, 17, and band 9p21 in patients with inconclusive immediate cytology reading. Sensitivity of cytology and FISH were compared. RESULTS Study cohort comprised of 104 patients with FISH analysis on EUS FNA specimens of pancreatic masses (74 adenocarcinoma, 7 neuroendocrine tumor and 23 benign. Sensitivity of cytology and FISH for carcinoma was respectively: 62% and 81%. Sensitivity of FISH + cytology was 89%. The specificity of FISH and cytology was 100%. The most common abnormality on FISH was a 9p21 deletion seen in 43 patients (58%) followed by polysomy of 7 (46%). FISH detected malignancy in 23 patients with negative cytology. CONCLUSIONS In patients with inconclusive immediate cytology reading, FISH is superior to cytology and improves overall sensitivity. The 9p21 deletion is the most common abnormality seen in this cohort of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Afonso Ribeiro
- Division of Gastroenterology and Cytogenetics, University of Miami,Sylvester Cancer Center, Miami, Florida, USA
| | | | | | | |
Collapse
|
71
|
Polvani S, Tarocchi M, Tempesti S, Mello T, Ceni E, Buccoliero F, D'Amico M, Boddi V, Farsi M, Nesi S, Nesi G, Milani S, Galli A. COUP-TFII in pancreatic adenocarcinoma: clinical implication for patient survival and tumor progression. Int J Cancer 2014; 134:1648-58. [PMID: 24122412 DOI: 10.1002/ijc.28502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/10/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2023]
Abstract
Despite the accumulating knowledge of alterations in pancreatic cancer molecular pathways, no substantial improvements in the clinical prognosis have been made and this malignancy continues to be a leading cause of cancer death in the Western World. The orphan nuclear receptor COUP-TFII is a regulator of a wide range of biological processes and it may exert a pro-oncogenic role in cancer cells; interestingly, indirect evidences suggest that the receptor could be involved in pancreatic cancer. The aim of this study was to evaluate the expression of COUP-TFII in human pancreatic tumors and to unveil its role in the regulation of pancreatic tumor growth. We evaluated COUP-TFII expression by immunohistochemistry on primary samples. We analyzed the effect of the nuclear receptor silencing in human pancreatic cancer cells by means of shRNA expressing cell lines. We finally confirmed the in vitro results by in vivo experiments on nude mice. COUP-TFII is expressed in 69% of tested primary samples and correlates with the N1 and M1 status and clinical stage; Kaplan-Meier and Cox regression analysis show that it may be an independent prognostic factor of worst outcome. In vitro silencing of COUP-TFII reduces the cell growth and invasiveness and it strongly inhibits angiogenesis, an effect mediated by the regulation of VEGF-C. In nude mice, COUP-TFII silencing reduces tumor growth by 40%. Our results suggest that COUP-TFII might be an important regulator of the behavior of pancreatic adenocarcinoma, thus representing a possible new target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Neuzillet C, Hammel P, Tijeras-Raballand A, Couvelard A, Raymond E. Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 2013; 32:147-62. [PMID: 23085856 DOI: 10.1007/s10555-012-9396-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PAC) stands as the poorest prognostic tumor of the digestive tract with limited therapeutic options. PAC carcinogenesis is associated with the loss of function of tumor suppressor genes such as INK4A, TP53, BRCA2, and DPC4, and only a few activated oncogenes among which K-RAS mutations are the most prevalent. The K-RAS mutation occurs early in PAC carcinogenesis, driving downstream activation of MEK and ERK1/2 which promote survival, invasion, and migration of cancer cells. In PAC models, inhibition of members of the Ras-ERK pathway blocks cellular proliferation and metastasis development. As oncogenic Ras does not appear to be a suitable drug target, inhibitors targeting downstream kinases including Raf and MEK have been developed and are currently under evaluation in clinical trials. In this review, we describe the role of the Ras-ERK pathway in pancreatic carcinogenesis and as a new therapeutic target for the treatment of PAC.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM U728 and Department of Medical Oncology, Beaujon University Hospital (AP-HP Paris 7 Diderot), Clichy, France
| | | | | | | | | |
Collapse
|
73
|
Abstract
Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.
