51
|
A Preliminary Cytotoxicity Study of Fagonia arabica against Breast (MCF-7), Oral (KB-3-1), and Lung Cancer (A-549) Cell Lines: A Study Supported by Molecular Marker Analysis Using Dual Staining Dyes. SEPARATIONS 2023. [DOI: 10.3390/separations10020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: The objective of this research is to present a phytochemical profile of Fagonia arabica and to investigate the cytotoxic potential of its extracts against breast, oral, and lung cancer cell lines using MTT assay and dual staining-based mechanistic analysis. Methods: The progressive extraction of F. arabica was carried out using the Soxhlet extraction technique. The total phenolic and flavonoid content was calculated as part of the phytochemical profiling performed using GCMS and LCMS methods. The MTT assay was utilized to assess the cytotoxicity against normal L929 cells, as well as malignant A549, MCF-7, and KB-3-1cell lines. Results: The phenolic compounds and flavonoids were the two main elements of the F. arabica methanolic extract, with 1323 µg GAE/g of dry weight and 523.07 µg QE/g of dry weight, respectively. The presence of the functional phytochemicals was verified by GCMS and LCMS analyses. Toxicity testing on the L929 cell line found that the F. arabica methanol extract was the least harmful, with the highest IC50 (296.11 µg/mL). The MTT assay for cell viability against MCF-7 and KB-3-1 yielded significant results, with IC50 values of 135.02 µg/mL and 195.21 µg/mL, respectively. The aqueous extract exhibited significant cytotoxicity against the A549 cell lines (IC50 116.06 µg/mL). The molecular marker analyses using dual staining revealed that the methanolic extract successfully triggered apoptosis in the different cancer cells tested. Conclusion: The present data suggest that the methanol extract of F. arabica has substantial cytotoxic action against lung, breast, and oral cancer cell lines. Thus, F. Arabica would be a promising source of anticancer medicines, warranting more research to identify the lead molecules with anticancer properties.
Collapse
|
52
|
Ali M, Wani SUD, Salahuddin M, S.N. M, K M, Dey T, Zargar MI, Singh J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023; 9:e13684. [PMID: 36865478 PMCID: PMC9971193 DOI: 10.1016/j.heliyon.2023.e13684] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Bioactive compounds are crucial for an extensive range of therapeutic uses, and some exhibit anticancer activity. Scientists advocate that phytochemicals modulate autophagy and apoptosis, involved in the underlying pathobiology of cancer development and regulation. The pharmacological aiming of the autophagy-apoptosis signaling pathway using phytocompounds hence offers an auspicious method that is complementary to conventional cancer chemotherapy. The current review aims to explore the molecular level of the autophagic-apoptotic pathway to know its implication in the pathobiology of cancer and explore the essential cellular process as a druggable anticancer target and therapeutic emergence of naturally derived phytocompound-based anticancer agents. The data in the review were collected from scientific databases such as Google search, Web of Science, PubMed, Scopus, Medline, and Clinical Trials. With a broad outlook, we investigated their cutting-edge scientifically revealed and/or searched pharmacologic effects, a novel mechanism of action, and molecular signaling pathway of phytochemicals in cancer therapy. In this review, the evidence is focused on molecular pharmacology, specifically caspase, Nrf2, NF-kB, autophagic-apoptotic pathway, and several mechanisms to understand their role in cancer biology.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Md Salahuddin
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bangalore, 560027, India
| | - Manjula S.N.
- Department of Pharmacology, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Mruthunjaya K
- Department of Pharmacognosy, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Jagadeesh Singh
- Department of Pharmacognosy, East Point College of Pharmacy, Bangalore, 560049, India
| |
Collapse
|
53
|
Li J, Wang L, Sun Y, Wang Z, Qian Y, Duraisamy V, Antary TMA. Zerumbone-induced reactive oxygen species-mediated oxidative stress re-sensitizes breast cancer cells to paclitaxel. Biotechnol Appl Biochem 2023; 70:28-37. [PMID: 35240000 DOI: 10.1002/bab.2326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
Chemotherapy is an effective approach for cancer therapy when plant-derived sensitizers are combined with chemotherapeutics. Zerumbone, a natural phytochemical, has been documented to have various pharmacological roles. Here, we evaluated the chemosensitization potential of zerumbone in a breast cancer cell line in vitro. Zerumbone-induced cytotoxicity in MCF-7 cells was assessed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT)-based metabolic analysis. Reactive oxygen species (ROS)-mediated mitochondrial membrane alterations, DNA damage, and apoptotic morphological changes were measured by fluorescence microscopy methods. A biochemical assay was employed to analyze Thiobarbituric acid reactive substances (TBARS) and antioxidant levels. Apoptotic marker expression levels were investigated by immunoblotting. MTT assay revealed that zerumbone significantly enhanced paclitaxel (PTX)-induced cell death in breast cancer cells in a concentration-dependent manner. Furthermore, our study demonstrated that zerumbone (15 μM) significantly enhanced ROS when combined with PTX (1 μM) treatment. Additionally, we observed that zerumbone enhanced the impairment of mitochondrial membrane potential and oxidative DNA damage, thereby inducing apoptosis in combination with PTX. Western blot analysis indicated that zerumbone significantly upregulated BAX, caspase-7, and caspase-9 expression and decreased BCL-2 expression, thereby inducing proapoptotic protein-mediated cell death combined with PTX. The prooxidant properties of zerumbone potentially resensitize breast cancer cells to PTX by enhancing intracellular ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Jutao Li
- Breast and Thyroid Surgery Ward 1, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Lingying Wang
- Department of Thoracic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Yuxin Sun
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Zhe Wang
- Department of Pharmacy Medical Guarantee Center, PLA General Hospital in The Fourth Medical Center, Beijing, China
| | - Ye Qian
- Department of Oncology, Affiliated Hai 'an Hospital of Nantong University, Haian, Jiangsu, 226600, China
| | | | - Tawfiq M Al Antary
- Pesticide and Economic Entomology, Faculty of Agriculture, the University of Jordan, Amman, Jordan
| |
Collapse
|
54
|
Erdogan MK, Gundogdu R, Yapar Y, Gecibesler IH, Kirici M, Behcet L, Tüzün B, Taskin-Tok T, Taslimi P. In vitro anticancer, antioxidant and enzyme inhibitory potentials of endemic Cephalaria elazigensis var. purpurea with in silico studies. J Biomol Struct Dyn 2023; 41:11832-11844. [PMID: 36637391 DOI: 10.1080/07391102.2022.2163700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023]
