51
|
Granulocyte colony-stimulating factor receptor signalling via Janus kinase 2/signal transducer and activator of transcription 3 in ovarian cancer. Br J Cancer 2013; 110:133-45. [PMID: 24220695 PMCID: PMC3887286 DOI: 10.1038/bjc.2013.673] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/25/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022] Open
Abstract
Background: Ovarian cancer remains a major cause of cancer mortality in women, with only limited understanding of disease aetiology at the molecular level. Granulocyte colony-stimulating factor (G-CSF) is a key regulator of both normal and emergency haematopoiesis, and is used clinically to aid haematopoietic recovery following ablative therapies for a variety of solid tumours including ovarian cancer. Methods: The expression of G-CSF and its receptor, G-CSFR, was examined in primary ovarian cancer samples and a panel of ovarian cancer cell lines, and the effects of G-CSF treatment on proliferation, migration and survival were determined. Results: G-CSFR was predominantly expressed in high-grade serous ovarian epithelial tumour samples and a subset of ovarian cancer cell lines. Stimulation of G-CSFR-expressing ovarian epithelial cancer cells with G-CSF led to increased migration and survival, including against chemotherapy-induced apoptosis. The effects of G-CSF were mediated by signalling via the downstream JAK2/STAT3 pathway. Conclusion: This study suggests that G-CSF has the potential to impact on ovarian cancer pathogenesis, and that G-CSFR expression status should be considered in determining appropriate therapy.
Collapse
|
52
|
Tempestilli M, Gentilotti E, Tommasi C, Nicastri E, Martini F, De Nardo P, Narciso P, Pucillo LP. Determination of P-glycoprotein surface expression and functional ability after in vitro treatment with darunavir or raltegravir in lymphocytes of healthy donors. Int Immunopharmacol 2013; 16:492-7. [PMID: 23707228 DOI: 10.1016/j.intimp.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
It has been shown that P-glycoprotein (P-gp) can greatly affect the cell uptake of antiretroviral drugs, thus hampering their access to HIV-1 replication sites. Lymphocytes are important sites of replication of HIV and target of other drugs, modification on these cells of P-gp could have an effect on pharmacokinetic of antiretrovirals and drug substrates. Blood samples from 16 healthy volunteers were used to determine the expression of P-gp on total, T and T helper lymphocytes after exposure to darunavir, a second generation protease inhibitor, and raltegravir, the first approved integrase inhibitor. Moreover, the effect of the drugs on P-gp functional activity was also studied by the rhodamine-123 efflux test. Darunavir, but not raltegravir, exposure caused a moderate, dose-dependent increment in P-gp expression in total, T and T helper lymphocytes, as demonstrated by the relative frequency of P-gp+ cells and by the amount of P-gp molecules present on cell surface. Functionally, incubation with darunavir led to a marked inhibition of P-gp activity measured by the efflux of rhodamine-123 similar to that observed by verapamil, a specific P-gp inhibitor. Raltegravir was not able to modify the efflux of rhodamine-123 level. Data show that darunavir, unlike raltegravir, may modify the expression and functionality of P-gp on human lymphocytes, thus leading to potential changes in intracellular concentrations of darunavir in patients treated with other drugs substrate of P-gp and vice versa. Our study highlights the need for studies on drug interactions via the P-gp modulation mechanism, especially with the current multi-drug regimens.
Collapse
Affiliation(s)
- Massimo Tempestilli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Important and critical scientific aspects in pharmacogenomics analysis: lessons from controversial results of tamoxifen and CYP2D6 studies. J Hum Genet 2013; 58:327-33. [PMID: 23657426 DOI: 10.1038/jhg.2013.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tamoxifen contributes to decreased recurrence and mortality of patients with hormone receptor-positive breast cancer. As this drug is metabolized by phase I and phase II enzymes, the interindividual variations of their enzymatic activity are thought to be associated with individual responses to tamoxifen. Among these enzymes, CYP2D6 is considered to be a rate-limiting enzyme in the generation of endoxifen, a principal active metabolite of tamoxifen, and the genetic polymorphisms of CYP2D6 have been extensively investigated in association with the plasma endoxifen concentrations and clinical outcome of tamoxifen therapy. In addition to CYP2D6, other genetic factors including polymorphisms in various drug-metabolizing enzymes and drug transporters have been implicated to their relations to clinical outcome of tamoxifen therapy, but their effects would be small. Although the results of association studies are controversial, accumulation of the evidence has revealed us the important and critical issues in the tamoxifen pharmacogenomics study, namely the quality of genotyping, the coverage of genetic variations, the criteria for sample collection and the source of DNAs, which are considered to be common problematic issues in pharmacogenomics studies. This review points out common critical issues in pharmacogenomics studies through the lessons we have learned from tamoxifen pharmacogenomics, as well as summarizes the results of pharmacogenomics studies for tamoxifen treatment.
Collapse
|
54
|
Liu D, Liu Y, Liu M, Ran L, Li Y. Reversing resistance of multidrug-resistant hepatic carcinoma cells with parthenolide. Future Oncol 2013; 9:595-604. [PMID: 23560381 DOI: 10.2217/fon.13.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To investigate the mechanism of reversing resistance of a hepatic carcinoma multidrug-resistant cell BEL-7402/5-FU with parthenolide (PTL). Materials & methods: BEL-7402/5-FU cells were treated with different concentrations of PTL and/or 5-fluorouracil. The proliferation inhibition rates, NF-κB, P-glycoprotein, MRP, Bcl-2, WNT1 and p53 levels were determined. Results: The results showed that PTL did not only have proliferation inhibition influence on BEL-7402/5-FU in a concentration-dependent manner, but also significantly increased the proliferation inhibition role of 5-fluorouracil on BEL-7402/5-FU, to reverse the resistance of hepatic carcinoma-resistant cells. PTL could also inhibit the NF-κB activity and the expression of P-glycoprotein, MRP, Bcl-2 and WNT1, and increase the expression of p53. Conclusion: Our research suggests that clinical administration of PTL may be useful for hepatic carcinoma patients.