Collapse
|
74
|
Ballehaninna UK, Chamberlain RS. Biomarkers for pancreatic cancer: promising new markers and options beyond CA 19-9. Tumour Biol 2013; 34:3279-92. [PMID: 23949878 DOI: 10.1007/s13277-013-1033-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma accounts for nearly 90-95% of exocrine malignant tumors of the pancreas. Traditionally, overexpressed proteins/epitopes such as CA 19-9, CA-50, CEA, and many others were being used as pancreatic cancer tumor markers. The main utility of these biomarkers was in the diagnosis of pancreatic cancer as well as to assess response to chemotherapy and to determine prognosis and to predict tumor recurrence. However, these markers had significant limitations such as lack of sensitivity, false-negative results in certain blood groups, as well as false-positive elevation in the presence of obstructive jaundice. To circumvent these limitations, an extraordinary amount of research is being performed to identify an accurate tumor marker or a panel of markers that could aid in the management of the pancreatic cancer. Although this research has identified a large number and different variety of biomarkers, few hold future promise as a preferred marker for pancreatic cancer. This review provides an insight into exciting new areas of pancreatic biomarker research such as salivary, pancreatic juice, and stool markers that can be used as a noninvasive test to identify pancreatic cancer. This manuscript also provides a discussion on newer biomarkers, the role of microRNAs, and pancreatic cancer proteomics, which have the potential to identify a preferred tumor marker for pancreatic adenocarcinoma. This review further elaborates on important genetic changes associated with the development and progression of pancreatic cancer that holds the key for the identification of a sensitive biomarker and which could also serve as a therapeutic target.
Collapse
Affiliation(s)
- Umashankar K Ballehaninna
- Department of Surgery, Saint Barnabas Medical Center, 94, Old Short Hills Road, Livingston, NJ, 07039, USA
| | | |
Collapse
|
75
|
Gao J, Wang L, Xu J, Zheng J, Man X, Wu H, Jin J, Wang K, Xiao H, Li S, Li Z. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res 2013; 32:86. [PMID: 24423239 PMCID: PMC4029463 DOI: 10.1186/1756-9966-32-86] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Altered gene methylation, regulated by DNA methyltransferases (DNMT) 1, 3a and 3b, contributes to tumorigenesis. However, the role of DNMT in pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS Expression of DNMT 1, 3a and 3b was detected in 88 Pancreatic ductal adenocarcinoma (PDAC) and 10 normal tissue samples by immunohistochemistry. Changes in cell viability, cell cycle distribution, and apoptosis of PDAC cell lines (Panc-1 and SW1990) were assessed after transfection with DNMT1 and 3b siRNA. Levels of CDKN1A, Bcl-2 and Bax mRNA were assessed by qRT-PCR, and methylation of the Bax gene promoter was assayed by methylation-specific PCR (MSP). RESULTS DNMT1, 3a and 3b proteins were expressed in 46.6%, 23.9%, and 77.3% of PDAC tissues, respectively, but were not expressed in normal pancreatic tissues. There was a co-presence of DNMT3a and DNMT3b expression and an association of DNMT1 expression with alcohol consumption and poor overall survival. Moreover, knockdown of DNMT1 and DNMT3b expression significantly inhibited PDAC cell viability, decreased S-phase but increased G1-phase of the cell cycle, and induced apoptosis. Molecularly, expression of CDKN1A and Bax mRNA was upregulated, and the Bax gene promoter was demethylated. However, a synergistic effect of combined DNMT1 and 3b knockdown was not observed. CONCLUSION Expression of DNMT1, 3a and 3b proteins is increased in PDAC tissues, and DNMT1 expression is associated with poor prognosis of patients. Knockdown of DNMT1 and 3b expression arrests tumor cells at the G1 phase of the cell cycle and induces apoptosis. The data suggest that DNMT knockdown may be a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Jun Gao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Lihua Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jinkang Xu
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Xiaohua Man
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongyu Wu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jin Jin
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Kaixuan Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | | | - Shude Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
76
|
Fang Y, Yao Q, Chen Z, Xiang J, William FE, Gibbs RA, Chen C. Genetic and molecular alterations in pancreatic cancer: implications for personalized medicine. Med Sci Monit 2013; 19:916-26. [PMID: 24172537 PMCID: PMC3818103 DOI: 10.12659/msm.889636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer.