Abstract
In this study, the therapeutic potential and phytochemical composition of ethanolic extract of Cephalaria elazigensis var. purpurea (CE), an endemic species, were investigated. For this purpose, the antiproliferative effect of CE on the MCF-7 human breast cancer cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and its effectiveness on colony formation and cell migration was analyzed with clonogenic assay and wound healing assay, respectively. In addition, the cell death detection ELISA (CDDE) assay was conducted to determine the pro-apoptotic capacity of CE. The IC50 value of the CE was determined as 324.2 ± 14.7 µg/mL. Furthermore, upon 1000 µg/mL CE treatment, there was 4.96-fold increase in the population of cells undergoing apoptosis compared to the untreated control cells. The antioxidant activity tests were performed by DPPH free radical, ABTS cation radical, ferric-ion reducing power (FRAP) and ferrous-ion chelating power (FCAP) assays. Antioxidant activity values for the DPPH, ABTS and FRAP assays were found to be 125.6 ± 6.3, 34.09 ± 0.1 and 123.4 ± 4.2 µmol TE/mg DE, respectively. We further determined the effect of CE ethanolic extract against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. CE plays an effective inhibitory role in AChE and BuChE (AChE: IC50: 10.54 µg/mL, BuChE: IC50: 6.84 µg/mL) respectively. Further, molecular docking stuy was conducted to understand the nature of the all compound against AChE an BChE. It is revealed that α-Linolenic acid shows lowest binding energy (-7.90 kcal/mol) towards AChE, on the other side, Linoleic acid shows good binding affinity (-7.40 kcal/mol) for BChE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Turkiye
| | - Ramazan Gundogdu
- Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, Turkiye
| | - Yakup Yapar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Turkiye
| | - Ibrahim Halil Gecibesler
- Department of Occupational Health and Safety, Faculty of Health Science, Bingol University, Bingol, Turkiye
| | - Mahinur Kirici
- Department of Chemistry, Faculty of Arts and Sciences, Bingol University, Bingol, Turkiye
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Turkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkiye
- Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkiye
| |
Collapse
|
55
|
Alrawaiq NS, Atia A, Abdullah A. Effect of Administration of an Equal Dose of Selected Dietary Chemicals on Nrf2 Nuclear Translocation in the Mouse Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9291417. [PMID: 37077659 PMCID: PMC10110381 DOI: 10.1155/2023/9291417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 04/21/2023]
Abstract
Certain dietary chemicals influenced the expression of chemopreventive genes through the Nrf2-Keap1 pathway. However, the difference in Nrf2 activation potency of these chemicals is not well studied. This study is aimed at determining the difference in the potency of liver Nrf2 nuclear translocation induced by the administration of equal doses of selected dietary chemicals in mice. Male ICR white mice were administered 50 mg/kg of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol for 14 days. On day 15, the animals were sacrificed, and their livers were isolated. Liver nuclear extracts were prepared, and Nrf2 nuclear translocation was detected through Western blotting. To determine the implication of the Nrf2 nuclear translocation on the expression levels of several Nrf2-regulated genes, liver RNA was extracted for qPCR assay. Equal doses of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol significantly induced the nuclear translocation of Nrf2 with different intensities and subsequently increased the expression of Nrf2-regulated genes with an almost similar pattern as the Nrf2 nuclear translocation intensities (sulforaphane > butylated hydroxyanisole = indole-3-carbinol > curcumin > quercetin). In conclusion, sulforaphane is the most potent dietary chemical that induces the Nrf2 translocation into the nuclear fraction in the mouse liver.
Collapse
Affiliation(s)
- Nadia Salem Alrawaiq
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Sebha University, Sebha, Libya
| | - Ahmed Atia
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Anaesthesia and Intensive Care, Faculty of Medical Technology, Tripoli University, Tripoli, Libya
| | - Azman Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
56
|
Singh A, Prakash A, Choudhary R. Bioactive Components Having Antimicrobial and Anticancerous Properties: A Review. BIOACTIVE COMPONENTS 2023:271-299. [DOI: 10.1007/978-981-19-2366-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
57
|
Nayak D, Chopra H, Chakrabartty I, Saravanan M, Barabadi H, Mohanta YK. Opportunities and challenges for bioengineered metallic nanoparticles as future nanomedicine. BIOENGINEERED NANOMATERIALS FOR WOUND HEALING AND INFECTION CONTROL 2023:517-540. [DOI: 10.1016/b978-0-323-95376-4.00012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
58
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
59
|
Sachdeva A, Dhawan D, Jain GK, Yerer MB, Collignon TE, Tewari D, Bishayee A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers (Basel) 2022; 15:cancers15010268. [PMID: 36612264 PMCID: PMC9818473 DOI: 10.3390/cancers15010268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Oral cancer is emerging as a major cause of mortality globally. Oral cancer occupies a significant proportion of the head and neck, including the cheeks, tongue, and oral cavity. Conventional methods in the treatment of cancer involve surgery, radiotherapy, and immunotherapy, and these have not proven to completely eradicate cancerous cells, may lead to the reoccurrence of oral cancer, and possess numerous adverse side effects. Advancements in novel drug delivery approaches have gained popularity in cancer management with an increase in the number of cases associated with oral cancer. Natural products are potent sources for drug discovery, especially for anticancer drugs. Natural product delivery has major challenges due to its low solubility, poor absorption, inappropriate size, instability, poor permeation, and first-pass metabolism. Therefore, it is of prime importance to investigate novel treatment approaches for the delivery of bioactive natural products. Nanotechnology is an advanced method of delivering cancer therapy with minimal damage to normal cells while targeting cancer cells. Therefore, the present review elaborates on the advancements in novel strategies for natural product delivery that lead to the significant enhancement of bioavailability, in vivo activity, and fewer adverse events for the prevention and treatment of oral cancer. Various approaches to accomplish the desired results involve size reduction, surface property modification, and polymer attachment, which collectively result in the higher stability of the formulation.
