51
|
Quimbar P, Malik U, Sommerhoff CP, Kaas Q, Chan LY, Huang YH, Grundhuber M, Dunse K, Craik DJ, Anderson MA, Daly NL. High-affinity cyclic peptide matriptase inhibitors. J Biol Chem 2013; 288:13885-96. [PMID: 23548907 DOI: 10.1074/jbc.m113.460030] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sunflower trypsin inhibitor-1 (SFTI-1) and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) are potent protease inhibitors comprising a cyclic backbone. RESULTS Elucidation of structure-activity relationships for SFTI-1 and MCoTI-II was used to design inhibitors with enhanced inhibitory activity. CONCLUSION An analog of MCoTI-II is one of the most potent inhibitors of matriptase. SIGNIFICANCE These results provide a solid basis for the design of selective peptide inhibitors of matriptase with therapeutic potential. The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase.
Collapse
Affiliation(s)
- Pedro Quimbar
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1473] [Impact Index Per Article: 133.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Glotzbach B, Schmelz S, Reinwarth M, Christmann A, Heinz DW, Kolmar H. Structural characterization ofSpinacia oleraceatrypsin inhibitor III (SOTI-III). ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:114-20. [DOI: 10.1107/s0907444912043880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/23/2012] [Indexed: 01/07/2023]
|
54
|
Nguyen GKT, Lian Y, Pang EWH, Nguyen PQT, Tran TD, Tam JP. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J Biol Chem 2012. [PMID: 23195955 DOI: 10.1074/jbc.m112.415356] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclotides are disulfide-rich macrocyclic peptides that display a wide range of bioactivities and represent an important group of plant defense peptide biologics. A few linear variants of cyclotides have recently been identified. They share a high sequence homology with cyclotides but are biosynthetically unable to cyclize from their precursors. All hitherto reported cyclotides and their acyclic variants were isolated from dicot plants of the Rubiaceae, Violaceae, Cucurbitaceae, and recently the Fabaceae and Solanaceae families. Although several cyclotide-like genes in the Poaceae family were known from the data mining of the National Center for Biotechnology Information (NCBI) nucleotide database, their expression at the protein level has yet to be proven. Here, we report the discovery and characterization of nine novel linear cyclotides, designated as panitides L1-9, from the Panicum laxum of the Poaceae family and provide the first evidence of linear cyclotides at the protein level in a monocot plant. Disulfide mapping of panitide L3 showed that it possesses a cystine knot arrangement similar to cyclotides. Several panitides were shown to be active against Escherichia coli and cytotoxic to HeLa cells. They also displayed a high stability against heat and proteolytic degradation. Oxidative folding of the disulfide-reduced panitide L1 showed that it can fold efficiently into its native form. The presence of linear cyclotides in both dicots and monocots suggests their ancient origin and existence before the divergence of these two groups of flowering plants. Moreover, the Poaceae family contains many important food crops, and our discovery may open up new avenues of research using cyclotides and their acyclic variants in crop protection.
Collapse
|
55
|
Sen Z, Zhan XK, Jing J, Yi Z, Wanqi Z. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. Oncol Lett 2012; 5:641-644. [PMID: 23419988 PMCID: PMC3573133 DOI: 10.3892/ol.2012.1042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 11/13/2012] [Indexed: 12/03/2022] Open
Abstract
Cyclotides comprise a family of circular mini-peptides that have been isolated from various plants and have a wide range of bioactivities. Previous studies have demonstrated that cyclotides have antitumor effects and cause cell death by membrane permeabilization. The present study aimed to evaluate the cytotoxicity and chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. In this study, a total of seven cyclotides were selected for colorimetric cell viability assay (MTT assay) to evaluate their anticancer and chemosensitizing activities in the lung cancer cell line A549 and its sub-line A549/paclitaxel. Results suggested that certain cyclotides had significant anticancer and chemosensitizing abilities; such cyclotides were capable of causing multi-fold decreases in the half maximal inhibitory concentration (IC50) value of cliotides in the presence of paclitaxel. More importantly, their bioactivities were found to be correlated with their net charge status. In conclusion, cyclotides from C. ternatea have potential in chemosensitization application.
Collapse
Affiliation(s)
- Zhang Sen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050
| | | | | | | | | |
Collapse
|
56
|
Wang CK, Wacklin HP, Craik DJ. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions. J Biol Chem 2012; 287:43884-98. [PMID: 23129773 DOI: 10.1074/jbc.m112.421198] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities.
Collapse
Affiliation(s)
- Conan K Wang
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
57
|
Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides: promising scaffolds for applications in drug design. Molecules 2012; 17:12533-52. [PMID: 23095896 PMCID: PMC6268209 DOI: 10.3390/molecules171112533] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 02/03/2023] Open
Abstract
Cystine-knot peptides display exceptional structural, thermal, and biological stability. Their eponymous motif consists of six cysteine residues that form three disulfide bonds, resulting in a notably rigid structural core. Since they highly tolerate either rational or combinatorial changes in their primary structure, cystine knots are considered to be promising frameworks for the development of peptide-based pharmaceuticals. Despite their relatively small size (two to three dozens amino acid residues), the chemical synthesis route is challenging since it involves critical steps such as head-to-tail cyclization and oxidative folding towards the respective bioactive isomer. Herein we describe the topology of cystine-knot peptides, their synthetic availability and briefly discuss potential applications of engineered variants in diagnostics and therapy.
Collapse
|
58
|
Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation. Int J Pept Res Ther 2012; 19:43-54. [PMID: 23504256 PMCID: PMC3597280 DOI: 10.1007/s10989-012-9331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2012] [Indexed: 12/21/2022]
Abstract
The development of synthetic methodologies for cyclic peptides is driven by the discovery of cyclic peptide drug scaffolds such as the plant-derived cyclotides, sunflower trypsin inhibitor 1 (SFTI-1) and the development of cyclized conotoxins. Currently, the native chemical ligation reaction between an N-terminal cysteine and C-terminal thioester group remains the most robust method to obtain a head-to-tail cyclized peptide. Peptidyl thioesters are effectively generated by Boc SPPS. However, their generation is challenging using Fmoc SPPS because thioester linkers are not stable to repeated piperidine exposure during deprotection. Herein we describe a Fmoc-based protocol for synthesizing cyclic peptides adapted for microwave assisted solid phase peptide synthesis. The protocol relies on the linker Di-Fmoc-3,4-diaminobenzoic acid, and we demonstrate the use of Gly, Ser, Arg and Ile as C-terminal amino acids (using HBTU and HATU as coupling reagents). Following synthesis, an N-acylurea moiety is generated at the C-terminal of the peptide; the resin bound acylurea peptide is then deprotected and cleaved from the resin. The fully deprotected peptide undergoes thiolysis in aqueous buffer, generating the thioester in situ. Ultimately, the head-to-tail cyclized peptide is obtained via native chemical ligation. Two naturally occurring cyclic peptides, the prototypical Möbius cyclotide kalata B1 and SFTI-1 were synthesized efficiently, avoiding potential branching at the diamino linker, using the optimized protocol. In addition, we demonstrate the possibility to use the approach for the synthesis of long and synthetically challenging linear sequences, by the ligation of two truncated fragments of a 50-residue long plant defensin.