Collapse
Affiliation(s)
- Yantian Fang
- Molecular Surgeon Research Center, Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, U.S.A. and Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
77
|
Deng J, He M, Chen L, Chen C, Zheng J, Cai Z. The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival. PLoS One 2013; 8:e76450. [PMID: 24116110 PMCID: PMC3792981 DOI: 10.1371/journal.pone.0076450] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 08/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background miR-26a plays a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. However, the function of miR-26a in pancreatic cancer has not been clearly elucidated. The present study was designed to determine the roles of miR-26a in pancreatic cancer and its association with the survival of patients with pancreatic cancer. Methods The expression of miR-26a was examined in 15 pairs of pancreatic duct adenocarcinoma (PDAC) and their adjacent benign pancreatic tissues (ABPT), by qRT-PCR. The results were confirmed by in situ hybridization using two panels of 106 PDACs and their ABPT microarray. The association of miR-26a expression with overall survival was determined. The proliferation and cell cycle distribution of Capan-2, SW-1990, and Panc-1 cells, transfected with miR-26a mimics or a miR-26a inhibitor, were assessed using the Cell Counting Kit-8 assay and flow cytometry, respectively. The cell tumorigenicity was evaluated via murine xenograft experiments. Cyclin D2, E2, EZH2, and PCNA levels were analyzed by Western blot and immunohistochemistry. Results miR-26a was expressed in the cytoplasm of pancreatic ductal epithelial cells, whereas its expression was significantly downregulated in PDAC tissues compared with that of ABPT. Patients with low miR-26a expression had a significantly shorter survival than those with high miR-26a expression. The in vitro and in vivo assays showed that overexpression of miR-26a resulted in cell cycle arrest, inhibited cell proliferation, and decreased tumor growth, which was associated with cyclin E2 downregulation. Conclusions miR-26a is an important suppressor of pancreatic ductal carcinoma, and can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lizao Chen
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Chao Chen
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JZ); (ZC)
| | - Zailong Cai
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JZ); (ZC)
| |
Collapse
|
78
|
Chatterjee D, Katz MH, Rashid A, Estrella JS, Wang H, Varadhachary GR, Wolff RA, Lee JE, Pisters PW, Abbruzzese JL, Fleming JB, Wang H. Pancreatic intraepithelial neoplasia and histological changes in non-neoplastic pancreas associated with neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma. Histopathology 2013; 63:841-51. [PMID: 24111684 DOI: 10.1111/his.12234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/20/2013] [Indexed: 12/12/2022]
Abstract
AIMS To study the histological changes in non-neoplastic pancreas and the effects on pancreatic intraepithelial neoplasia (PanIN) after neoadjuvant chemoradiation therapy (NCRT) for pancreatic ductal adenocarcinoma (PDAC). METHODS AND RESULTS We reviewed the archival H&E slides from 218 patients with PDAC who completed NCRT and pancreaticoduodenectomy. Sixty-five patients who underwent pancreaticoduodenectomy for PDAC without NCRT were used as controls. Various histological features were reviewed and correlated with NCRT and survival. The NCRT group had lower densities of PanIN2 (P = 0.004) and PanIN3 (P = 0.02) than the control group. The extent of fibrosis, the frequency of neuroma-like nerve proliferation and the frequency of islet cell aggregation were significantly higher in the NCRT group than in the control group (P < 0.05). The intensity of inflammation was less in the NCRT group than in the control group (P = 0.02). In the NCRT group, patents with moderate to severe fibrosis or grade 2 inflammation had poorer survival than those with mild fibrosis (P = 0.04) or those with grade 0 or grade 1 inflammation (P = 0.003), respectively. CONCLUSIONS Non-neoplastic pancreatic tissue from patients who received NCRT had a reduced density of high-grade PanIN lesions, more pancreatic fibrosis, and higher frequencies of neuroma-like nerve proliferation and islet cell aggregation, but less inflammation, compared to tissue from those who did not receive NCRT.