Collapse
Affiliation(s)
- Alisha Sachdeva
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Dimple Dhawan
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K. Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Center for Advanced Formulation Development, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Taylor E. Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Correspondence: or (D.T.); or (A.B.)
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or (D.T.); or (A.B.)
| |
Collapse
|
60
|
Sanghavi A, Srivatsa A, Adiga D, Chopra A, Lobo R, Kabekkodu SP, Gadag S, Nayak U, Sivaraman K, Shah A. Goji berry (Lycium barbarum) inhibits the proliferation, adhesion, and migration of oral cancer cells by inhibiting the ERK, AKT, and CyclinD cell signaling pathways: an in-vitro study. F1000Res 2022; 11:1563. [PMID: 36761830 PMCID: PMC9887205 DOI: 10.12688/f1000research.129250.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Background: Lycium barbarum (L. barbarum), popularly referred to as Goji berry, is a promising herb known for its powerful anti-antioxidant, antibacterial, and anti-inflammatory properties. It is used in traditional Chinese medicine for treating inflammatory and infectious diseases. It has also shown good anti-cancer properties and has been tested against liver, colon, prostate, breast, and cervical cancers. However, no study has yet evaluated the role of goji berries against oral cancer. Hence, the present paper aims to evaluate the anticancer properties of L. barbarum against oral squamous cell carcinoma. Method: Ethanolic extract of L. barbarum (EELB) was tested for its anticancer properties by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, cell proliferation, and scratch wound test. The impact of EELB on the signaling transduction pathways of Extracellular signal-regulated kinase (ERK1/2), protein kinase (AKT1), cyclin D1 and epithelial-mesenchymal transition (EMT) was also assessed by western blot. Results: The results showed that EELB can impede CAL-27 cell growth, proliferation and migration in-vitro. It even reduced the phosphorylation of ERK1/2 and AKT1 with concomitant downregulation of cyclin D1 (CCND1), cadherin 2 (CDH2), and vimentin (VIM) and upregulation of cadherin 1 (CDH1) expression suggesting its anti-proliferative and anti-EMT effects in oral cancer. Conclusion: Goji berry has good antiproliferative and anti-invasive properties. It affects potential EMT markers and signaling transduction pathways involved in oral cancers. Hence goji berry can be tried as a potential anticancer agent to manage oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Amee Sanghavi
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Srivatsa
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Richard Lobo
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shivaprasada Gadag
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashmeet Shah
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
61
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
62
|
El-Sherbiny MM, Elekhtiar RS, El-Hefnawy ME, Mahrous H, Alhayyani S, Al-Goul ST, Orif MI, Tayel AA. Fabrication and assessment of potent anticancer nanoconjugates from chitosan nanoparticles, curcumin, and eugenol. Front Bioeng Biotechnol 2022; 10:1030936. [PMID: 36568301 PMCID: PMC9773392 DOI: 10.3389/fbioe.2022.1030936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
In cancer management and control, the most challenging difficulties are the complications resulting from customized therapies. The constitution of bioactive anticancer nanoconjugates from natural derivatives, e.g., chitosan (Ct), curcumin (Cur), and eugenol (Eug), was investigated for potential alternatives to cancer cells' treatment. Ct was extracted from Erugosquilla massavensis (mantis shrimp); then, Ct nanoparticles (NCt) was fabricated and loaded with Cur and/or Eug using crosslinking emulsion/ionic-gelation protocol and evaluated as anticancer composites against CaCo2 "colorectal adenocarcinoma" and MCF7 "breast adenocarcinoma" cells. Ct had 42.6 kDa molecular weight and 90.7% deacetylation percentage. The conjugation of fabricated molecules/composites and their interactions were validated via infrared analysis. The generated nanoparticles (NCt, NCt/Cur, NCt/Eug, and NCt/Cur/Eug composites) had mean particle size diameters of 268.5, 314.9, 296.4, and 364.7 nm, respectively; the entire nanoparticles carried positive charges nearby ≥30 mV. The scanning imaging of synthesized nanoconjugates (NCt/Cur, NCt/Eug, and NCt/Cur/Eug) emphasized their homogenous distributions and spherical shapes. The cytotoxic assessments of composited nanoconjugates using the MTT assay, toward CaCo2 and MCF7 cells, revealed elevated anti-proliferative and dose-dependent activities of all nanocomposites against treated cells. The combined nanocomposites (NCt/Eug/Cur) emphasized the highest activity against CaCo2 cells (IC50 = 11.13 μg/ml), followed by Cur/Eug then NCt/Cur. The exposure of CaCo2 cells to the nanocomposites exhibited serious DNA damages and fragmentation in exposed cancerous cells using the comet assay; the NCt/Eug/Cur nanocomposite was the most forceful with 9.54 nm tail length and 77.94 tail moment. The anticancer effectuality of innovatively combined NCt/Cur/Eug nanocomposites is greatly recommended for such biosafe, natural, biocompatible, and powerful anticancer materials, especially for combating colorectal adenocarcinoma cells, with elevated applicability, efficiency, and biosafety.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| |
Collapse
|
63
|
Dhakal R, Dihingia A, Ahmed RS, Gupta DD, Sahu RK, Dutta P, Bharali P, Manna P, Sastry GN, Kalita J. Prophylactic and therapeutic potential of active phytoconstituents from
Amomum subulatum
Roxb. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Richa Dhakal
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Anjum Dihingia
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
| | - Ruksana Sultana Ahmed
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Dipanneeta Das Gupta
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Ravi Kumar Sahu
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Prachurjya Dutta
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
| | - Pankaj Bharali
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Prasenjit Manna
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - G. Narahari Sastry
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Jatin Kalita
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
64
|