Collapse
|
59
|
Gould A, Ji Y, Aboye TL, Camarero JA. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des 2012; 17:4294-307. [PMID: 22204428 DOI: 10.2174/138161211798999438] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/15/2011] [Indexed: 11/22/2022]
Abstract
Cyclotides are a unique and growing family of backbone cyclized peptides that also contain a cystine knot motif built from six conserved cysteine residues. This unique circular backbone topology and knotted arrangement of three disulfide bonds makes them exceptionally stable to thermal, chemical, and enzymatic degradation compared to other peptides of similar size. Aside from the conserved residues forming the cystine knot, cyclotides have been shown to have high variability in their sequences. Consisting of over 160 known members, cyclotides have many biological activities, ranging from anti-HIV, antimicrobial, hemolytic, and uterotonic capabilities; additionally, some cyclotides have been shown to have cell penetrating properties. Originally discovered and isolated from plants, cyclotides can also be produced synthetically and recombinantly. The high sequence variability, stability, and cell penetrating properties of cyclotides make them potential scaffolds to be used to graft known active peptides or engineer peptide-based drug design. The present review reports recent findings in the biological diversity and therapeutic potential of natural and engineered cyclotides.
Collapse
Affiliation(s)
- Andrew Gould
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
60
|
Henriques ST, Craik DJ. Importance of the cell membrane on the mechanism of action of cyclotides. ACS Chem Biol 2012; 7:626-36. [PMID: 22260456 DOI: 10.1021/cb200395f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Their distinctive structures, diverse range of bioactivities, and potential for pharmaceutical or agricultural applications make cyclotides an intriguing family of cyclic peptides. Together with the physiological role in plant host defense, cyclotides possess antimicrobial, anticancer, and anti-HIV activities. In all of the reported activities, cell membranes seem to be the primary target for cyclotide binding. This article examines recent literature on cyclotide-membrane studies and highlights the hypothesis that the activity of cyclotides is dependent on their affinity for lipid bilayers and enhanced by the presence of specific lipids, i.e., phospholipids containing phosphatidylethanolamine headgroups. There is growing evidence that the lipid composition of target cell membranes dictates the amount of cyclotides bound to the cell and the extent of their activity. After membrane targeting and insertion in the bilayer core, cyclotides induce disruption of membranes by a pore formation mechanism. This proposed mechanism of action is supported by biophysical studies with model membranes and by studies on natural biological membranes of known lipid compositions.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute of Molecular Medicine,
Medical School, University of Lisbon, 1649-028
Lisbon, Portugal
| | - David J. Craik
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
61
|
Nguyen GKT, Lim WH, Nguyen PQT, Tam JP. Novel cyclotides and uncyclotides with highly shortened precursors from Chassalia chartacea and effects of methionine oxidation on bioactivities. J Biol Chem 2012; 287:17598-17607. [PMID: 22467870 DOI: 10.1074/jbc.m111.338970] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclotides are a new class of plant biologics that display a diverse range of bioactivities with therapeutic potentials. They possess an unusual end-to-end cyclic backbone combined with a cystine knot arrangement, making them exceptionally stable to heat, chemical and enzymatic degradation. Currently, >200 cyclotides have been discovered but only three naturally occurring linear variants (also known as uncyclotides) have been isolated. In this study, we report the discovery of 18 novel peptides, chassatides C1 to C18, composed of 14 new cyclotides and four uncyclotides from Chassalia chartacea (Rubiaceae family). Thus far, this is the largest number of uncyclotides being reported in a single species. Activity testing showed that the uncyclotides not only retain the effectiveness but also are the most potent chassatides in the assays for antimicrobial, cytotoxic, and hemolytic activities. Genetic characterization of novel chassatides revealed that they have the shortest precursors of all known cyclotides hitherto isolated, which represents a new class of cyclotide precursors. This is the first report of cyclotide genes in a second genus, the Chassalia, other than the Hedyotis (Oldenlandia) of the Rubiaceae family. In addition, we also report the characterization of two Met-oxidized derivatives of chassatides C2 and C11. The oxidation of Met residue causes loss of bioactivities, strengthening the importance of the hydrophobic patch for membrane interaction.
Collapse
Affiliation(s)
| | - Wei Han Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
62
|
Zheng JS, Tang S, Guo Y, Chang HN, Liu L. Synthesis of Cyclic Peptides and Cyclic Proteins via Ligation of Peptide Hydrazides. Chembiochem 2012; 13:542-6. [DOI: 10.1002/cbic.201100580] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Indexed: 02/01/2023]
|
63
|
Craik DJ. Host-defense activities of cyclotides. Toxins (Basel) 2012; 4:139-56. [PMID: 22474571 PMCID: PMC3317112 DOI: 10.3390/toxins4020139] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022] Open
Abstract
Cyclotides are plant mini-proteins whose natural function is thought to be to protect plants from pest or pathogens, particularly insect pests. They are approximately 30 amino acids in size and are characterized by a cyclic peptide backbone and a cystine knot arrangement of three conserved disulfide bonds. This article provides an overview of the reported pesticidal or toxic activities of cyclotides, discusses a possible common mechanism of action involving disruption of biological membranes in pest species, and describes methods that can be used to produce cyclotides for potential applications as novel pesticidal agents.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
64
|
Pinto MFS, Fensterseifer ICM, Migliolo L, Sousa DA, de Capdville G, Arboleda-Valencia JW, Colgrave ML, Craik DJ, Magalhães BS, Dias SC, Franco OL. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane. J Biol Chem 2012; 287:134-147. [PMID: 22074926 PMCID: PMC3249065 DOI: 10.1074/jbc.m111.294009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/31/2011] [Indexed: 02/02/2023] Open
Abstract
Cyclotides are a family of plant-derived cyclic peptides comprising six conserved cysteine residues connected by three intermolecular disulfide bonds that form a knotted structure known as a cyclic cystine knot (CCK). This structural motif is responsible for the pronounced stability of cyclotides against chemical, thermal, or proteolytic degradation and has sparked growing interest in this family of peptides. Here, we isolated and characterized a novel cyclotide from Palicourea rigida (Rubiaceae), which was named parigidin-br1. The sequence indicated that this peptide is a member of the bracelet subfamily of cyclotides. Parigidin-br1 showed potent insecticidal activity against neonate larvae of Lepidoptera (Diatraea saccharalis), causing 60% mortality at a concentration of 1 μm but had no detectable antibacterial effects. A decrease in the in vitro viability of the insect cell line from Spodoptera frugiperda (SF-9) was observed in the presence of parigidin-br1, consistent with in vivo insecticidal activity. Transmission electron microscopy and fluorescence microscopy of SF-9 cells after incubation with parigidin-br1 or parigidin-br1-fluorescein isothiocyanate, respectively, revealed extensive cell lysis and swelling of cells, consistent with an insecticidal mechanism involving membrane disruption. This hypothesis was supported by in silico analyses, which suggested that parigidin-br1 is able to complex with cell lipids. Overall, the results suggest promise for the development of parigidin-br1 as a novel biopesticide.