Collapse
Affiliation(s)
- Deyali Chatterjee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ohuchida K, Ohtsuka T, Mizumoto K, Hashizume M, Tanaka M. Pancreatic Cancer: Clinical Significance of Biomarkers. Gastrointest Tumors 2013; 1:33-40. [PMID: 26675163 DOI: 10.1159/000354996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Improvement in the prognosis of patients with pancreatic cancer, novel effective screening and diagnostic strategies and treatments are needed. Recent advances in the understanding of pancreatic carcinogenesis and tumor microenvironment have allowed identification of biomarkers for screening, diagnosis and prediction of cancer treatments, including novel therapies targeting specific cancer or stromal cell subpopulations. Personalized therapy in pancreatic cancer is also promising as several drugs such as S1, capecitabine and gemcitabine reportedly have significant therapeutic effects. Predictive markers are thus needed to select patients most likely to benefit from therapies based on gemcitabine or other drugs. SUMMARY We review the clinical significance of promising screening, diagnostic, predictive and prognostic biomarkers based on genetic and epigenetic alterations and microRNA abnormalities in pancreatic cancer. We also review new types of biomarkers based on stromal cells, such as pancreatic stellate cells, in the microenvironment of pancreatic cancer.
Collapse
Affiliation(s)
- Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
80
|
Bobrowski A, Spitzner M, Bethge S, Mueller-Graf F, Vollmar B, Zechner D. Risk factors for pancreatic ductal adenocarcinoma specifically stimulate pancreatic duct glands in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:965-74. [PMID: 23438477 DOI: 10.1016/j.ajpath.2012.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/26/2012] [Accepted: 11/01/2012] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus type 2 and chronic pancreatitis are regarded as risk factors for pancreatic cancer. Pancreatic duct glands (PDGs) were recently described as a new compartment of the major duct in humans and mice. To evaluate the influence of diabetes and chronic pancreatitis on PDGs, cerulein was injected i.p., repetitively over 10 weeks, in mice exhibiting obesity and a type 2 diabetes-like syndrome (B6.V-Lep(ob/ob)) and in lean littermates. By using 5-bromo-2'-deoxyuridine (BrdU), a label-retaining cell population was characterized in PDGs. Cerulein administration led to more BrdU(+) cells in PDGs of obese mice compared with lean mice. The observed increase was specific to PDGs, because BrdU incorporation in cells of the pancreatic duct was not increased. In addition, the expression of distinct tumor markers in PDGs was characterized by Muc5ac, S100P, regenerating islet-derived 3β, 14-3-3 σ, and prostate stem cell antigen immunochemistry. Type 2 diabetes-like syndrome, accompanied by chronic pancreatitis, enhanced nuclear localization of S100P. Both risk factors for pancreatic cancer also induced the production of Muc5ac and the nuclear localization of S100P [corrected]. These results demonstrate that diabetes and chronic pancreatitis jointly enhance BrdU incorporation and production of pancreatic cancer-specific proteins in PDGs. The observed alterations suggest that pancreatic tumors might originate from the newly discovered histomorphological structures, called PDGs, which could represent a target for future anticancer therapies.