Sah DK, Khoi PN, Li S, Arjunan A, Jeong JU, Jung YD. (-)-Epigallocatechin-3-Gallate Prevents IL-1β-Induced uPAR Expression and Invasiveness via the Suppression of NF-κB and AP-1 in Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:14008. [PMID: 36430487 PMCID: PMC9697952 DOI: 10.3390/ijms232214008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), a primary green tea polyphenol, has powerful iron scavengers, belongs to the family of flavonoids with antioxidant properties, and can be used to prevent cancer. Urokinase-type plasminogen activator receptors (uPARs) are glycosylphosphatidylinositol (GPI)-anchored cell membrane receptors that have crucial roles in cell invasion and metastasis of several cancers including bladder cancer. The mechanism of action of EGCG on uPAR expression has not been reported clearly yet. In this study, we investigated the effect of EGCG on interleukin (IL)-1β-induced cell invasion and uPAR activity in T24 human bladder cancer cells. Interestingly, nuclear factor (NF)-κB and activator protein (AP)-1 transcription factors were critically required for IL-1β-induced high uPAR expression, and EGCG suppressed the transcriptional activity of both the ERK1/2 and JNK signaling pathways with the AP-1 subunit c-Jun. EGCG blocked the IL-1β-stimulated reactive oxygen species (ROS) production, in turn suppressing NF-κB signaling and anti-invasion effects by inhibiting uPAR expression. These results suggest that EGCG may exert at least part of its anticancer effect by controlling uPAR expression through the suppression of ERK1/2, JNK, AP-1, and NF-κB.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Pham Ngoc Khoi
- Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Shinan Li
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| |
Collapse
|
65
|
Al-Rimawi F, Imtara H, Khalid M, Salah Z, Parvez MK, Saleh A, Al kamaly O, Shawki Dahu C. Assessment of Antimicrobial, Anticancer, and Antioxidant Activity of Verthimia iphionoides Plant Extract. Processes (Basel) 2022; 10:2375. [DOI: 10.3390/pr10112375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Verthimia iphionoides extract from Palestine was tested in vitro for its antioxidant, antibacterial, and anticancer activities. Total phenolic content (TPC) and total flavonoid content (TFC) measurements were made concurrently. By using FRAP and DPPH methods, the antioxidant activity were measured spectrophotometrically. By using HPLC-PDA, phenolic and flavonoid compounds of the extract were determined. Results showed strong antioxidant activity of the plant extract revealed by inhibition of stable free radicals (DPPH test) and strong reducing ability (FRAP test). According to spectrophotometric methods for total phenolic compounds and total flavonoids content, the extracts were also found to be rich in polyphenolic compounds and flavonoids. Verthimia iphionoides extract had high antibacterial activity against three bacterial strains (Escherichia coli, Staphylococcus aureus, and Streptococcus aureus), with inhibition zone values of 14 mm, 25 mm, and 27 mm, respectively. Bioactivities were primarily attributed to plants’ abundant phenol-based chemical composition. Additionally, the extract was found to be abundant in phenolic and flavonoids, which improved its reducing activity and capacity to scavenge free radicals. Plant extracts were subjected to HPLC analysis, which identified different flavonoids and phenolic compounds in the extracts.
Collapse
Affiliation(s)
- Fuad Al-Rimawi
- Chemistry Department, Faculty of Science and Technology, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, Jenin P.O. Box 240, Palestine
| | - Mahmoud Khalid
- Al Quds-Bard College, Al-Quds University, Abu Dies, Jerusalem P.O. Box 20002, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College, Al-Quds University, Abu Dies, Jerusalem P.O. Box 20002, Palestine
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Christina Shawki Dahu
- Al Quds-Bard College, Al-Quds University, Abu Dies, Jerusalem P.O. Box 20002, Palestine
| |
Collapse
|
66
|
Liu JF, Chang TM, Chen PH, Lin JSW, Tsai YJ, Wu HM, Lee CJ. Naringenin induces endoplasmic reticulum stress-mediated cell apoptosis and autophagy in human oral squamous cell carcinoma cells. J Food Biochem 2022; 46:e14221. [PMID: 35596593 DOI: 10.1111/jfbc.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Human oral squamous cell carcinoma (OSCC) has been one of the most common oral cancers owing to high percentage of betel nuts chewers, smokers, and alcohol consumption. With current treatment strategies in OSCC, more than half patients relapse and develop distant metastases with poor prognosis. To overcome the incident, OSCC poses a challenge in current therapies and treatments. Naringenin, a natural flavonoid, has been noted for antitumor effects on various types of cancers; however, the effects of naringenin on OSCC remain bias. In this study, naringenin demonstrated the potential multifunction in human OSCC cells not only leading to cell apoptosis, but also alternating the general function of autophagy, serving as pro-survival mechanism by inducing the endoplasmic reticulum (ER) stress signaling through intracellular reactive oxygen species (ROS) production. In the process of programmed cell death, naringenin induced apoptotic signaling through caspase-cascade, mitochondrial dysfunction, and ER stress by aberrance of Ca2+ release. In contrast, under the presence of naringenin, the pro-survival has been altered into pro-death to activate the caspases-mediated apoptosis achieving cell death. The cross-function of apoptosis and autophagy has demonstrated the effect of naringenin-induced intracellular ROS activity in OSCC cells. Therefore, this study found that the effect of naringenin induces intracellular ROS to trigger programmed cell death and ER stress through the mechanisms of apoptosis and autophagy in human oral squamous carcinoma. PRACTICAL APPLICATIONS: This study revealed that naringenin debilitated the OSCC cell viability via the intracellular ROS production, ER stress, and autophagy, leading to cell apoptosis. Based on these studies and findings, naringenin provided an antitumor effect as a novel natural compound to improve the current therapies in OSCC.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Han Chen
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jaster Szu-Wei Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Hsing-Mei Wu
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
67
|
The antineoplastic potential of crotoxin isolated from Crotalus durissus terrificus snake venom on oral squamous cell carcinoma. Toxicon 2022; 221:106965. [DOI: 10.1016/j.toxicon.2022.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
68
|
Anticancer Properties of Plectranthus ornatus-Derived Phytochemicals Inducing Apoptosis via Mitochondrial Pathway. Int J Mol Sci 2022; 23:ijms231911653. [PMID: 36232954 PMCID: PMC9569850 DOI: 10.3390/ijms231911653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Since cancer treatment by radio- and chemotherapy has been linked to safety concerns, there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants represent promising candidates. The current study investigates the anticancer features of halimane (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7 activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced MMP (ΔΨm) and mitochondrial copy numbers. They also changed the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in in vivo test for the compounds tested. The potential mechanism of action may have been associated with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway; however, further in vivo research is needed to understand the mechanisms of action and potential of these compounds.