Collapse
Affiliation(s)
- Dajun Liu
- Renal Department, China Medical University Affiliated Shengjing Hospital, Shenyang, Liaoning, China
| | - Ying Liu
- Cardiovascular Department, Liaoning Province Hospital, Liaoning, China
| | - Minghua Liu
- Gastroenterology Department, China Medical University Shengjing Hospital, Sanhao Street 36#, Shenyang 110002, Liaoning, China
| | - Limei Ran
- Outpatient Department Affiliated Hospital of Guiyang Medical College, Guizhou, China
| | - Yan Li
- Gastroenterology Department, China Medical University Shengjing Hospital, Sanhao Street 36#, Shenyang 110002, Liaoning, China.
| |
Collapse
|
55
|
Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett 2013; 587:1504-9. [PMID: 23542036 DOI: 10.1016/j.febslet.2013.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR), one of the main reasons for diminishing efficacy of prolonged chemotherapy, is frequently caused by the elevated expression of the ABCB1/MDR1 gene encoding PGP (P-glycoprotein). EAPP (E2F Associated PhosphoProtein) is a frequently overexpressed protein in human tumor cells. It inhibits apoptosis in a p21-dependent manner. We show here that EAPP stimulates the MDR1 promoter resulting in higher PGP levels. Independently of EAPP, E2F1 also increases the activity of the MDR1 promoter. Co-expression of pRb inhibits E2F1-, but not EAPP-dependent promoter activation. The upregulation of PGP might contribute to the survival of tumor cells during chemotherapy and worsen the prognosis for the patient.
Collapse
|
56
|
Pyndiah S, Sakamuro D. Un trio de choc pour pallier la chimiorésistance des cancers : c-MYC, PARP1, BIN1. Med Sci (Paris) 2013; 29:133-5. [DOI: 10.1051/medsci/2013292006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
57
|
Abstract
Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| | - Elizabeth Hopper-Borge
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| |
Collapse
|
58
|
Tian QE, Li HD, Yan M, Cai HL, Tan QY, Zhang WY. Astragalus polysaccharides can regulate cytokine and P-glycoprotein expression in H22 tumor-bearing mice. World J Gastroenterol 2012; 18:7079-86. [PMID: 23323011 PMCID: PMC3531697 DOI: 10.3748/wjg.v18.i47.7079] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/18/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the adjunct anticancer effect of Astragalus polysaccharides in H22 tumor-bearing mice.
METHODS: To establish a solid tumor model, 5.0 × 106/mL H22 hepatoma cells were inoculated subcutaneously into the right armpit region of Kunming mice (6-12 wk old, 18-22 g). When the tumors reached a size of 100 mm3, the animals were treated as indicated, and the mice were randomly assigned to seven groups (n = 10 each). After ten days of treatment, blood samples were collected from mouse eyes, and serum was harvested by centrifugation. Mice were sacrificed, and the whole body, tumor, spleen and thymus were weighed immediately. The rate of tumor inhibition and organ indexes were calculated. The expression levels of serum cytokines, P-glycoprotein (P-GP) and multidrug resistance (MDR) 1 mRNA in tumor tissues were detected using enzyme-linked immunosorbent assay, Western blotting, and quantitative myeloid-derived suppressor cells reverse transcription-polymerase chain reaction, respectively.
RESULTS: The tumor inhibition rates in the treatment groups of Adriamycin (ADM) + Astragalus polysaccharides (APS) (50 mg/kg), ADM + APS (100 mg/kg), and ADM + APS (200 mg/kg) were significantly higher than in the ADM group (72.88% vs 60.36%, P = 0.013; 73.40% vs 60.36%, P = 0.010; 77.57% vs 60.36%, P = 0.001). The spleen indexes of the above groups were also significantly higher than in the ADM group (0.65 ± 0.22 vs 0.39 ± 0.17, P = 0.023; 0.62 ± 0.34 vs 0.39 ± 0.17, P = 0.022; 0.67 ± 0.20 vs 0.39 ± 0.17, P = 0.012), and the thymus indexes of the ADM + APS (100 mg/kg) and ADM + APS (200 mg/kg) groups were significantly higher than in the ADM group (0.20 ± 0.06 vs 0.13 ± 0.04, P = 0.029; 0.47 ± 0.12 vs 0.13 ± 0.04, P = 0.000). APS was found to exert a synergistic anti-tumor effect with ADM and to alleviate the decrease in the sizes of the spleen and thymus induced by AMD. The expression of interleukin-1α (IL-1α), IL-2, IL-6, and tumor necrosis factor-α (TNF-α) was significantly higher in the ADM + APS (50 mg/kg), ADM + APS (100 mg/kg) and ADM + APS (200 mg/kg) groups than in the ADM group; and IL-10 was significantly lower in the above groups than in the ADM group. APS could increase IL-1α, IL-2, IL-6, and TNF-α expression and decrease IL-10 levels. Compared with the ADM group, APS treatment at a dose of 50-200 mg/kg could down-regulate MDR1 mRNA expression in a dose-dependent manner (0.48 ± 0.13 vs 4.26 ± 1.51, P = 0.000; 0.36 ± 0.03 vs 4.26 ± 1.51, P = 0.000; 0.21 ± 0.04 vs 4.26 ± 1.51, P = 0.000). The expression level of P-GP was significantly lower in the ADM + APS (200 mg/kg) group than in the ADM group (137.35 ± 9.20 mg/kg vs 282.19 ± 20.54 mg/kg, P = 0.023).
CONCLUSION: APS exerts a synergistic anti-tumor effect with ADM in H22 tumor-bearing mice. This may be related to its ability to enhance the expression of IL-1α, IL-2, IL-6, and TNF-α, decrease IL-10, and down-regulate MDR1 mRNA and P-GP expression levels.
Collapse
|
59
|
Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS One 2012; 7:e49193. [PMID: 23145120 PMCID: PMC3493520 DOI: 10.1371/journal.pone.0049193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
CK2 is a pleiotropic protein kinase, which regulates many survival pathways and plays a global anti-apoptotic function. It is highly expressed in tumor cells, and is presently considered a promising therapeutic target. Among the many inhibitors available for this kinase, the recently developed CX-4945 and CX-5011 have proved to be very potent, selective and effective in inducing cell death in tumor cells; CX-4945 has recently entered clinical trials. However, no data are available on the efficacy of these compounds to overcome drug resistance, a major reasons of cancer therapy failure. Here we address this point, by studying their effects in several tumor cell lines, each available as variant R resistant to drug-induced apoptosis, and normal-sensitive variant S. We found that the inhibition of endogenous CK2 was very similar in S and R treated cells, with more than 50% CK2 activity reduction at sub-micromolar concentrations of CX-4945 and CX-5011. A consequent apoptotic response was induced both in S and R variants of each pairs. Moreover, the combined treatment of CX-4945 plus vinblastine was able to sensitize to vinblastine R cells that are otherwise almost insensitive to this conventional antitumor drug. Consistently, doxorubicin accumulation in multidrug resistant (MDR) cells was greatly increased by CX-4945. In summary, we demonstrated that all the R variants are sensitive to CX-4945 and CX-5011; since some of the treated R lines express the extrusion pump Pgp, often responsible of the MDR phenotype, we can also conclude that the two inhibitors can successfully overcome the MDR phenomenon.