Collapse
Affiliation(s)
- Alexej Bobrowski
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
81
|
Brotons A, Mas LA, Metters JP, Banks CE, Iniesta J. Voltammetric behaviour of free DNA bases, methylcytosine and oligonucleotides at disposable screen printed graphite electrode platforms. Analyst 2013; 138:5239-49. [PMID: 23857474 DOI: 10.1039/c3an00682d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improvements in analytical methods for the determination and quantification of methylcytosine in DNA are vital since it has the potential to be used as a biomarker to detect different diseases in the first stage such as in the case of carcinomas and sterility. In this work we utilized screen printed graphite electrodes (SPGE) for studying the electrochemical response of all free DNA bases, methylcytosine and short oligonucleotides by cyclic voltammetry (CV) and square wave voltammetry (SWV). CV and SWV responses of free DNA bases and methylcytosine have been investigated by using SPGE platforms and the feasibility of detecting and quantifying cytosine and methylcytosine as free DNA moieties has been evaluated as a function of pH, concentration and the presence of the other free DNA bases in solution simultaneously. Repeatability of using SWV has been performed for the electrochemical behavior of both 250 μM cytosine and 250 μM methylcytosine in the presence of 25 μM guanine, with coefficient of variations of 6.9% and 2.6% respectively based upon peak current (N = 5). Six-mer oligonucleotides with a sequence 5'-XXXCGC-3', where the XXX motif corresponds to TTT, TTA, TAA and AAA have been performed using SWV in 0.1 M acetate buffer pH 5.0 to explore how the DNA base position effects the electrooxidation of guanine and cytosine into the oligonucleotide. Furthermore SWV comparisons of the electrooxidation of the oligonucleotides 5'-CGCGCG-3' and its methylated 5'-mCGmCGmCG-3' have been performed with concentrations in acetate buffer solutions, and the interaction of both oligonucleotides with the graphitic surface of the SPGE has been demonstrated by fitting well-known adsorption models such as Freundlich and Langmuir kinetics according to the SWV current response of guanine, cytosine and methylcytosine into the oligonucleotide.
Collapse
Affiliation(s)
- Ariadna Brotons
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | | | | | | | | |
Collapse
|
82
|
Al Saati T, Clerc P, Hanoun N, Peuget S, Lulka H, Gigoux V, Capilla F, Béluchon B, Couvelard A, Selves J, Buscail L, Carrier A, Dusetti N, Dufresne M. Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1996-2004. [PMID: 23578383 DOI: 10.1016/j.ajpath.2013.02.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 12/25/2022]
Abstract
Tumor protein p53-induced nuclear protein 1 (TP53INP1) is involved in cell stress response. Its expression is lost at the pancreatic intraepithelial neoplasia 1b (PanIN1b)/PanIN2 stage of pancreatic carcinogenesis. Our objective was to determine whether TP53INP1 loss of expression contributes to pancreatic cancer formation in a conditional KrasG12D mouse model. We generated Kras-INP1KO mice using LSL-Kras(G12D/+);Pdx1-Cre(+/-) mice (Kras mice) and TP53INP1(-/-) mice. Analysis of pancreases during ageing shows that in the presence of activated Kras, TP53INP1 loss of expression accelerated PanIN formation and increased pancreatic injury and the number of high-grade lesions as compared with what occurs in Kras mice. Moreover, cystic lesions resembling intraductal papillary mucinous neoplasm (IPMN) were observed as early as 2 months of age. Remarkably, TP53INP1 is down-regulated in human IPMN. Activation of the small GTPase Rac1 shows that more oxidative stress is generated in Kras-INP1KO than in Kras mice pancreas despite elevated levels of the Nrf2 antioxidant regulator. We firmly establish the link between Kras-INP1KO pancreatic phenotype and oxidative stress with rescue of the phenotype by the antioxidant action of N-acetylcysteine. Our data provide in vivo functional demonstration that TP53INP1 deficiency accelerates progression of pancreatic cancer, underlining its role in the occurrence of IPMN and highlighting the importance of TP53INP1 in the control of oxidative status during development of pancreatic cancer.