Collapse
|
69
|
Abd El-Hafeez AA, Marzouk HMM, Abdelhamid MAA, Khalifa HO, Hasanin THA, Habib AGK, Abdelwahed FM, Barakat FM, Bastawy EM, Abdelghani EMB, Hosoi T, Ozawa K, Aref AM, Fujimura T, Ibrahim ARN, Abdelmoniem ASO, Elghazawy H, Ghosh P, Kawamoto S, Pack SP. Anti-cancer Effect of Hyoscyamus muticus Extract via Its Activation of Fas/FasL-ASK1-p38 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Emadi SA, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. A review of therapeutic potentials of milk thistle ( Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1166-1176. [PMID: 36311193 PMCID: PMC9588316 DOI: 10.22038/ijbms.2022.63200.13961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
For more than 2000 years, Silybum marianum L. (milk thistle) has been used for treating different complications such as jaundice, hepatitis, and cancers. It has also been shown that silymarin, a flavonolignan extract of the plant, demonstrates chemopreventive effects against cancers. This patent review presents and discusses recent patents concerning the anticancer effects of S. marianum and silymarin. The data were gathered by searching an extensive literature review conducted in Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent. Milk thistle and silymarin have been used in a variety of medical, therapeutic, and pharmaceutical fields, according to a large number of documents and patents. Milk thistle and silymarin have been used as complementary treatments for cancers such as skin, prostate, and colorectal cancers, as well as hepatoprotective agents. Silymarin exerts a chemopreventive effect on reactivating cell death pathways by modulation of the antiapoptotic proteins and synergizing with agonists of death domain receptors. Based on the results of these patents, silymarin could be beneficial to oncology patients, especially for the treatment of the side effects of anticancer chemotherapeutics. Following the human propensity to use phytocompounds rather than medicines based on chemical constituents, special attention must be paid to tie the value of milk thistle and silymarin from basic science to clinical applications.
Collapse
Affiliation(s)
- Seyyed Amir Emadi
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Ghasemzadeh Rahbardar
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding authors: Soghra Mehri. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ; Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding authors: Soghra Mehri. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ; Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
71
|
Kiernozek E, Maslak P, Kozlowska E, Jarzyna I, Średnicka-Tober D, Hallmann E, Kazimierczak R, Drela N, Rembiałkowska E. Biological Activity of Extracts from Differently Produced Blueberry Fruits in Inhibiting Proliferation and Inducing Apoptosis of HT-29 Cells. Foods 2022; 11:foods11193011. [PMID: 36230087 PMCID: PMC9563960 DOI: 10.3390/foods11193011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
For several decades, people have been searching for natural substances of plant origin that, when introduced into the diet, could strengthen immunity, have anticancer properties, and support conventional therapy. The development of agriculture with the implementation of various plant cultivation systems, apart from the economic aspect, results in the search for such cultivation conditions that would contribute to obtaining the most beneficial product for health. Therefore, the aim of our research is as follows: (a) to compare the antiproliferative activity and the ability to induce apoptosis of HT-29 cells by extracts from blueberry fruits deriving from different types of cultivation systems (conventional, organic, and biodynamic); (b) to examine whether the interaction of extracts with anticancer drugs used in the treatment of colorectal cancer is influenced by the type of cultivation, and (c) to investigate whether extracts obtained from fruits from subsequent years of cultivation retain the same biological activity. The results of our study are promising but inconclusive. A statistically significant difference occurred in only one of the two years of the study. The greatest inhibition of proliferation is observed for biodynamic cultivation compared to organic cultivation, while the highest levels of apoptosis and necrosis of HT-29 cells are induced by blueberry fruit extracts obtained from organic cultivation. The complementary effect of the extracts on the inhibition of HT-29 cell proliferation by anticancer drugs (5-FU and Erbitux) is not demonstrated. The induction of apoptosis by 5-FU is not enhanced by blueberry extracts, in contrast to necrosis. The level of apoptosis and necrosis induced by Erbitux is potentiated, but no dependence on crop type is shown. Blueberry fruit extracts from two consecutive years of cultivation did not maintain the same activity. A plausible reason for the variability in the composition and biological activity of fruit extracts obtained from two years of cultivation is the varying environmental conditions.