Collapse
|
60
|
Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci U S A 2012; 109:16282-7. [PMID: 22988121 PMCID: PMC3479621 DOI: 10.1073/pnas.1202989109] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An attractive strategy to overcome multidrug resistance in cancer chemotherapy is to suppress P-glycoprotein (P-gp), which is a pump overproduced in cancer cells to remove cytotoxic drugs from cells. In the present study, a Ca(2+)-permeable channel TRPC5 was found to be overproduced together with P-gp in adriamycin-resistant breast cancer cell line MCF-7/ADM. Suppressing TRPC5 activity/expression reduced the P-gp induction and caused a remarkable reversal of adriamycin resistance in MCF-7/ADM. In an athymic nude mouse model of adriamycin-resistant human breast tumor, suppressing TRPC5 decreased the growth of tumor xenografts. Nuclear factor of activated T cells isoform c3 (NFATc3) was the transcriptional factor that links the TRPC5 activity to P-gp production. Together, we demonstrated an essential role of TRPC5-NFATc3-P-gp signaling cascade in P-gp induction in drug-resistant cancer cells.
Collapse
|
61
|
Rocco A, Compare D, Liguori E, Cianflone A, Pirozzi G, Tirino V, Bertoni A, Santoriello M, Garbi C, D'Armiento M, Staibano S, Nardone G. MDR1-P-glycoprotein behaves as an oncofetal protein that promotes cell survival in gastric cancer cells. J Transl Med 2012; 92:1407-18. [PMID: 22751348 DOI: 10.1038/labinvest.2012.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
P-glycoprotein (P-gp), traditionally linked to cancer poor prognosis and multidrug resistance, is undetectable in normal gastric mucosa and overexpressed in gastric cancer (GC). We propose that P-gp may be involved in Helicobacter pylori (Hp)-related gastric carcinogenesis by inhibiting apoptosis. Aim of the study was to evaluate the expression of P-gp in fetal stomach and in Hp-related gastric carcinogenesis, the epigenetic control of the multi-drug resistance-1 (MDR1) gene, the localization and interaction between P-gp and Bcl-x(L) and the effect of the selective silencing of P-gp on cell survival. P-gp and Bcl-xl expression was evaluated by immunohistochemistry on 28 spontaneously abortive human fetuses, 66 Hp-negative subjects, 138 Hp-positive chronic gastritis (CG) of whom 28 with intestinal metaplasia (IM) and 45 intestinal type GCs. P-gp/Bcl-x(L) colocalization was investigated by confocal immunofluorescence microscopy and protein-protein interaction by co-immunoprecipitation, in basal conditions and after stress-induced apoptosis, in GC cell lines AGS and MKN-28 and hepatocellular carcinoma cell line Hep-G2. The role of P-gp in controlling apoptosis was evaluated by knocking down its expression with a specific small interfering RNAs in stressed AGS and MKN-28 cell lines. P-gp is expressed in the gastric mucosa of all human fetuses while, it is undetectable in adult normal mucosa and re-expressed in 30/110 Hp-positive non-IM-CG, 28/28 IM-CG and 40/45 GCs. P-gp expression directly correlates with that of Bcl-x(L) and with the promoter hypomethylation of the MDR1 gene. In GC cell lines, P-gp is localized on the plasma membrane and mitochondria where it colocalizes with Bcl-x(L). Co-immunoprecipitation confirms the physical interaction between P-gp and Bcl-x(L) in AGS, MKN-28 and Hep-G2, at both basal level and after stress-induced apoptosis. The selective silencing of P-gp sensitizes GC cells to stress-induced apoptosis. P-gp behaves as an oncofetal protein that, by cross-talking with Bcl-x(L), acts as an anti-apoptotic agent in Hp-related gastric carcinogenesis.
Collapse
Affiliation(s)
- Alba Rocco
- Department of Clinical and Experimental Medicine, Gastroenterology Unit, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Wei G, Yan M, Dong R, Wang D, Zhou X, Chen J, Hao J. Covalent modification of reduced graphene oxide by means of diazonium chemistry and use as a drug-delivery system. Chemistry 2012; 18:14708-16. [PMID: 23018420 DOI: 10.1002/chem.201200843] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/15/2012] [Indexed: 11/11/2022]
Abstract
Under acidic conditions, reduced graphene oxide (rGO) was functionalized with p-aminobenzoic acid, which formed the diazonium ions through the diazotization with a wet-chemical method. Surfactants or stabilizers were not applied during the diazotization. After the functionalized rGO was treated through mild sonication in aqueous solution, these functionalized rGO sheets were less than two layers, which was determined by atomic force microscopy (AFM) imaging. The water solubility of functionalized rGO after the introduction of polyethyleneimine (PEI) was improved significantly; it was followed by covalent binding of folic acid (FA) molecules to the functionalized rGO to allow us to specifically target CBRH7919 cancer cells by using FA as a receptor. The loading and release behaviors of elsinochrome A (EA) and doxorubicin (DOX) on the functionalized rGO sheets were investigated. The EA loading ratio onto rGO-C(6)H(4)-CO-NH-PEI-NH-CO-FA (abbreviated rGO-PEI-FA, the weight ratio of drug loaded onto rGO-PEI-FA) was approximately 45.56 %, and that of DOX was approximately 28.62 %. It was interesting that the drug release from rGO-PEI-FA was pH- and salt-dependent. The results of cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM) assays, as well as cell morphology observations) clearly showed that the concentration of rGO-PEI-FA as the drug-delivery composite should be less than 12.5 mg L(-1). The conjugation of DOX and rGO-PEI-FA can enhance the cancer-cell apoptosis effectively and can also push the cancer cells to the vulnerable G2 phase of the cell cycle, which is most sensitive and susceptible to damage by drugs or radiation.