Collapse
Affiliation(s)
- Talal Al Saati
- Histology Facility, INSERM-US006 ANEXPLO/CREFRE, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 2013; 21:986-94. [PMID: 23481326 DOI: 10.1038/mt.2013.35] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite tremendous efforts worldwide from clinicians and cancer scientists, pancreatic ductal adenocarcinoma (PDA) remains a deadly disease for which no cure is available. Recently, microRNAs (miRNAs) have emerged as key actors in carcinogenesis and we demonstrated that microRNA-21 (miR-21), oncomiR is expressed early during PDA. In the present study, we asked whether targeting miR-21 in human PDA-derived cell lines using lentiviral vectors (LVs) may impede tumor growth. We demonstrated that LVs-transduced human PDA efficiently downregulated miR-21 expression, both in vitro and in vivo. Consequently, cell proliferation was strongly inhibited and PDA-derived cell lines died by apoptosis through the mitochondrial pathway. In vivo, miR-21 depletion stopped the progression of a very aggressive model of PDA, to induce cell death by apoptosis; furthermore, combining miR-21 targeting and chemotherapeutic treatment provoked tumor regression. We demonstrate herein for the first time that targeting oncogenic miRNA strongly inhibit pancreatic cancer tumor growth both in vitro and in vivo. Because miR-21 is overexpressed in most human tumors; therapeutic delivery of miR-21 antagonists may still be beneficial for a large number of cancers for which no cure is available.
Collapse
Affiliation(s)
- Flavie Sicard
- INSERM U1037, Cancer Research Center of Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
84
|
Raczyńska ED, Makowski M, Zientara-Rytter K, Kolczyńska K, Stępniewski TM, Hallmann M. Quantum-Chemical Studies on the Favored and Rare Tautomers of Neutral and Redox Adenine. J Phys Chem A 2013; 117:1548-59. [DOI: 10.1021/jp3081029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ewa D. Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska
159 c, 02-776 Warszawa, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, Univeristy of Gdańsk, ul. Sobieskiego 18, 80-952
Gdańsk, Poland
| | - Katarzyna Zientara-Rytter
- Interdisciplinary
Department of
Biotechnology, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warszawa, Poland
| | - Katarzyna Kolczyńska
- Interdisciplinary
Department of
Biotechnology, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warszawa, Poland
| | - Tomasz M. Stępniewski
- Interdisciplinary
Department of
Biotechnology, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warszawa, Poland
| | - Małgorzata Hallmann
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska
159 c, 02-776 Warszawa, Poland
| |
Collapse
|
85
|
Delpu Y, Lulka H, Sicard F, Saint-Laurent N, Lopez F, Hanoun N, Buscail L, Cordelier P, Torrisani J. The rescue of miR-148a expression in pancreatic cancer: an inappropriate therapeutic tool. PLoS One 2013; 8:e55513. [PMID: 23383211 PMCID: PMC3561221 DOI: 10.1371/journal.pone.0055513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/02/2013] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that physiologically modulate proteins expression, and regulate numerous cellular mechanisms. Alteration of microRNA expression has been described in cancer and is associated to tumor initiation and progression. The microRNA 148a (miR-148a) is frequently down-regulated in cancer. We previously demonstrated that its down-regulation by DNA hypermethylation is an early event in pancreatic ductal adenocarcinoma (PDAC) carcinogenesis, suggesting a tumor suppressive function. Here, we investigate the potential role of miR-148a over-expression in PDAC as a therapeutic tool. We first report the consequences of miR-148a over-expression in PDAC cell lines. We demonstrate that miR-148a over-expression has no dramatic effect on cell proliferation and cell chemo-sensitivity in four well described PDAC cell lines. We also investigate the modulation of protein expression by a global proteomic approach (2D-DIGE). We show that despite its massive over-expression, miR-148a weakly modulates protein expression, thus preventing the identification of protein targets in PDAC cell lines. More importantly, in vivo data demonstrate that modulating miR-148a expression either in the epithelia tumor cells and/or in the tumor microenvironment does not impede tumor growth. Taken together, we demonstrate herein that miR-148a does not impact PDAC proliferation both in vitro and in vivo thus suggesting a weak potential as a therapeutic tool.