Collapse
Affiliation(s)
- Ewelina Kiernozek
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Piotr Maslak
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Ewa Kozlowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Ingeborga Jarzyna
- Department of Ecology and Environmental Conservation, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Dominika Średnicka-Tober
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Renata Kazimierczak
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-55-41-126
| | - Ewa Rembiałkowska
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
72
|
Li H, Seeram NP, Liu C, Ma H. Further investigation of blockade effects and binding affinities of selected natural compounds to immune checkpoint PD-1/PD-L1. Front Oncol 2022; 12:995461. [PMID: 36172167 PMCID: PMC9511049 DOI: 10.3389/fonc.2022.995461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
The breakthrough in the discovery of immune checkpoint PD-1/PD-L1 inhibitors, such as the series of Bristol Myers Squibb synthetic compounds, boosted the research of small molecules with blockade effects on the interaction of PD-1/PD-L1. However, the search for natural products derived PD-1/PD-L1 inhibitors can be impeded by the false positive and/or negative results from the screening assays. Herein, we combined a PD-1/PD-L1 blockade assay (pair ELISA) and a PD-L1/PD-L1 binding assay (surface plasmon resonance; SPR) to evaluate a panel of natural compounds previously reported to show anti-PD-1/PD-L1 activity. The test compounds included kaempferol, cosmosiin, tannic acid, pentagalloyl glucose, ellagic acid, resveratrol, urolithin A, and rifubutin. Based on the analyses of their responses to the combined screening assays, these compounds were categorized into four groups: I) PD-1/PD-L1 inhibitors that can bind to PD-1 and PD-L1; II) PD-1/PD-L1 inhibitors selectively bind to PD-L1 protein; III) PD-1/PD-L1 inhibitors without binding capacity, and IV) PD-1/PD-L1 binders without blockade effect. Discrimination of positive responders in the PD-1/PD-L1 blockade and binding assays can provide useful insights to avoid false outcomes. Examples demonstrated in this study suggest that it is crucial to adopt proper evaluation methods (including using multiple-facet functional assays and target binding techniques) for the search for natural products derived PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
| | | | - Chang Liu
- *Correspondence: Chang Liu, ; Hang Ma,
| | - Hang Ma
- *Correspondence: Chang Liu, ; Hang Ma,
| |
Collapse
|
73
|
Renal cell carcinoma management: A step to nano-chemoprevention. Life Sci 2022; 308:120922. [PMID: 36058262 DOI: 10.1016/j.lfs.2022.120922] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common kidney cancers, responsible for nearly 90 % of all renal malignancies. Despite the availability of many treatment strategies, RCC still remains to be an incurable disease due to its resistivity towards conventional therapies. Nanotechnology is an emerging field of science that offers newer possibilities in therapeutics including cancer medicine, specifically by targeted delivery of anticancer drugs. Several phytochemicals are known for their anti-cancer properties and have been regarded as chemopreventive agents. However, the hydrophobic nature of many phytochemicals decreases its bioavailability and distribution, thus showing limited therapeutic effect. Application of nanotechnology to enhance chemoprevention is an effective strategy to increase the bioavailability of phytochemicals and thereby its therapeutic efficacy. The present review focuses on the utility of nanotechnology in RCC treatment and chemopreventive agents of RCC. We have also visualized the future prospects of nanomolecules in the prevention and cure of RCC.
Collapse
|
74
|
A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers. Cancers (Basel) 2022; 14:cancers14163898. [PMID: 36010892 PMCID: PMC9406073 DOI: 10.3390/cancers14163898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Drugs are used to treat cancer. Most drugs available in the market are chemosynthetic drugs and have side effects on the patient during and after the treatment, in addition to cancer itself. For instance, hair loss, loss of skin color and texture, loss of energy, nausea, infertility, etc. To overcome these side effects, naturally obtained drugs from medicinal plants are preferred. Our review paper aims to encourage the study of anticancer medicinal plants by giving detailed information on thirty-three medicinal plants and parts that constitute the phytochemicals responsible for the treatment of cancer. The development of plant-based drugs could be a game changer in treating cancer as well as boosting the immune system. Abstract Cancer is a serious and significantly progressive disease. Next to cardiovascular disease, cancer has become the most common cause of mortality in the entire world. Several factors, such as environmental factors, habitual activities, genetic factors, etc., are responsible for cancer. Many cancer patients seek alternative and/or complementary treatments because of the high death rate linked with cancer and the adverse side effects of chemotherapy and radiation therapy. Traditional medicine has a long history that begins with the hunt for botanicals to heal various diseases, including cancer. In the traditional medicinal system, several plants used to treat diseases have many bioactive compounds with curative capability, thereby also helping in disease prevention. Plants also significantly contributed to the modern pharmaceutical industry throughout the world. In the present review, we have listed 33 medicinal plants with active and significant anticancer activity, as well as their anticancer compounds. This article will provide a basic set of information for researchers interested in developing a safe and nontoxic active medicinal plant-based treatment for cancer. The research will give a scientific foundation for the traditional usage of these medicinal herbs to treat cancer.
Collapse
|
75
|
Cytotoxic and Apoptotic Effect of Rubus chingii Leaf Extract against Non-Small Cell Lung Carcinoma A549 Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10081537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rubus chingii is a traditional Chinese medicinal herbal that has been used since ancient times for its great dietary and medicinal values. Recent reports have underscored the promising cytotoxic effect of R. chingii extracts against a wide variety of cancer cells. Therefore, in the current study, we aim to explore the anticancer potential of the Rubus chingii ethanolic leaf extract (RcL-EtOH) against non-small cell lung cancer A549 cells. RcL-EtOH efficiently exerted a cytotoxic effect against A549 cells in a dose dependent manner, whilst, it exhibited non-significant toxic effects on normal murine macrophage cells, signifying its safety against normal cells. The reduced viability of A549 cells was reaffirmed by the acridine orange/ethidium bromide double staining, which confirmed the induction of apoptosis in RcL-EtOH-treated A549 cells. In addition, RcL-EtOH instigated the dissipation of mitochondrial membrane potential (ΔΨm) with mutual escalation in ROS generation in a dose-dependent manner. Furthermore, RcL-EtOH increased caspase-3, caspase-9 levels in A549 cells post-exposure to RcL-EtOH, which was concomitantly followed by altered mRNA expression of apoptotic (anti-apoptotic: Bcl-2, BclXL; pro-apoptotic: Bax, Bad). To sum up, the RcL-EtOH-instigated apoptotic cell death within A549 cells was assumed to be accomplished via targeting mitochondria, triggering increased ROS generation, with subsequent activation of caspase cascade and altering the expression of gene regulating apoptosis. Collectively, RcL-EtOH might represent a plausible therapeutic option for the management of lung cancer.