Collapse
Affiliation(s)
- Michelle F S Pinto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Isabel C M Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Ludovico Migliolo
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Daniel A Sousa
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília-DF, Brazil
| | - Guy de Capdville
- CENARGEN (Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia), Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
| | - Jorge W Arboleda-Valencia
- CENARGEN (Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia), Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Brasília-DF, Brazil
| | - Michelle L Colgrave
- Commonwealth Scientific and Industrial Research Organization Livestock Industries, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Beatriz S Magalhães
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Simoni C Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
65
|
|
66
|
Pinto MFS, Almeida RG, Porto WF, Fensterseifer ICM, Lima LA, Dias SC, Franco OL. Cyclotides. J Evid Based Complementary Altern Med 2011. [DOI: 10.1177/2156587211428077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, a number of peptides containing a cyclic structural fold have been described. Among them, the cyclotides family was widely reported in different plant tissues, being composed of small cyclic peptides containing 6 conserved cysteine residues connected by disulfide bonds and forming a cysteine-binding cyclic structure known as a cyclic cysteine knot. This structural scaffold is responsible for an enhanced structural stability against chemical, thermal, and proteolytic degradation. Because of the observed stability and multifunctionality, including insecticidal, antimicrobial, and anti-HIV (human immunodeficiency virus) action, much effort has gone into trying to elucidate the structural-function relations of cyclotide compounds. This review focuses on the novelties involving gene structure, precursor formation and processing, and protein folding of the cyclotide family, shedding some light on molecular mechanisms of cyclotide production. Because cyclotides are clear targets for drug development and also biotechnology applications, their chemical synthesis, heterologous systems production, and protein grafting are also addressed.
Collapse
|
67
|
Ghassempour A, Ghahramanzamaneh M, Hashempour H, Kargosha K. Multidimensional liquid chromatography for separation of cyclotides inViola ignobilis. ACTA CHROMATOGR 2011. [DOI: 10.1556/achrom.23.2011.4.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
68
|
Sando L, Henriques ST, Foley F, Simonsen SM, Daly NL, Hall KN, Gustafson KR, Aguilar MI, Craik DJ. A Synthetic mirror image of kalata B1 reveals that cyclotide activity is independent of a protein receptor. Chembiochem 2011; 12:2456-62. [PMID: 21928440 PMCID: PMC6364095 DOI: 10.1002/cbic.201100450] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 11/08/2022]
Abstract
Featuring a circular, knotted structure and diverse bioactivities, cyclotides are a fascinating family of peptides that have inspired applications in drug design. Most likely evolved to protect plants against pests and herbivores, cyclotides also exhibit anti-cancer, anti-HIV, and hemolytic activities. In all of these activities, cell membranes appear to play an important role. However, the question of whether the activity of cyclotides depends on the recognition of chiral receptors or is primarily modulated by the lipid-bilayer environment has remained unknown. To determine the importance of lipid membranes on the activity of the prototypic cyclotide, kalata B1, we synthesized its all-D enantiomer and assessed its bioactivities. After the all-D enantiomer had been confirmed by (1)H NMR to be the structural mirror image of the native kalata B1, it was tested for anti-HIV activity, cytotoxicity, and hemolytic properties. The all-D peptide is active in these assays, albeit with less efficiency; this reveals that kalata B1 does not require chiral recognition to be active. The lower activity than the native peptide correlates with a lower affinity for phospholipid bilayers in model membranes. These results exclude a chiral receptor mechanism and support the idea that interaction with phospholipid membranes plays a role in the activity of kalata B1. In addition, studies with mixtures of L and D enantiomers of kalata B1 suggested that biological activity depends on peptide oligomerization at the membrane surface, which determines affinity for membranes by modulating the association-dissociation equilibrium.
Collapse
Affiliation(s)
- Lillian Sando
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, 4072 (Australia),
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, 4072 (Australia),
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Av. Egas Moniz, 1649-028 Lisbon (Portugal)
| | - Fiona Foley
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, 4072 (Australia),
| | - Shane M. Simonsen
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, 4072 (Australia),
| | - Norelle L. Daly
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, 4072 (Australia),
| | - Kristopher N. Hall
- Department of Biochemistry and Molecular Biology, Monash University Victoria, 3800 Clayton (Australia)
| | - Kirk R. Gustafson
- Molecular Targets Laboratory, Center for Cancer Research National Cancer Institute at Frederick, Frederick, MD 21702 (USA)
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Victoria, 3800 Clayton (Australia)
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, 4072 (Australia),
| |
Collapse
|
69
|
|
70
|
Nguyen GKT, Zhang S, Wang W, Wong CTT, Nguyen NTK, Tam JP. Discovery of a linear cyclotide from the bracelet subfamily and its disulfide mapping by top-down mass spectrometry. J Biol Chem 2011; 286:44833-44. [PMID: 21979955 DOI: 10.1074/jbc.m111.290296] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclotides are heat-stable macrocyclic peptides from plants that display a wide range of biological activities. They can be divided into two subfamilies: Möbius or bracelet, based on the presence or absence of a cis-proline residue in loop 5, respectively. Currently, over 150 cyclotides have been discovered, but only four linear variants of the Möbius subfamily have been hitherto isolated. In this study, we report the discovery of two novel cyclotides, hedyotide B1 and hedyotide B2, from the aerial parts of Hedyotis biflora. Hedyotide B1 has a cyclic cystine knot structure typical of cyclotides. Interestingly, hedyotide B2 possesses a linear backbone and is the first linear representative of the bracelet subfamily. Disulfide mapping of hedyotide B2 by a top-down MS/MS approach showed that it shares the same knotted disulfide arrangement as conventional cyclotides. Its unfolding pathway also showed that the penetrating disulfide bond Cys III-VI is the most stable disulfide linkage. Cloning of the gene encoding hedyotide B2 revealed a nonsense mutation that introduces a premature stop codon at the conserved Asn residue position, which is essential for an end-to-end backbone ligation. Biophysical characterization showed that hedyotide B2 was more susceptible to exopeptidase degradation as compared with hedyotide B1. Hedyotide B2 was also inactive against all four tested bacterial strains, whereas hedyotide B1 was bactericidal to Escherichia coli and Streptococcus salivarius at low micromolar concentration. Our results provide a deeper understanding of the structures, functions, and biosynthetic processing of cyclotides and uncyclotides in plants.