Collapse
Affiliation(s)
- Guangcheng Wei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
63
|
Wellhöner H, Weiss A, Schulz A, Adermann K, Braitbard O, Bar-Sinai A, Hochman J. Reversing ABCB1-mediated multi-drug resistance from within cells using translocating immune conjugates. J Drug Target 2012; 20:445-52. [PMID: 22577854 DOI: 10.3109/1061186x.2012.685473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multi-drug resistance (MDR) is still a major cause of the eventual failure of chemotherapy in cancer treatment. Different approaches have been taken to render these cells drug sensitive. Here, we attempted sensitizing drug-resistant cells from within, using a translocating immune conjugate approach. To that effect, a monoclonal antibody, C219, directed against the intracellular ATP-binding site of the membrane-anchored MDR transporter ABCB1 [P-glycoprotein (P-gp), MDR1], was conjugated to human immunodeficiency virus [HIV(37-72)Tat] translocator peptide through a disulfide bridge. Fluorescence-labelled IgG-Tat conjugates accumulated in drug resistant Chinese hamster ovary (CHO) cells within less than 20 min. Preincubation with C219-S-S-(37-72)Tat conjugate augmented calcein accumulation in drug-resistant CHO and mouse lymphoma cells, indicating reduction in ABCB1 transporter activity. A thioether conjugate C219-S-(37-72)Tat was ineffective, as were disulfide and thioether conjugates of an irrelevant antibody. Furthermore, in the presence of C219-S-S-(37-72)Tat, drug resistant cells were sensitized to colchicine and doxorubicin. Taken together, these findings demonstrate, as proof of principle, a novel approach for the reversal of MDR from within cells, by delivery of translocating immune conjugates as sensitizing agents towards chemotherapy.
Collapse
Affiliation(s)
- Hans Wellhöner
- Institute of Toxicology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
64
|
Sousa E, Palmeira A, Cordeiro AS, Sarmento B, Ferreira D, Lima RT, Helena Vasconcelos M, Pinto M. Bioactive xanthones with effect on P-glycoprotein and prediction of intestinal absorption. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0203-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Tian QE, De Li H, Yan M, Cai HL, Tan QY, Zhang WY. Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro. Altern Ther Health Med 2012; 12:94. [PMID: 22784390 PMCID: PMC3493361 DOI: 10.1186/1472-6882-12-94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/15/2012] [Indexed: 02/10/2023]
Abstract
Background Astragalus polysaccharides (APS) are active constituents of Astragalus membranaceus. They have been widely studied, especially with respect to their immunopotentiating properties, their ability to counteract the side effects of chemotherapeutic drugs, and their anticancer properties. However, the mechanism by which APS inhibit cancer and the issue of whether that mechanism involves the reversal of multidrug resistance (MDR) is not completely clear. The present paper describes an investigation of the effects of APS on P-glycoprotein function and expression in H22 hepatoma cell lines resistant to Adriamycin (H22/ADM). Methods H22/ADM cell lines were treated with different concentrations of APS and/or the most common chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine. Chemotherapeutic drug sensitivity, P-glycoprotein function and expression, and MDR1 mRNA expression were detected using MTT assay, flow cytometry, Western blotting, and quantitative RT-PCR. Results When used alone, APS had no anti-tumor activity in H22/ADM cells in vitro. However, it can increase the cytotoxicity of certain chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine, in H22/ADM cells. It acts in a dose-dependent manner. Compared to a blank control group, APS increased intracellular Rhodamine-123 retention and decreased P-glycoprotein efflux function in a dose-dependent manner. These factors were assessed 24 h, 48 h, and 72 h after administration. APS down regulated P-glycoprotein and MDR1 mRNA expression in a concentration-dependent manner within a final range of 0.8–500 mg/L and in a time-dependent manner from 24–72 h. Conclusion APS can enhance the chemosensitivity of H22/ADM cells. This may involve the downregulation of MDR1 mRNA expression, inhibition of P-GP efflux pump function, or both, which would decrease the expression of the MDR1 protein.
Collapse
|
66
|
Nguyen TL, Cera MR, Pinto A, Presti LL, Hamel E, Conti P, Gussio R, De Wulf P. Evading Pgp activity in drug-resistant cancer cells: a structural and functional study of antitubulin furan metotica compounds. Mol Cancer Ther 2012; 11:1103-11. [PMID: 22442310 PMCID: PMC3349764 DOI: 10.1158/1535-7163.mct-11-1018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor resistance to antitubulin drugs resulting from P-glycoprotein (Pgp) drug-efflux activity, increased expression of the βIII tubulin isotype, and alterations in the drug-binding sites are major obstacles in cancer therapy. Consequently, novel antitubulin drugs that overcome these challenges are of substantial interest. Here, we study a novel chemotype named furan metotica that localizes to the colchicine-binding site in β-tubulin, inhibits tubulin polymerization, and is not antagonized by Pgp. To elucidate the structure-activity properties of this chiral chemotype, the enantiomers of its most potent member were separated and their absolute configurations determined by X-ray crystallography. Both isomers were active and inhibited all 60 primary cancer cell lines tested at the U.S. National Cancer Institute. They also efficiently killed drug-resistant cancer cells that overexpressed the Pgp drug-efflux pump 10(6)-fold. In vitro, the R-isomer inhibited tubulin polymerization at least 4-fold more potently than the S-isomer, whereas in human cells the difference was 30-fold. Molecular modeling showed that the two isomers bind to β-tubulin in distinct manners: the R-isomer binds in a colchicine-like mode and the S-isomer in a podophyllotoxin-like fashion. In addition, the dynamic binding trajectory and occupancy state of the R-isomer were energetically more favorable then those of the S-isomer, explaining the observed differences in biologic activities. The ability of a racemic drug to assume the binding modes of two prototypical colchicine-site binders represents a novel mechanistic basis for antitubulin activity and paves the way toward a comprehensive design of novel anticancer agents.