Collapse
|
76
|
Saqban LH, Abdul Alamir Mezher Z, Hussain Ali I. Cytotoxic Effect of the Crude Alcoholic Extract of the Fruits of Citrullus Colocynthis on Human Hepatocyte Carcinoma (Hep-G2). ARCHIVES OF RAZI INSTITUTE 2022; 77:1389-1395. [PMID: 36883161 PMCID: PMC9985790 DOI: 10.22092/ari.2022.357807.2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/21/2022] [Indexed: 03/09/2023]
Abstract
The Citrullus colocynthis L is a perennial herbaceous plant belonging to the family Cucurbitaceae. Several pharmacological investigations have been performed based on the medicinal application of Citrullus colocynthis. The anticancer and antidiabetic activities of fruit and seed extracts of Citrullus colocynthis have been studied. Newly developed anticancer/antitumor medications appear to have been developed based on the extracted chemicals from Citrullus colocynthis due to the high contents of cucurbitacins. The present study aimed to identify the cytotoxic effect of the crude alcoholic extract of plants of Citrullus colocynthis on the growth of human hepatocyte carcinoma (Hep-G2). The results of the chemical (preliminary) examination of the extract indicated that the fruits contain most of the secondary metabolites including Flavonoids, Tannins, Sapiens, Resins, Amino acids, Glycosides, Terpenes, Alkaloids, and Flavonoids. The toxicological effect of the crude extract was investigated by using six half dilutions concentrations of 20,10,5,2.5,1.25, and 0.625 µg/m at three exposure periods of 24,48, and 72 h using MTT testing. The toxicological effect of the extract appeared for all six concentrations in the Hep-G2 cell line. The highest concentration of 20 µg/ml had the highest percentage inhibition rate with a significant difference (P≤0.01) and reached 93.36 ±1.61 after 72 h of exposure. While the lowest concentration of 0.625 μg/ml was recorded rate of inhibition of 23.36 ± 2.34 after 24 h of exposure. The findings of the present study concluded that the Citrullus colocynthis is one of the most promising medicinal plants which effectively treats cancer through its inhibitory effect and fatal toxicity on cancer cells.
Collapse
Affiliation(s)
- L H Saqban
- Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq
| | - Z Abdul Alamir Mezher
- Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq
| | - I Hussain Ali
- Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq
| |
Collapse
|
77
|
Du J, Song D, Li J, Li Y, Li B, Li L. Paeonol triggers apoptosis in HeLa cervical cancer cells: the role of mitochondria-related caspase pathway. Psychopharmacology (Berl) 2022; 239:2083-2092. [PMID: 33710373 DOI: 10.1007/s00213-021-05811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Paeonol is a biologically active component purified from the root bark of Cortex Moutan that exerts pharmacological effects on the cervical cancer. In this study, we aim to evaluate the anti-cervical cancer capacity of paeonol and to investigate the mechanism driving its anti-cervical cancer effect. Paeonol administration markedly restrained the proliferation and caused apoptosis in HeLa cells. Furthermore, paeonol treatment resulted in a mitochondrial dysfunction in HeLa cells, including the inducing of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, and the release of cytochrome c. Moreover, the Bcl-2/Bax proportion was obviously downregulated and cleaved caspase-3 expression was evaluated through paeonol treatment. Additionally, the expression of p-PI3K and p-Akt was noticeably reduced in response to paeonol treatment in HeLa cells. Our findings indicated that paeonol exerts an anticancer potential in HeLa cells, at least in a manner, via triggering the mitochondrial pathway of cellular apoptosis by inhibiting PI3K/Akt signaling. Thus, paeonol has great potential as a promising therapeutic compound to resist human cervical cancer.
Collapse
Affiliation(s)
- Jikun Du
- Central Research Laboratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen, China
| | - Daibo Song
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Jinwen Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Yuanhua Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Baohong Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Scientific Research Center, Department of Pharmacology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
78
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
79
|
Hydrolyzed Flavonoids from Cyrtosperma johnstonii with Superior Antioxidant, Antiproliferative, and Anti-Inflammatory Potential for Cancer Prevention. Molecules 2022; 27:molecules27103226. [PMID: 35630704 PMCID: PMC9146275 DOI: 10.3390/molecules27103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cyrtosperma johnstonii is one of the most interesting traditional medicines for cancer treatment. This study aimed to compare and combine the biological activities related to cancer prevention of the flavonoid glycosides rutin (RT) and isorhamnetin-3-o-rutinoside (IRR) and their hydrolysis products quercetin (QT) and isorhamnetin (IR) from C.johnstonii extract. ABTS and MTT assays were used to determine antioxidant activity and cytotoxicity against various cancer cells, as well as normal cells. Anti-inflammatory activities were measured by ELISA. The results showed that the antioxidant activities of the compounds decreased in the order of QT > IR > RT > IRR, while most leukemia cell lines were sensitive to QT and IR with low toxicity towards PBMCs. The reduction of IL-6 and IL-10 secretion by QT and IR was higher than that induced by RT and IRR. The combination of hydrolysis products (QT and IR) possessed a strong synergism in antioxidant, antiproliferative and anti-inflammatory effects, whereas the combination of flavonoid glycosides and their hydrolysis products revealed antagonism. These results suggest that the potential of the combination of hydrolyzed flavonoids from C. johnstonii can be considered as natural compounds for the prevention of cancer.