Collapse
Affiliation(s)
- Giang Kien Truc Nguyen
- From the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | |
Collapse
|
71
|
Conibear AC, Craik DJ. Chemical Synthesis of Naturally-Occurring Cyclic Mini-Proteins from Plants and Animals. Isr J Chem 2011. [DOI: 10.1002/ijch.201100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Cavallini C, Trettene M, Degan M, Delva P, Molesini B, Minuz P, Pandolfini T. Anti-angiogenic effects of two cystine-knot miniproteins from tomato fruit. Br J Pharmacol 2011; 162:1261-73. [PMID: 21175567 DOI: 10.1111/j.1476-5381.2010.01154.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Cystine-knot miniproteins are characterized by a similar molecular structure. Some cystine-knot miniproteins display therapeutically useful biological activities, as antithrombotic agents or tumour growth inhibitors. A critical event in the progression of tumours is the formation of new blood vessels. The aim of this work was to test two tomato cystine-knot miniproteins for their effects on endothelial cell proliferation and angiogenesis in vitro. EXPERIMENTAL APPROACH Two tomato cystine-knot miniproteins (TCMPs) were expressed and purified either as recombinant or as native proteins from tomato fruits. The Matrigel assay was used to investigate the effects of TCMPs on in vitro angiogenesis. Viability and proliferation of endothelial cells were tested. Extracellular signal-regulated kinase (ERK)1/2 phosphorylation was assayed in either HUVEC or A431 epidermal growth factor receptor (EGFR)-overexpressing cells treated with TCMPs. EGFR phosphorylation was tested in A431 cells. KEY RESULTS Both recombinant and native TCMPs inhibited in vitro angiogenesis of HUVEC cells at concentrations of 15-100 nM. The anti-angiogenic effect of TCMPs was associated with the inhibition of ERK phosphorylation. The two miniproteins did not alter the viability and proliferation of the endothelial cells. CONCLUSIONS AND IMPLICATIONS The anti-angiogenetic properties of TCMPs are of potential pharmacological interest because they are common and natural components of the human diet, they possess low toxicity, they are active at submicromolar concentrations, they share a common molecular structure that can be used as a molecular platform for the design of molecules with enhanced biological activity.
Collapse
Affiliation(s)
- C Cavallini
- Department of Biotechnology, University of Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
73
|
Katoh T, Goto Y, Reza MS, Suga H. Ribosomal synthesis of backbone macrocyclic peptides. Chem Commun (Camb) 2011; 47:9946-58. [PMID: 21766105 DOI: 10.1039/c1cc12647d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A wealth of knowledge has been accumulated on ribosomal synthesis of macrocyclic peptides in the past decade. In nature, backbone cyclization of the translated linear peptides is generally catalyzed by specific enzymes, giving them peptidase resistance, thermodynamic stability and various other physiological activities. Due to these biochemical traits, backbone cyclic peptides have become an attractive resource for the discovery of drug leads. Recently, various new methodologies have also been established to generate man-made cyclic peptides. Here, we describe the biosynthetic mechanisms of naturally occurring backbone macrocyclic peptides focusing on cyclotides, sunflower trypsin inhibitors (SFTIs) and cyanobactins as well as several new emerging methodologies, such as sortase mediated ligation, protein splicing method and genetic code reprogramming.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
74
|
Abstract
Cyclotides are head-to-tail cyclic peptides that contain a cystine knot motif built from six conserved cysteine residues. They occur in plants of the Rubiaceae, Violaceae, Cucurbitaceae, and Fabaceae families and, aside from their natural role in host defense, have a range of interesting pharmaceutical activities, including anti-HIV activity. The variation seen in sequences of their six backbone loops has resulted in cyclotides being described as a natural combinatorial template. Their exceptional stability and resistance to enzymatic degradation has led to their use as scaffolds for peptide-based drug design. To underpin such applications, methods for the chemical synthesis of cyclotides have been developed and are described here. Cyclization using thioester chemistry has been instrumental in the synthesis of cyclotides for structure-activity studies. This approach involves a native chemical ligation reaction between an N-terminal Cys and a C-terminal thioester in the linear cyclotide precursor. Since cyclotides contain six Cys residues their syntheses can be designed around any of six linear precursors, thus providing flexibility in synthesis. The ease with which cyclotides fold, despite their topologically complex knot motif, as well as the ability to introduce combinatorial variation in the loops, makes cyclotides a promising drug-design scaffold.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia.
| | | |
Collapse
|
75
|
Wang CKL, Clark RJ, Harvey PJ, Johan Rosengren K, Cemazar M, Craik DJ. The Role of Conserved Glu Residue on Cyclotide Stability and Activity: A Structural and Functional Study of Kalata B12, a Naturally Occurring Glu to Asp Mutant. Biochemistry 2011; 50:4077-86. [DOI: 10.1021/bi2004153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Conan K. L. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Richard J. Clark
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - K. Johan Rosengren
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Masa Cemazar
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
76
|
Yeshak MY, Burman R, Asres K, Göransson U. Cyclotides from an extreme habitat: characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands. JOURNAL OF NATURAL PRODUCTS 2011; 74:727-31. [PMID: 21434649 DOI: 10.1021/np100790f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As part of ongoing explorations of the structural diversity of cyclotides, the cyclotide content of a native violet of the East African highlands, Viola abyssinica (which grows at altitudes up to 3400 m), was studied. Six new cyclotides, vaby A-E (1-5) and varv E (6), were isolated and characterized by employing HPLC and MS techniques and quantitative amino acid analysis. Cyclotides 1-5 were found to have new sequences, and 1-3 have a further novel feature in their sequences, an alanine moiety in loop 2. Two of the cyclotides (1 and 4) also exhibited cytotoxic properties in a flourometric microculture cytotoxicity assay. The findings corroborate the hypothesis that investigating the cyclotide contents of violets growing in diverse environments is a promising approach for extending our knowledge of both the structural and biological diversity of cyclotides.