Collapse
Affiliation(s)
- Tam Luong Nguyen
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick (MD), USA
| | - Maria Rosaria Cera
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Milan, Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, Milan, Italy
| | - Ernest Hamel
- Screening Technologies Branch, National Cancer Institute at Frederick, National Institutes of Health, Frederick (MD), USA
| | - Paola Conti
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Milan, Italy
| | - Rick Gussio
- Information Technology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick (MD), USA
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
67
|
QIN CH, LI YG, WU J, HE HJ. Curcumin Reverses Adriamycin-resistance of Thermotolerant Hepatocarcinoma Cells by Down-regulating P-glycoprotein and Heat Shock Protein 70*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
68
|
Fowers KD, Kopeček J. Targeting of multidrug-resistant human ovarian carcinoma cells with anti-P-glycoprotein antibody conjugates. Macromol Biosci 2012; 12:502-14. [PMID: 22278817 DOI: 10.1002/mabi.201100350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/20/2011] [Indexed: 11/10/2022]
Abstract
A monoclonal antibody (mAb) to P-glycoprotein (Pgp), UIC2, is used as a targeting moiety for N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer/drug [(meso chlorin e(6) mono(N-2-aminoethylamide) (Mce(6)) or doxorubicin (DOX)] conjugates to investigate their cytotoxicity towards the Pgp-expressing human ovarian carcinoma cell line A2780/AD. The binding, internalization, and subcellular trafficking of a fluorescein labeled UIC2 targeted HPMA copolymer are studied and show localization to the plasma membrane with limited internalization. The specificity of the UIC2-targeted HPMA copolymer/drug conjugates are confirmed using the sensitive cell line A2780 that does not express Pgp.
Collapse
Affiliation(s)
- Kirk D Fowers
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
69
|
Fukuda Y, Schuetz JD. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol 2012; 83:1073-83. [PMID: 22285911 DOI: 10.1016/j.bcp.2011.12.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/30/2011] [Accepted: 12/30/2011] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-mediated uptake step followed by phosphorylation by nucleoside kinases, and defects in uptake or kinase activation were considered the primary mechanisms of nucleoside drug resistance. However, recent studies demonstrate that members of the ABCC transporter subfamily reduce the intracellular concentration of monophosphorylated nucleoside drugs. In addition to the ABCC subfamily members, ABCG2 has been shown to transport nucleoside drugs and nucleoside-monophosphate derivatives of clinically relevant nucleoside drugs such as cytarabine, cladribine, and clofarabine to name a few. This review will discuss ABC transporters and how they interact with other processes affecting the efficacy of nucleoside based drugs.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
70
|
Kiyotani K, Mushiroda T, Nakamura Y, Zembutsu H. Pharmacogenomics of Tamoxifen: Roles of Drug Metabolizing Enzymes and Transporters. Drug Metab Pharmacokinet 2012; 27:122-31. [DOI: 10.2133/dmpk.dmpk-11-rv-084] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Minicells: Versatile vectors for targeted drug or si/shRNA cancer therapy. Curr Opin Biotechnol 2011; 22:909-16. [DOI: 10.1016/j.copbio.2011.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/14/2011] [Indexed: 02/03/2023]
|
72
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|
73
|
Flynn BL, Gill GS, Grobelny DW, Chaplin JH, Paul D, Leske AF, Lavranos TC, Chalmers DK, Charman SA, Kostewicz E, Shackleford DM, Morizzi J, Hamel E, Jung MK, Kremmidiotis G. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J Med Chem 2011; 54:6014-27. [PMID: 21774499 PMCID: PMC3172808 DOI: 10.1021/jm200454y] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A structure-activity relationship (SAR) guided design of novel tubulin polymerization inhibitors has resulted in a series of benzo[b]furans with exceptional potency toward cancer cells and activated endothelial cells. The potency of early lead compounds has been substantially improved through the synergistic effect of introducing a conformational bias and additional hydrogen bond donor to the pharmacophore. Screening of a focused library of potent tubulin polymerization inhibitors for selectivity against cancer cells and activated endothelial cells over quiescent endothelial cells has afforded 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105, 8) as a potent and selective antiproliferative. Because of poor solubility, 8 is administered as its disodium phosphate ester prodrug 9 (BNC105P), which is rapidly cleaved in vivo to return the active 8. 9 exhibits both superior vascular disrupting and tumor growth inhibitory properties compared with the benchmark agent combretastatin A-4 disodium phosphate 5 (CA4P).
Collapse
Affiliation(s)
- Bernard L Flynn
- Bionomics Ltd., 31 Dalgleish Street, Thebarton, South Australia, 5031, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Tsang TY, Tang WY, Chan JYW, Co NN, Au Yeung CL, Yau PL, Kong SK, Fung KP, Kwok TT. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis 2011; 16:524-35. [PMID: 21336967 DOI: 10.1007/s10495-011-0581-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.
Collapse
Affiliation(s)
- Tsun Yee Tsang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Boyerinas B, Park SM, Murmann AE, Gwin K, Montag AG, Zillhardt M, Hua YJ, Lengyel E, Peter ME. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer 2011; 130:1787-97. [PMID: 21618519 PMCID: PMC3230767 DOI: 10.1002/ijc.26190] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 05/02/2011] [Indexed: 01/01/2023]
Abstract
Ovarian cancer patients frequently develop resistance to chemotherapy regiments using Taxol and carboplatin. One of the resistance factors that protects cancer cells from Taxol-based therapy is multidrug resistance 1 (MDR1). micro(mi)RNAs are small noncoding RNAs that negatively regulate protein expression. Members of the let-7 family of miRNAs are downregulated in many human cancers, and low let-7 expression has been correlated with resistance to microtubule targeting drugs (Taxanes), although little is known that would explain this activity. We now provide evidence that, although let-7 is not a universal sensitizer of cancer cells to Taxanes, it affects acquired resistance of cells to this class of drugs by targeting IMP-1, resulting in destabilization of the mRNA of MDR1. Introducing let-7g into ADR-RES cells expressing both IMP-1 and MDR1 reduced expression of both proteins rendering the cells more sensitive to treatment with either Taxol or vinblastine without affecting the sensitivity of the cells to carboplatin, a non-MDR1 substrate. This effect could be reversed by reintroducing IMP-1 into let-7g high/MDR1 low cells causing MDR1 to again become stabilized. Consistently, many relapsed ovarian cancer patients tested before and after chemotherapy were found to downregulate let-7 and to co-upregulate IMP-1 and MDR1, and the increase in the expression levels of both proteins after chemotherapy negatively correlated with disease-free time before recurrence. Our data point at IMP-1 and MDR1 as indicators for response to therapy, and at IMP-1 as a novel therapeutic target for overcoming multidrug resistance of ovarian cancer.