Collapse
Affiliation(s)
- Yannick Delpu
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Hubert Lulka
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Flavie Sicard
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Nathalie Saint-Laurent
- Paul Sabatier University, Toulouse, France
- Basic and Clinical Proteomics Group, INSERM UMR 1037, Cancer Research Center of Toulouse, University Hospital Center Rangueil, Toulouse, France
| | - Frédéric Lopez
- Paul Sabatier University, Toulouse, France
- Basic and Clinical Proteomics Group, INSERM UMR 1037, Cancer Research Center of Toulouse, University Hospital Center Rangueil, Toulouse, France
| | - Naïma Hanoun
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Louis Buscail
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
- Department of Gastroenterology, University Hospital Center Rangueil-Larrey, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
| | - Jérôme Torrisani
- INSERM UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), University Hospital Center Rangeuil, Toulouse, France
- Paul Sabatier University, Toulouse, France
| |
Collapse
|
86
|
Chouery E, Choucair N, Abou Ghoch J, El Sabbagh S, Corbani S, Mégarbané A. Report on a patient with a 12q24.31 microdeletion inherited from an insulin-dependent diabetes mellitus father. Mol Syndromol 2013; 4:136-42. [PMID: 23653585 DOI: 10.1159/000346473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
We report a 2.3-year-old female patient with global developmental delay, infantile spasms, hypotonia, microcephaly, flat face, full cheeks, macroglossia, highly arched palate, retro-gnathia, narrow ear orifices, and café-au-lait spots. Molecular karyotyping revealed approximately a 1-Mb interstitial deletion of the long arm of one chromosome 12, del(12)(q24.31). The same deletion was identified in her father who presents insulin-dependent diabetes mellitus (IDDM) diagnosed at 14 years. Only one other patient with a similar de novo deletion has been reported previously [Mol Syndromol 2010;1:42-45]. A phenotype-genotype correlation is discussed, and the description of a novel rare microdeletion entity is raised.
Collapse
Affiliation(s)
- E Chouery
- Unité de Génétique Médicale et Laboratoire Associé INSERM à l'Unité UMR_S 910, Pôle Technologie Santé, Université Saint-Joseph, Beirut, Lebanon
| | | | | | | | | | | |
Collapse
|
87
|
Lee SJ, Yu E, Bae YK, Jang KT, Kim JM, Bae HI, Hong SM, Yoon GS. DPC4 expression in the small intestinal adenocarcinomas. KOREAN JOURNAL OF PATHOLOGY 2012; 46:415-22. [PMID: 23136567 PMCID: PMC3490110 DOI: 10.4132/koreanjpathol.2012.46.5.415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 01/14/2023]
Abstract
Background Small intestinal adenocarcinomas (SACs) are rare malignancies of the alimentary tract with uncertain carcinogenesis. Methods We investigated the expression of deleted in pancreatic cancer 4 (DPC4) in 188 cases of surgically resected SACs, using tissue microarray technology. Results Twenty-four of the 188 tumors showed complete loss of Smad4/DPC4 expression in cytoplasm (score, 0; 12.8%). Eighty-four and 31 cases were moderately and strongly positive, respectively (score, 2 and 3; 44.7% and 16.5%, respectively) and 49 cases were focally or weakly stained (score, 1; 29.1%). Immunohistochemistry analysis showed that the expression of Smad4/DPC4 was related to an increased risk of lymphatic invasion but not to other clinicopathological features of the tumors (tumor location, differentiation, growth pattern, T stage, direct invasion, vascular invasion, and nodal metastasis). There was no significant association between Smad4/DPC4 expression and patient survival. Conclusions The present research is the first study to evaluate Smad4/DPC4 expression in a large sample of SACs with clinicopathologic correlation. Future studies should focus on the immunohistochemical and molecular characteristics of SACs to clarify their tumorigenesis.