Collapse
Affiliation(s)
- Mariamawit Y Yeshak
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
77
|
Gruber CW, Muttenthaler M, Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des 2011; 16:3071-88. [PMID: 20687879 DOI: 10.2174/138161210793292474] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30-50%). Closer scrutiny, however, shows that only a modest fraction of (≈60) GPCRs are, in fact, exploited as drug targets, only ≈20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the "orthosteric site"). These additional sites include (i) binding sites for ligands (referred to as "allosteric ligands") that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points.
Collapse
Affiliation(s)
- Christian W Gruber
- Institute of Pharmacology, Center of Biomolecular Medicine & Pharmacology, Medical University of Vienna, Waehringer Str. 13a, A-1090 Vienna, Austria
| | | | | |
Collapse
|
78
|
Daly NL, Rosengren KJ, Troeira Henriques S, Craik DJ. NMR and protein structure in drug design: application to cyclotides and conotoxins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:359-70. [DOI: 10.1007/s00249-011-0672-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 01/14/2023]
|
79
|
Burman R, Herrmann A, Tran R, Kivelä JE, Lomize A, Gullbo J, Göransson U. Cytotoxic potency of small macrocyclic knot proteins: Structure–activity and mechanistic studies of native and chemically modified cyclotides. Org Biomol Chem 2011; 9:4306-14. [DOI: 10.1039/c0ob00966k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
80
|
Discovery and applications of the plant cyclotides. Toxicon 2010; 56:1092-102. [DOI: 10.1016/j.toxicon.2010.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/02/2010] [Accepted: 02/18/2010] [Indexed: 11/20/2022]
|
81
|
Tang J, Wang CK, Pan X, Yan H, Zeng G, Xu W, He W, Daly NL, Craik DJ, Tan N. Isolation and Characterization of Bioactive Cyclotides from Viola labridorica. Helv Chim Acta 2010. [DOI: 10.1002/hlca.201000115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Ireland DC, Clark RJ, Daly NL, Craik DJ. Isolation, sequencing, and structure-activity relationships of cyclotides. JOURNAL OF NATURAL PRODUCTS 2010; 73:1610-1622. [PMID: 20718473 DOI: 10.1021/np1000413] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cyclotides are a topologically fascinating family of miniproteins discovered over the past decade that have expanded the diversity of plant-derived natural products. They are approximately 30 amino acids in size and occur in plants of the Violaceae, Rubiaceae, and Cucurbitaceae families. Despite their proteinaceous composition, cyclotides behave in much the same way as many nonpeptidic natural products in that they are resistant to degradation by enzymes or heat and can be extracted from plants using methanol. Their stability arises, in large part, due to their characteristic cyclic cystine knot (CCK) structural motif. Cystine knots are present in a variety of proteins of insect, plant, and animal origin, comprising a ring formed by two disulfide bonds and their connecting backbone segments that is threaded by a third disulfide bond. In cyclotides, the cystine knot is uniquely embedded within a head-to-tail cyclized peptide backbone, leading to the ultrastable CCK structural motif. Apart from the six absolutely conserved cysteine residues, the majority of amino acids in the six backbone loops of cyclotides are tolerant to variation. It has been predicted that the family might include up to 50,000 members; although, so far, sequences for only 140 have been reported. Cyclotides exhibit a variety of biological activities, including insecticidal, nematocidal, molluscicidal, antimicrobial, antibarnacle, anti-HIV, and antitumor activities. Due to their diverse activities and common structural core from which variable loops protrude, cyclotides can be thought of as combinatorial peptide templates capable of displaying a variety of amino acid sequences. They have thus attracted interest in drug design as well as in crop protection applications.
Collapse
Affiliation(s)
- David C Ireland
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
83
|
Clark RJ, Craik DJ. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers 2010; 94:414-22. [PMID: 20593458 DOI: 10.1002/bip.21372] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native chemical ligation methodology developed in the laboratory of Stephen Kent is a versatile approach to the linkage of peptide fragments using a native peptide bond. It is readily adaptable to the task of joining the N- and C-termini of peptides to produce cyclic molecules and we have used it for the cyclization of a range of disulfide-rich peptides. Specifically, it has been valuable for the synthesis of cyclotides, naturally occurring peptides characterized by a head-to-tail cyclized backbone and a knotted arrangement of three conserved disulfide bonds. Cyclotides have a diverse range of biological activities, including anti-HIV, antimicrobial, and insecticidal activities. They are ultrastable owing to their cyclic cystine knot motif, and native chemical ligation methodology has been invaluable in the synthesis of a range of native and modified cyclotides to explore their structure-activity relationships and applications in drug design. Similar studies have also been applied to a smaller cyclic peptide produced in sunflower seeds, sunflower trypsin inhibitor-1, which also shows promise as a template in drug design applications. We have also found native chemical ligation to be a valuable methodology for the cyclization of conotoxins, small disulfide-rich peptides from the venoms of marine cone snails. Conotoxins target a range of ions channels and receptors and are exciting leads in drug design applications. The synthetic cyclization of conotoxins with peptide linkers stabilizes them and improves their biopharmaceutical properties. In summary, this article illustrates the use of native chemical ligation technology in the cyclization of cyclotides, sunflower trypsin inhibitor-1, and conotoxins in our laboratory.
Collapse
Affiliation(s)
- Richard J Clark
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
84
|
Pranting M, Loov C, Burman R, Goransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 2010; 65:1964-71. [DOI: 10.1093/jac/dkq220] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
85
|
Cascales L, Craik DJ. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org Biomol Chem 2010; 8:5035-47. [DOI: 10.1039/c0ob00139b] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
86
|
Gruber CW. Global cyclotide adventure: a journey dedicated to the discovery of circular peptides from flowering plants. Biopolymers 2010; 94:565-72. [PMID: 20564015 PMCID: PMC4941922 DOI: 10.1002/bip.21414] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Circular peptides and proteins of great number and diversity have been discovered in bacteria, plants, and animals. Cyclotides--disulfide-knotted and head-to-tail cyclized plant peptides that exhibit various bioactivities--are by far the largest group of circular proteins. Since their first discovery over three decades ago, there has been a lot of progress in the elucidation of structural characteristics and applications of cyclotides as novel peptide drug grafting frameworks, but there is a lack of information about their native occurrence in various plant families. The "global cyclotide adventure" was initiated as a plant collection and analysis project to advance our understanding of the origin and distribution of cyclotides in flowering plants. Here, I will provide a chronological overview of the preparation of this project, including background information on plant taxonomy and morphology, summarize, and comment on the recent progress about the discovery of cyclotide-producing plants and will give an outlook on the future of cyclotide analysis and further discoveries to be made.