Collapse
Affiliation(s)
- Benjamin Boyerinas
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Jiao P, Zhou H, Otto M, Mu Q, Li L, Su G, Zhang Y, Butch ER, Snyder SE, Jiang G, Yan B. Leading Neuroblastoma Cells To Die by Multiple Premeditated Attacks from a Multifunctionalized Nanoconstruct. J Am Chem Soc 2011; 133:13918-21. [DOI: 10.1021/ja206118a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
77
|
Ehsanian R, Van Waes C, Feller SM. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal 2011; 9:13. [PMID: 21569639 PMCID: PMC3117821 DOI: 10.1186/1478-811x-9-13] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 05/15/2011] [Indexed: 01/30/2023] Open
Abstract
This is an in-depth review of the history of quinacrine as well as its pharmacokinetic properties and established record of safety as an FDA-approved drug. The potential uses of quinacrine as an anti-cancer agent are discussed with particular attention to its actions on nuclear proteins, the arachidonic acid pathway, and multi-drug resistance, as well as its actions on signaling proteins in the cytoplasm. In particular, quinacrine's role on the NF-κB, p53, and AKT pathways are summarized.
Collapse
Affiliation(s)
- Reza Ehsanian
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Stanford University School of Medicine, Stanford, CA, USA
- Cell Signalling Group, Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Headley Way, Oxford OX3 9DS, UK
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Stephan M Feller
- Cell Signalling Group, Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
78
|
Abstract
Dysregulation of c-MYC plays a critical role in the development of many human cancers. New evidence has uncovered a previously unknown mechanism whereby increased abundance of c-MYC can promote poly(ADP-ribose) polymerase (PARP)-dependent DNA repair pathways and induce relative chemoresistance. The adaptor protein BIN1, whose expression is regulated by c-MYC, interacts with PARP1 and inhibits its enzymatic activity. A model has been proposed in which increased abundance of c-MYC indirectly leads to decreased BIN1 expression, in turn leading to increased PARP activity and resistance to DNA-damaging agents. The clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Shridar Ganesan
- Cancer Institute of New Jersey, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
79
|
Narayan S, Carlson EM, Cheng H, Condon K, Du H, Eckley S, Hu Y, Jiang Y, Kumar V, Lewis BM, Saxton P, Schuck E, Seletsky BM, Tendyke K, Zhang H, Zheng W, Littlefield BA, Towle MJ, Yu MJ. Novel second generation analogs of eribulin. Part II: Orally available and active against resistant tumors in vivo. Bioorg Med Chem Lett 2011; 21:1634-8. [DOI: 10.1016/j.bmcl.2011.01.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/20/2011] [Indexed: 02/06/2023]
|
80
|
Teft WA, Mansell SE, Kim RB. Endoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1). Drug Metab Dispos 2011; 39:558-62. [PMID: 21148080 DOI: 10.1124/dmd.110.036160] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Tamoxifen is widely prescribed to patients with estrogen receptor-positive breast cancer, and it is a prodrug that requires bioactivation by cytochrome P450 enzymes CYP2D6 and 3A4 to generate the active metabolite, endoxifen. Large interpatient variability in endoxifen plasma levels has been reported, and polymorphisms in CYP2D6 have been implicated as a major determinant of such variability. However, little is known regarding the role of drug transporters such as P-glycoprotein [multidrug resistance 1 (MDR1), ATP-binding cassette B1 (ABCB1)] to endoxifen disposition and response. Therefore, we determined the ability of P-glycoprotein to transport endoxifen in vitro, using a polarized human P-glycoprotein-overexpressing cell line. Markedly higher transport of endoxifen was observed in the basal-to-apical direction, which was abrogated in the presence of the potent and specific P-glycoprotein inhibitor (2R)-anti-5-{3-[4-(10,11-difluoromethanodibenzo-suber-5-yl)piperazin-1-yl]-2-hydroxypropoxy}quinoline trihydrochloride (LY335979). To validate the in vivo relevance of P-glycoprotein to endoxifen disposition, plasma and tissue concentrations were also determined in Mdr1a-deficient mice after oral administration of endoxifen. Plasma endoxifen levels did not significantly differ between wild-type and Mdr1a-deficient mice. However, brain concentrations of endoxifen were nearly 20-fold higher in Mdr1a-deficient mice compared to wild-type mice. Because P-glycoprotein is highly expressed at the blood-brain barrier and in some breast cancer tumors, variation in expression and function of this transporter may alter central nervous system entry and the attained intracellular concentration in such breast cancer cells and therefore may prove to be of relevance to therapeutic outcome.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Hormonal/metabolism
- Biological Transport, Active/drug effects
- Brain/metabolism
- Cell Line
- Cell Polarity
- Dibenzocycloheptenes/pharmacology
- Estrogen Receptor Modulators/blood
- Estrogen Receptor Modulators/metabolism
- Estrogen Receptor Modulators/pharmacokinetics
- Humans
- Male
- Membrane Transport Modulators/pharmacology
- Mice
- Mice, Transgenic
- Prodrugs/metabolism
- Quinolines/pharmacology
- Recombinant Proteins/metabolism
- Substrate Specificity
- Sus scrofa
- Tamoxifen/analogs & derivatives
- Tamoxifen/blood
- Tamoxifen/metabolism
- Tamoxifen/pharmacokinetics
- Tissue Distribution
Collapse
Affiliation(s)
- Wendy A Teft
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
81
|
Narayan S, Carlson EM, Cheng H, Du H, Hu Y, Jiang Y, Lewis BM, Seletsky BM, Tendyke K, Zhang H, Zheng W, Littlefield BA, Towle MJ, Yu MJ. Novel second generation analogs of eribulin. Part I: Compounds containing a lipophilic C32 side chain overcome P-glycoprotein susceptibility. Bioorg Med Chem Lett 2011; 21:1630-3. [PMID: 21324686 DOI: 10.1016/j.bmcl.2011.01.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 11/29/2022]
Abstract
Eribulin mesylate (Halaven™), a totally synthetic analog of the marine polyether macrolide halichondrin B, has recently been approved in the United States as a treatment for breast cancer. It is also currently under regulatory review in Japan and the European Union. Our continuing medicinal chemistry efforts on this scaffold have focused on oral bioavailability, brain penetration and efficacy against multidrug resistant (MDR) tumors by lowering the susceptibility of these compounds to P-glycoprotein (P-gp)-mediated drug efflux. Replacement of the 1,2-amino alcohol C32 side chain of eribulin with fragments neutral at physiologic pH led to the identification of analogs with significantly lower P-gp susceptibility. The analogs maintained low- to sub-nM potency in vitro against both sensitive and MDR cell lines. Within this series, increasing lipophilicity generally led to decreased P-gp susceptibility. In addition to potency in cell culture, these compounds showed in vivo activity in mouse xenograft models.