Collapse
Affiliation(s)
- Sun Jae Lee
- Department of Pathology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Fiorino S, Lorenzini S, Masetti M, Deleonardi G, Grondona AG, Silvestri T, Chili E, Del Prete P, Bacchi-Reggiani L, Cuppini A, Jovine E. Hepatitis B and C virus infections as possible risk factor for pancreatic adenocarcinoma. Med Hypotheses 2012; 79:678-97. [PMID: 22959312 DOI: 10.1016/j.mehy.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PAC) is a very aggressive and lethal cancer, with a very poor prognosis, because of absence of early symptoms, advanced stage at presentation, early metastatic dissemination and lack of both specific tests to detect its growth in the initial phases and effective systemic therapies. To date, the causes of PAC still remain largely unknown, but multiple lines of evidence from epidemiological and laboratory researches suggest that about 15-20% of all cancers are linked in some way to chronic infection, in particular it has been shown that several viruses have a role in human carcinogenesis. The purpose of this report is to discuss the hypothesis that two well-known oncogenic viruses, Human B hepatitis (HBV) and Human C hepatitis (HCV) are a possible risk factor for this cancer. Therefore, with the aim to examine the potential link between these viruses and PAC, we performed a selection of observational studies evaluating this association and we hypothesized that some pathogenetic mechanisms involved in liver carcinogenesis might be in common with pancreatic cancer development in patients with serum markers of present or past HBV and HCV infections. To date the available observational studies performed are few, heterogeneous in design as well as in end-points and with not univocal results, nevertheless they might represent the starting-point for future larger and better designed clinical trials to define this hypothesized relationship. Should these further studies confirm an association between HBV/HCV infection and PAC, screening programs might be justified in patients with active or previous hepatitis B and C viral infection.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio, Budrio, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Hill KS, Gaziova I, Harrigal L, Guerra YA, Qiu S, Sastry SK, Arumugam T, Logsdon CD, Elferink LA. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer. PLoS One 2012; 7:e40420. [PMID: 22815748 PMCID: PMC3398924 DOI: 10.1371/journal.pone.0040420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/06/2012] [Indexed: 12/19/2022] Open
Abstract
At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Kristen S. Hill
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lindsay Harrigal
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yvette A. Guerra
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- UTMB Cancer Center, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarita K. Sastry
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- UTMB Cancer Center, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thiruvengadam Arumugam
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Craig D. Logsdon
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lisa A. Elferink
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- UTMB Cancer Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
90
|
Lee C, Zhang Q, Zi X, Dash A, Soares MB, Rahmatpanah F, Jia Z, McClelland M, Mercola D. TGF-β mediated DNA methylation in prostate cancer. Transl Androl Urol 2012; 1:78-88. [PMID: 25133096 PMCID: PMC4131550 DOI: 10.3978/j.issn.2223-4683.2012.05.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/04/2012] [Indexed: 12/15/2022] Open
Abstract
Almost all tumors harbor a defective negative feedback loop of signaling by transforming growth factor-β (TGF-β). Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. Recent evidence demonstrated that TGF-β signaling mediates cancer development and progression. Many key events in TGF-β signaling in cancer included auto-induction of TGF-β1 and increased expression of DNA methyltransferases (DNMTs), suggesting that DNA methylation plays a significant role in cancer development and progression. In this review, we performed an extensive survey of the literature linking TGF-β signaling to DNA methylation in prostate cancer. It appeared that almost all DNA methylated genes detected in prostate cancer are directly or indirectly related to TGF-β signaling. This knowledge has provided a basis for our future directions of prostate cancer research and strategies for prevention and therapy for prostate cancer.
Collapse
|