Collapse
Affiliation(s)
- Christian W Gruber
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
87
|
Wang CK, Colgrave ML, Ireland DC, Kaas Q, Craik DJ. Despite a conserved cystine knot motif, different cyclotides have different membrane binding modes. Biophys J 2009; 97:1471-81. [PMID: 19720036 DOI: 10.1016/j.bpj.2009.06.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/03/2009] [Accepted: 06/10/2009] [Indexed: 11/19/2022] Open
Abstract
Cyclotides are cyclic proteins produced by plants for defense against pests. Because of their remarkable stability and diverse bioactivities, they have a range of potential therapeutic applications. The bioactivities of cyclotides are believed to be mediated through membrane interactions. To determine the structural basis for the biological activity of the two major subfamilies of cyclotides, we determined the conformation and orientation of kalata B2 (kB2), a Möbius cyclotide, and cycloviolacin O2 (cO2), a bracelet cyclotide, bound to dodecylphosphocholine micelles, using NMR spectroscopy in the presence and absence of 5- and 16-doxylstearate relaxation probes. Analysis of binding curves using the Langmuir isotherm indicated that cO2 and kB2 have association constants of 7.0 x 10(3) M(-1) and 6.0 x 10(3) M(-1), respectively, consistent with the notion that they are bound near the surface, rather than buried deeply within the micelle. This suggestion is supported by the selective broadening of micelle-bound cyclotide NMR signals upon addition of paramagnetic Mn ions. The cyclotides from the different subfamilies exhibited clearly different binding orientations at the micelle surface. Structural analysis of cO2 confirmed that the main element of the secondary structure is a beta-hairpin centered in loop 5. A small helical turn is present in loop 3. Analysis of the surface profile of cO2 shows that a hydrophobic patch stretches over loops 2 and 3, in contrast to the hydrophobic patch of kB2, which predominantly involves loops 2 and 5. The different location of the hydrophobic patches in the two cyclotides explains their different binding orientations and provides an insight into the biological activities of cyclotides.
Collapse
Affiliation(s)
- Conan K Wang
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
88
|
Gunasekera S, Daly NL, Clark RJ, Craik DJ. Dissecting the oxidative folding of circular cystine knot miniproteins. Antioxid Redox Signal 2009; 11:971-80. [PMID: 19025420 DOI: 10.1089/ars.2008.2295] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cyclotides are plant proteins with exceptional stability owing to the presence of a cyclic backbone and three disulfide bonds arranged in a cystine knot motif. Accordingly, they have been proposed as templates to stabilize bioactive epitopes in drug-design applications. The two main subfamilies, referred to as the Möbius and bracelet cyclotides, require dramatically different in vitro folding conditions to achieve the native fold. To determine the underlying elements that influence cyclotide folding, we examined the in vitro folding of a suite of hybrid cyclotides based on combination of the Möbius cyclotide kalata B1 and the bracelet cyclotide cycloviolacin O1. The folding pathways of the two cyclotide subfamilies were found to be different and influenced by specific residues within intercysteine loops 2 and 6. Two changes in these loops, a substitution in loop 2 and an addition in loop 6, enabled the folding of a cycloviolacin O1 analogue under conditions in which folding does not occur in vitro for the native peptide. A key intermediate contains a native-like hairpin structure that appears to be a nucleation locus early in the folding process. Overall, these mechanistic findings on the folding of cyclotides are potentially valuable for the design of new drug leads.
Collapse
Affiliation(s)
- Sunithi Gunasekera
- The University of Queensland, Institute for Molecular Bioscience and Australian Research Council Special Research Centre for Functional and Applied Genomics, Brisbane, Australia
| | | | | | | |
Collapse
|
89
|
Trabi M, Mylne JS, Sando L, Craik DJ. Circular proteins from Melicytus (Violaceae) refine the conserved protein and gene architecture of cyclotides. Org Biomol Chem 2009; 7:2378-88. [PMID: 19462049 DOI: 10.1039/b823020j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclotides are cyclic disulfide rich mini-proteins found in various Rubiaceae (coffee family), Violaceae (violet family) and Cucurbitaceae (squash family) plant species. Within the Violaceae, cyclotides have been found in numerous species of the genus Viola as well as species from two other genera, namely Hybanthus and Leonia. This is the first in-depth report of cyclotides in the genus Melicytus (Violaceae). We present the chromatographic profiles of extracts of eight Melicytus species and one Melicytus hybrid that were found to contain these circular peptides. We isolated and characterised five novel cyclotides (mra1 to mra5) from the aerial parts of a common New Zealand tree, Melicytus ramiflorus. All five peptides show the characteristics of the bracelet subfamily of cyclotides. Furthermore, we isolated 17 non-redundant cDNA clones from the leaves of Melicytus ramiflorus encoding cyclotide prepropeptides. This detailed report on the presence of cyclotides in several species of the genus Melicytus further strengthens our hypothesis that cyclotides are ubiquitous in Violaceae family plants and provides additional insight into the biochemical processing mechanisms that produce the cyclic protein backbone of this unique family of ultra-stable plant proteins.