Collapse
Affiliation(s)
- Sridhar Narayan
- Eisai Product Creation Systems, Eisai Inc., Andover, MA 01810, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Andorfer P, Rotheneder H. EAPP: gatekeeper at the crossroad of apoptosis and p21-mediated cell-cycle arrest. Oncogene 2011; 30:2679-90. [PMID: 21258403 PMCID: PMC3114185 DOI: 10.1038/onc.2010.639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We previously identified and characterized E2F-associated phospho-protein (EAPP), a nuclear phosphoprotein that interacts with the activating members of the E2F transcription factor family. EAPP levels are frequently elevated in transformed human cells. To examine the biological relevance of EAPP, we studied its properties in stressed and unstressed cells. Overexpression of EAPP in U2OS cells increased the fraction of G1 cells and lead to heightened resistance against DNA damage- or E2F1-induced apoptosis in a p21-dependent manner. EAPP itself becomes upregulated in confluent cells and after DNA damage and stimulates the expression of p21 independently of p53. It binds to the p21 promoter and seems to be required for the assembly of the transcription initiation complex. RNAi-mediated knockdown of EAPP expression brought about increased sensitivity towards DNA damage and resulted in apoptosis even in the absence of stress. Our results indicate that the level of EAPP is critical for cellular homeostasis. Too much of it results in G1 arrest and resistance to apoptosis, which, paradoxically, might favor cellular transformation. Too little EAPP seems to retard the expression not only of the p21 gene, but also of a number of other genes and ultimately results in apoptosis.
Collapse
Affiliation(s)
- P Andorfer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
83
|
Abstract
We have developed an instrument based on a flow cytometer platform that is capable of tracking individual, suspended cells over extended time periods. The instrument repeatedly moves in a capillary the same volume segment of fluid containing tens to hundreds of suspended cells through the focal point of a laser. Individual cells are then tracked based on the timing of when they cross the laser, and cell properties are measured as in a conventional flow cytometer. Because cells are repeatedly measured the single-cell rates of change can be determined. The developed instrumentation was applied to measure the variability of ABC transporter activity in a population of human cancer cells and the temperature dependence of constitutively expressed Gfp in yeast. A wide range of transport rates can be observed in the cancer cell population while the single-cell Gfp fluorescence in yeast shows pronounced oscillations in response to temperature shifts. These observations are not detectable at the population level. Therefore, such measurements are useful for investigating cell function as they reveal how variable properties of single cells change over time.
Collapse
Affiliation(s)
- Greg Sitton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0312, USA
| | | |
Collapse
|
84
|
Alvarez-Lorenzo C, Rey-Rico A, Brea J, Loza MI, Concheiro A, Sosnik A. Inhibition of P-glycoprotein pumps by PEO–PPO amphiphiles: branched versus linear derivatives. Nanomedicine (Lond) 2010; 5:1371-83. [DOI: 10.2217/nnm.10.53] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inhibition of the activity of efflux transporters may relevantly improve the chemotherapy of cancer and infectious diseases. Aim: To explore the ability of poloxamines (Tetronic®, X-shaped structure with a central ethylendiamine group and four branches of poly[ethylene oxide]–poly[propylene oxide] [PEO–PPO]) to inhibit the activity of P-glycoprotein (P-gp) on Caco-2 cell monolayers and to elucidate the incidence of the molecular architecture of PEO–PPO block copolymers on the intracellular accumulation of a relevant substrate, doxorubicin, by comparison with poloxamers (Pluronic®, linear triblock copolymers), well-known inhibitors of this efflux transporter. Methods: Both pristine and N-methylated poloxamines displaying a wide range of molecular weights and EO/PO ratios were tested regarding cytocompatibility and accumulation of doxorubicin in Caco-2 monolayers. Verapamil was used as a control. Results: The most active anti-P-gp poloxamines (which enhanced two- to three-fold doxorubicin accumulation compared with verapamil) resulted to be pristine medium-to-high hydrophobic T304, T904, T1301, T901 and T150R1. A notable dependence of the anti-P-gp activity on the copolymer concentration was found. A joint diagram of the inhibitory activity of poloxamers and poloxamines as a function of the effective length of the PPO block is proposed. Conclusion: The anti-P-gp activity is maxima for block copolymers possessing a low-to-medium hydrophilic–lipophilic balance and an ‘effective number’ of PO units ranging from 30 to 50.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
- Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Ana Rey-Rico
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
- Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Jose Brea
- Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
- Departamento de Farmacología, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Maria Isabel Loza
- Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
- Departamento de Farmacología, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
- Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Alejandro Sosnik
- The Group of Biomaterials & Nanotechnologies for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Argentina; Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, 956 Junín St., 6th Floor, Buenos Aires CP1113, Argentina
- National Science Research Council (CONICET), 1113-Buenos Aires, Argentina
| |
Collapse
|
85
|
Krasznai ZT, Tóth A, Mikecz P, Fodor Z, Szabó G, Galuska L, Hernádi Z, Goda K. Pgp inhibition by UIC2 antibody can be followed in vitro by using tumor-diagnostic radiotracers, 99mTc-MIBI and 18FDG. Eur J Pharm Sci 2010; 41:665-9. [PMID: 20869436 DOI: 10.1016/j.ejps.2010.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 11/30/2022]
Abstract
P-glycoprotein (Pgp, ABCB1) is one of the active efflux pumps that are able to extrude a large variety of chemotherapeutic drugs from the cells, causing the phenomenon of multidrug resistance. It has been shown earlier that the combined application of a class of Pgp modulators (e.g. cyclosporine A and SDZ PSC 833) used at low concentrations and UIC2 antibody is a novel, specific, and effective way of blocking Pgp function (Goda et al., 2007). In the present work we study the UIC2 antibody mediated Pgp inhibition in more detail measuring the accumulation of tumor diagnostic radiotracers, 2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) and [(99m)Tc]hexakis-2-methoxybutyl isonitrile ((99m)Tc-MIBI), into Pgp(+) (A2780AD) and Pgp(-) (A2780) human ovarian carcinoma cells. Co-incubation of cells with UIC2 and cyclosporine A (CSA, 2μM) increased the binding of UIC2 more than 3-fold and reverted the rhodamine 123 (R123), daunorubicin (DNR) and (99m)Tc-MIBI accumulation of the Pgp(+) 2780AD cells to approx. the same level as observed in Pgp(-) cells. Similarly, 50μM paclitaxel (Pacl) increased UIC2 binding, and consequently reinstated the uptake of R123, DNR and (99m)Tc-MIBI into the Pgp(+) cells. Blocking Pgp by combined treatments with CSA+UIC2 or Pacl+UIC2 also decreased the glucose metabolic rate of the A2780AD Pgp(+) cells measured in (18)FDG accumulation experiments suggesting that the maintenance of Pgp activity requires a considerable amount of energy. Similar treatments of the A2780 Pgp(-) cells did not result in significant change in the R123, DNR, (99m)Tc-MIBI and (18)FDG accumulation demonstrating that the above effects are Pgp-specific. Thus, combined treatment with the UIC2 antibody and Pgp modulators can completely block the function of Pgp in human ovarian carcinoma cells and this effect can be followed in vitro by using tumor-diagnostic radiotracers, (99m)Tc-MIBI and (18)FDG.