Collapse
Affiliation(s)
- Manuela Trabi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
90
|
Wang CK, Hu SH, Martin JL, Sjögren T, Hajdu J, Bohlin L, Claeson P, Göransson U, Rosengren KJ, Tang J, Tan NH, Craik DJ. Combined X-ray and NMR analysis of the stability of the cyclotide cystine knot fold that underpins its insecticidal activity and potential use as a drug scaffold. J Biol Chem 2009; 284:10672-83. [PMID: 19211551 DOI: 10.1074/jbc.m900021200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclotides are a family of plant defense proteins that are highly resistant to adverse chemical, thermal, and enzymatic treatment. Here, we present the first crystal structure of a cyclotide, varv F, from the European field pansy, Viola arvensis, determined at a resolution of 1.8 A. The solution state NMR structure was also determined and, combined with measurements of biophysical parameters for several cyclotides, provided an insight into the structural features that account for the remarkable stability of the cyclotide family. The x-ray data confirm the cystine knot topology and the circular backbone, and delineate a conserved network of hydrogen bonds that contribute to the stability of the cyclotide fold. The structural role of a highly conserved Glu residue that has been shown to regulate cyclotide function was also determined, verifying its involvement in a stabilizing hydrogen bond network. We also demonstrate that varv F binds to dodecylphosphocholine micelles, defining the binding orientation and showing that its structure remains unchanged upon binding, further demonstrating that the cyclotide fold is rigid. This study provides a biological insight into the mechanism by which cyclotides maintain their native activity in the unfavorable environment of predator insect guts. It also provides a structural basis for explaining how a cluster of residues important for bioactivity may be involved in self-association interactions in membranes. As well as being important for their bioactivity, the structural rigidity of cyclotides makes them very suitable as a stable template for peptide-based drug design.
Collapse
Affiliation(s)
- Conan K Wang
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Cyclotides are 28-37 amino acid peptides incorporating three disulfide bonds and a cyclic backbone. Their cyclic and knotted topology renders them immune to denaturation by heat or organic solvents and highly resistant to proteolysis. They have a range of interesting and potentially useful pharmaceutical properties and have been proposed as scaffolds within which peptides with drug activities can be stabilized for delivery. Some members of the family also have agricultural applications deriving from their potent insecticidal activity. Labeling peptides with the NMR-active and stable 15N isotope facilitates a range of studies by NMR, including structural and dynamics studies and their use as tracers. However, owing to their head-to-tail cyclized peptide backbone labeled cyclotides are not amenable to conventional recombinant labeling strategies. We have developed an approach to overcome this limitation by growing the cyclotide-bearing plant Oldenlandia affinis on nitrogen-free agar media supplemented with 15N salts and obtaining complete labeling at no detriment to plant biomass. We purified the insecticidal cyclotides kalata B1 and kalata B2 as examples and provide heteronuclear single quantum coherence (HSQC) NMR spectra for each. This method of labeling cyclotides involves only a fraction of the cost of uniform labeling by solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Joshua S Mylne
- Division of Chemical and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
92
|
Gruber CW, Čemažar M, Mechler A, Martin LL, Craik DJ. Biochemical and biophysical characterization of a novel plant protein disulfide isomerase. Biopolymers 2009; 92:35-43. [DOI: 10.1002/bip.21113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ. Distribution and evolution of circular miniproteins in flowering plants. THE PLANT CELL 2008; 20:2471-83. [PMID: 18827180 PMCID: PMC2570719 DOI: 10.1105/tpc.108.062331] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cyclotides are disulfide-rich miniproteins with the unique structural features of a circular backbone and knotted arrangement of three conserved disulfide bonds. Cyclotides have been found only in two plant families: in every analyzed species of the violet family (Violaceae) and in few species of the coffee family (Rubiaceae). In this study, we analyzed >200 Rubiaceae species and confirmed the presence of cyclotides in 22 species. Additionally, we analyzed >140 species in related plant families to Rubiaceae and Violaceae and report the occurrence of cyclotides in the Apocynaceae. We further report new cyclotide sequences that provide insights into the mechanistic basis of cyclotide evolution. On the basis of the phylogeny of cyclotide-bearing plants and the analysis of cyclotide precursor gene sequences, we hypothesize that cyclotide evolution occurred independently in various plant families after the divergence of Asterids and Rosids ( approximately 125 million years ago). This is strongly supported by recent findings on the in planta biosynthesis of cyclotides, which involves the serendipitous recruitment of ubiquitous proteolytic enzymes for cyclization. We further predict that the number of cyclotides within the Rubiaceae may exceed tens of thousands, potentially making cyclotides one of the largest protein families in the plant kingdom.
Collapse
Affiliation(s)
- Christian W Gruber
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Structure 2008; 16:842-51. [PMID: 18547517 DOI: 10.1016/j.str.2008.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 01/16/2008] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
We have determined the three-dimensional structure of a two-disulfide intermediate (Cys(8)-Cys(20), Cys(14)-Cys(26)) on the oxidative folding pathway of the cyclotide MCoTI-II. Cyclotides have a range of bioactivities and, because of their exceptional stability, have been proposed as potential molecular scaffolds for drug design applications. The three-dimensional structure of the stable two-disulfide intermediate shows for the most part identical secondary and tertiary structure to the native state. The only exception is a flexible loop, which is collapsed onto the protein core in the native state, whereas in the intermediate it is more loosely associated with the remainder of the protein. The results suggest that the native fold of the peptide does not represent the free energy minimum in the absence of the Cys(1)-Cys(18) disulfide bridge and that although there is not a large energy barrier, the peptide must transiently adopt an energetically unfavorable state before the final disulfide can form.
Collapse
|
95
|
Plan MRR, Saska I, Cagauan AG, Craik DJ. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5237-41. [PMID: 18557620 DOI: 10.1021/jf800302f] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Golden apple snails ( Pomacea canaliculata) are serious pests of rice in South East Asia. Cyclotides are backbone cyclized peptides produced by plants from Rubiaceae and Violaceae. In this study, we investigated the molluscicidal activity of cyclotides against golden apple snails. Crude cyclotide extracts from both Oldenlandia affinis and Viola odorata plants showed molluscicidal activity comparable to the synthetic molluscicide metaldehyde. Individual cyclotides from each extract demonstrated a range of molluscicidal activities. The cyclotides cycloviolacin O1, kalata B1, and kalata B2 were more toxic to golden apple snails than metaldehyde, while kalata B7 and kalata B8 did not cause significant mortality. The toxicity of the cyclotide kalata B2 on a nontarget species, the Nile tilapia ( Oreochromis niloticus), was three times lower than the common piscicide rotenone. Our findings suggest that the existing diversity of cyclotides in plants could be used to develop natural molluscicides.
Collapse
Affiliation(s)
- Manuel Rey R Plan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
96
|
Kolmar H. Alternative binding proteins: biological activity and therapeutic potential of cystine-knot miniproteins. FEBS J 2008; 275:2684-90. [PMID: 18435757 DOI: 10.1111/j.1742-4658.2008.06440.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystine-knot miniproteins are members of a large family of small proteins that are defined by a common structural scaffold which is stabilized by three intramolecular disulfide bonds. Cystine-knot miniproteins display a broad spectrum of therapeutically useful natural biological activities and several family members are marketed as therapeutics or are in clinical development. Because of their extraordinary intrinsic chemical and proteolytic stability they provide promising scaffolds for the introduction of therapeutically relevant functionalities. Several successful engineering efforts have been reported to generate miniproteins with novel activities by rational design via functional loop grafting or by directed evolution via screening of scaffold-constrained random libraries. Owing to their small size they are amenable to recombinant as well as to chemical routes of synthesis, which opens up new avenues in optimizing biological activity, specificity and bioavailability by site-specific modification, introduction of non-natural amino acids or chemical conjugation.