Collapse
Affiliation(s)
- Zoárd Tibor Krasznai
- Department of Obstetrics and Gynecology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98. H-4032, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Tan DSW, Gerlinger M, Teh BT, Swanton C. Anti-cancer drug resistance: Understanding the mechanisms through the use of integrative genomics and functional RNA interference. Eur J Cancer 2010; 46:2166-77. [DOI: 10.1016/j.ejca.2010.03.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/18/2010] [Indexed: 02/04/2023]
|
87
|
Zhao L, Jin X, Xu Y, Guo Y, Liang R, Guo Z, Chen T, Sun Y, Ding X. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:98. [PMID: 20642825 PMCID: PMC2912836 DOI: 10.1186/1756-9966-29-98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The novel gene HA117 is a multidrug resistance (MDR) gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1) in breast cancer cell line 4T1. METHODS Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP) (Ad-GFP-HA117), the MDR1 and GFP (Ad-GFP-MDR1) or GFP (Ad-GFP) was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI) were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR). Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp) but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR) efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT) assay. RESULTS The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM), vincristine (VCR), paclitaxel (Taxol) and bleomycin (BLM) increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol) (P < 0.05), while the difference between them for P-gp non-substrate (BLM) was statistically significant (P < 0.05). DNR efflux assay confirmed that the multidrug resistance mechanism of HA117 might not be similar to that of MDR1. CONCLUSIONS These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR mechanism of the HA117 gene may not be similar to that of MDR1.
Collapse
Affiliation(s)
- Lihua Zhao
- Laboratory of Oncology, Affiliated Children's Hospital, Chongqing Medical University, No,136, Zhongshan 2nd Road, Yuzhong District, Chongqing 86 400014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Zhao L, Sun Y, Li X, Jin X, Xu Y, Guo Z, Liang R, Ding X, Chen T, Wang S. Multidrug resistance strength of the novel multidrug resistance gene HA117: compared with MRP1. Med Oncol 2010; 28:1188-95. [PMID: 20635168 DOI: 10.1007/s12032-010-9624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 07/05/2010] [Indexed: 11/29/2022]
Abstract
The novel gene HA117 is a multidrug resistance (MDR) gene in all-trans retinoic acid resistance HL-60 cells. The transduction of adenovirus vectors encoding HA117 conferred breast cancer cell line 4T1 MDR not only to MRP1 substrate drugs but also to MRP1 non-substrate drugs and the MDR strength of HA117 was similar to that of multidrug resistance-associated protein-1 (MRP1) for MRP1 substrate, but HA117 had no daunorubicin-excretion function.
Collapse
Affiliation(s)
- Lihua Zhao
- Laboratory of Oncology, Department of Surgery, Affiliated Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road Yuzhong District, Chongqing, 86 400014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Choong E, Dobrinas M, Carrupt PA, Eap CB. The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution. Expert Opin Drug Metab Toxicol 2010; 6:953-65. [DOI: 10.1517/17425251003789394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
90
|
Zhang F, Zhang L, Zhang B, Wei X, Yang Y, Qi RZ, Ying G, Zhang N, Niu R. Anxa2 plays a critical role in enhanced invasiveness of the multidrug resistant human breast cancer cells. J Proteome Res 2010; 8:5041-7. [PMID: 19764771 DOI: 10.1021/pr900461c] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Multidrug resistance (MDR) is the major cause of failure in cancer chemotherapy. Recent reports even suggest that MDR is associated with elevated invasion and metastasis of tumor cells. In the current study, we used a proteomic approach to identify genes that play an important role in MDR induced cell migration. 2D-PAGE and MALDI-TOF/MS-based proteomics approach were used to separate and identify differentially expressed proteins between MCF-7 and MCF-7/ADR, a p-glycoprotein-overexpressing adriamycin-resistance breast cancer cell line. Annexin a2 (Anxa2) was identified as highly expressed in MCF-7/ADR cells, but not in MCF-7 cells. Small interference RNA-mediated gene suppression demonstrated that Anxa2 was required for enhanced cell proliferation and invasion of the MCF-7/ADR cells. Down-regulation of Anxa2 alone was not sufficient to revert the cell sensitivity to adriamycin, suggesting that Anxa2 was not required for MDR phenotype. Taken together, our results showed that expression of Anxa2 is enhanced when cancer cells, MCF-7, acquired drug resistance and it plays an essential role in MDR-induced tumor invasion.
Collapse
Affiliation(s)
- Fei Zhang
- Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pharmacophore-Based Screening as a Clue for the Discovery of New P-Glycoprotein Inhibitors. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-13214-8_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|