Collapse
Affiliation(s)
- Harald Kolmar
- Clemens-Schöpf-Institut für Biochemie und Organische Chemie, Technische Universität Darmstadt, Germany.
| |
Collapse
|
97
|
Leta Aboye T, Clark RJ, Craik DJ, Göransson U. Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. Chembiochem 2008; 9:103-13. [PMID: 18058973 DOI: 10.1002/cbic.200700357] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cyclic cystine knot motif, as defined by the cyclotide peptide family, is an attractive scaffold for protein engineering. To date, however, the utilisation of this scaffold has been limited by the inability to synthesise members of the most diverse and biologically active subfamily, the bracelet cyclotides. This study describes the synthesis and first direct oxidative folding of a bracelet cyclotide-cycloviolacin O2-and thus provides an efficient method for exploring the most potent cyclic cystine knot peptides. The linear chain of cycloviolacin O2 was assembled by solid-phase Fmoc peptide synthesis and cyclised by thioester-mediated native chemical ligation, and the inherent difficulties of folding bracelet cyclotides were successfully overcome in a single-step reaction. The folding pathway was characterised and was found to include predominating fully oxidised intermediates that slowly converted to the native peptide structure.
Collapse
Affiliation(s)
- Teshome Leta Aboye
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
98
|
Herrmann A, Burman R, Mylne JS, Karlsson G, Gullbo J, Craik DJ, Clark RJ, Göransson U. The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. PHYTOCHEMISTRY 2008; 69:939-52. [PMID: 18191970 DOI: 10.1016/j.phytochem.2007.10.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 05/02/2023]
Abstract
The cyclotides are currently the largest known family of head-to-tail cyclic proteins. The complex structure of these small plant proteins, which consist of approximately 30 amino acid residues, contains both a circular peptide backbone and a cystine knot, the combination of which produces the cyclic cystine knot motif. To date, cyclotides have been found in plants from the Rubiaceae, Violaceace and Cucurbitaceae families, and are believed to be part of the host defence system. In addition to their insecticidal effect, cyclotides have also been shown to be cytotoxic, anti-HIV, antimicrobial and haemolytic agents. In this study, we show that the alpine violet Viola biflora (Violaceae) is a rich source of cyclotides. The sequences of 11 cyclotides, vibi A-K, were determined by isolation and MS/MS sequencing of proteins and screening of a cDNA library of V. biflora in parallel. For the cDNA screening, a degenerate primer against a conserved (AAFALPA) motif in the cyclotide precursor ER signal sequence yielded a series of predicted cyclotide sequences that were correlated to those of the isolated proteins. There was an apparent discrepancy between the results of the two strategies as only one of the isolated proteins could be identified as a cDNA clone. Finally, to correlate amino acid sequence to cytotoxic potency, vibi D, E, G and H were analysed using a fluorometric microculture cytotoxicity assay using a lymphoma cell line. The IC(50)-values of the bracelet cyclotides vibi E, G and H ranged between 0.96 and 5.0 microM while the Möbius cyclotide vibi D was not cytotoxic at 30 microM.
Collapse
Affiliation(s)
- Anders Herrmann
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Shenkarev ZO, Nadezhdin KD, Lyukmanova EN, Sobol VA, Skjeldal L, Arseniev AS. Divalent cation coordination and mode of membrane interaction in cyclotides: NMR spatial structure of ternary complex Kalata B7/Mn2+/DPC micelle. J Inorg Biochem 2008; 102:1246-56. [PMID: 18295894 DOI: 10.1016/j.jinorgbio.2008.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/15/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
The cyclotides are the family of hydrophobic bioactive plant peptides, characterized by a circular protein backbone and three knot forming disulfide bonds. It is believed that membrane activity of the cyclotides underlines their antimicrobial, cytotoxic and hemolytic properties, but the specific interactions with divalent cations can be also involved. To assess the mode of membrane interaction and divalent cation coordination in cyclotides, the spatial structure of the Möbius cyclotide Kalata B7 from the African perennial plant Oldenlandia affinis was determined in the presence of anisotropic membrane mimetic (dodecylphosphocholine micelles). The model of peptide/cation/micelle complex was built using 5-doxylstearate and Mn2+ relaxation probes. Results show that the peptide binds to the micelle surface with relatively high affinity by two hydrophobic loops (loop 2 - Thr6-Leu7 and loop 5 - Trp19-Ile21). The partially hydrated divalent cation is coordinated by charged side-chain of Glu3, aromatic side chain of Tyr11 and free carbonyls of Thr4 and Thr9, and is located in direct contact with the polar head-groups of detergent. The comparison with data about other cyclotides indicates that divalent cation coordination is the invariant property of all cyclotides, but the mode of peptide/membrane interactions is varied. Probably, the specific cation/peptide interactions play a major, but yet not known, role in the biological activity of the cyclotides.
Collapse
Affiliation(s)
- Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
100
|
Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci U S A 2008; 105:1221-5. [PMID: 18202177 DOI: 10.1073/pnas.0710338104] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several members of the Rubiaceae and Violaceae plant families produce a series of cyclotides or macrocyclic peptides of 28-37 aa with an embedded cystine knot. The cyclic peptide backbone together with the knotted and strongly braced structure confers exceptional chemical and biological stability that has attracted attention for potential pharmaceutical applications. Cyclotides display a diverse range of biological activities, such as uterotonic action, anti-HIV activity, and neurotensin antagonism. In plants, their primary role is probably protection from insect attack. Ingestion of the cyclotide kalata B1 severely retards the growth of larvae from the Lepidopteran species Helicoverpa armigera. We examined the gut of these larvae after consumption of kalata B1 by light, scanning, and transmission electron microscopy. We established that kalata B1 induces disruption of the microvilli, blebbing, swelling, and ultimately rupture of the cells of the gut epithelium. The histology of this response is similar to the response of H. armigera larvae to the Bacillus thuringiensis delta-endotoxin, which is widely used to control these insect pests of crops such as cotton.
Collapse
|