Collapse
|
80
|
Ding W, Chen C, Li J, Geng X, Zhang H, Sun Y. Quercus acutissima Carruth. root extract triggers apoptosis, autophagy and inhibits cell viability in breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115039. [PMID: 35092826 DOI: 10.1016/j.jep.2022.115039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Quercus acutissima Carruth. (QA) has long been used by Chinese people to treat noncancerous growths and cancerous ailments. It was traditionally used by Chinese folk to inhibit tumor proliferation in cancerous treatment, but the specific mechanism remain to be elucidated. AIM OF THE STUDY This study investigated the anticancer activities of QA root extract and its regulatory pathways in two human breast cancer cell lines (MCF-7 and SUM159). MATERIALS AND METHODS Dried QA root barks were extracted by ethanol and used to treat human breast cancer MCF-7 and SUM159 cells with varying concentrations. The CCK-8 assay, Hoechst 33342 staining assay and wound healing assay were used to detect the cell proliferation, apoptotic cell morphology, and cell migration in each group, respectively. Caspase 3 activity assay kit was used to determine caspase 3 activity. Western blot was used to measure proteins expression level in apoptosis and autophagy pathways (Bcl-W, caspase 3, Beclin1, LC3 and Atg5). LC-MS was performed to determine the chemical components in QA root extract. RESULTS CCK-8 assay showed that QA root extract significantly inhibited cell viability and proliferation in breast cancer cells by a concentration-dependent manner. Cell wound healing assay indicated that it had high suppression ability on cell migration both in MCF-7 and SUM159 cells. QA root extract treatment induced the morphological and nuclear structural changes in breast cancer cells including rounded appearance and shrunken nucleus with several nuclear body fragments. Western blot indicated that QA root extract induced mitochondria-mediated apoptosis by up-regulating caspase 3 and down-regulating Bcl-W. Moreover, QA root extract up-regulated Beclin1 and Atg5, and activated LC3 in two human breast cancer cell lines. LC-MS results showed that QA root extract contains high content of bioactive compounds like coumarins and derivatives, prenol lipids, flavonoids and tannins. CONCLUSIONS QA root extract inhibited cell proliferation and migration in MCF-7 and SUM159 cells, and it also induced cell morphology changes and regulated mitochondria-mediated apoptotic cell death and autophagic cell death.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Jun Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Xuexia Geng
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Haijun Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Yuxuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| |
Collapse
|
81
|
Sharma S, Shree B, Sharma D, Kumar S, Kumar V, Sharma R, Saini R. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res Int 2022; 155:111038. [DOI: 10.1016/j.foodres.2022.111038] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/22/2023]
|
82
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
83
|
Siddique S, Kumar RP. 3β-Acetoxy-21α-H-hop-22(29)ene, a novel multitargeted phytocompound against SARS-CoV-2: in silico screening. J Biomol Struct Dyn 2022; 41:3884-3891. [PMID: 35377270 DOI: 10.1080/07391102.2022.2058094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present pandemic disease COVID-19 demands an urgent need for more efficient antiviral drugs against SARS-CoV-2. Computational drug designing and discovery enable us to explore ethnomedicinal plants as a source of various lead molecules that can be used against present and future pathogens. Adiantum latifolium Lam., a common fern, is resistant to pathogens mainly due to the presence of various phytochemicals having antimicrobial properties. In our previous study, 3β-acetoxy-21α-H-hop-22(29)ene, a terpenoid has been characterized from the methanol extract of leaves of A. latifolium. The manuscript evaluates the antiviral potency of the compound against SARS-CoV-2 through molecular docking method. Proteins essential for SARS-CoV-2 multiplication in host cells are the target sites. The study revealed strong binding affinity of the compound for all the ten proteins selected, including seven nonstructural proteins, two structural proteins and one receptor protein, with a binding energy of -4.67 to -8.76 kcal/mol. MDS and MMPBSA analysis of the best ranked complex further confirmed the results. The multitargeted compound can be considered as a natural lead molecule in drug designing against COVID-19, but requires wet-lab experimentation and clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Simna Siddique
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - R Pradeep Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
84
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
85
|
Michalak I, Püsküllüoğlub M. Look into my onco-forest - review of plant natural products with anticancer activity. Curr Top Med Chem 2022; 22:922-938. [PMID: 35240958 DOI: 10.2174/1568026622666220303112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a multistage process that can be treated by numerous modalities including systemic treatment. About half of the molecules that have been approved in the last few decades count for plant derivatives. This review presents the application of tree/shrub-derived biologically active compounds as anticancer agents. Different parts of trees/shrubs - wood, bark, branches, roots, leaves, needles, fruits, flowers etc. - contain a wide variety of primary and secondary metabolites, which demonstrate anticancer properties. Special attention was paid to phenolics (phenolic acids and polyphenols, including flavonoids and non-flavonoids (tannins, lignans, stilbenes)), essential oils and their main constituents such as terpenes/terpenoids, phytosterols, alkaloids and many others. Anticancer properties of these compounds are mainly attributed to their strong antioxidant properties. In vitro experiments on various cancer cell lines revealed a cytotoxic effect of tree-derived extracts. Mechanisms of anticancer action of the extracts are also listed. Examples of drugs that successfully underwent clinical trials with well-established position in the guidelines created by oncological societies are provided. The review also focuses on directions for the future in the development of anticancer agents derived from trees/shrubs. Applying biologically active compounds derived from trees and shrubs as anticancer agents continuously seems a promising strategy in cancer systemic treatment.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosława Püsküllüoğlub
- Labcorp (Polska) Sp. z o.o., Warsaw, Poland; c Department of Clinical Oncology, Maria Sklodowska Curie National Research Institute of Oncology, Cracow Branch, Kraków, Poland
| |
Collapse
|
86
|
Pendulone induces apoptosis via the ROS-mediated ER-stress pathway in human non-small cell lung cancer cells. Toxicol In Vitro 2022; 81:105346. [DOI: 10.1016/j.tiv.2022.105346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023]
|
87
|
Hamouda RA, Abd El Latif A, Elkaw EM, Alotaibi AS, Alenzi AM, Hamza HA. Assessment of Antioxidant and Anticancer Activities of Microgreen Alga Chlorella vulgaris and Its Blend with Different Vitamins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051602. [PMID: 35268702 PMCID: PMC8911722 DOI: 10.3390/molecules27051602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 01/09/2023]
Abstract
There is a very vital antioxidant extracted from microgreen alga. Chlorella vulgaris has major advantages and requires high yield worldwide. Some microalgae require vitamins for their growth promotion. This study was held to determine the impact of different vitamins including Thiamine (B1), Riboflavin (B2), Pyridoxine (B6), and Ascorbic acid (c) at concentrations of 0.02, 0.04, 0.06, and 0.08 mg/L of each. Each vitamin was added to the BG11 growth medium to determine the effect on growth, total carbohydrate, total protein, pigments content, antioxidant activities of Chlorella vulgaris. Moreover, antitumor effects of methanol extract of C. vulgaris without and with the supplement of thiamine against Human prostate cancer (PC-3), Hepatocellular carcinoma (HEPG-2), Colorectal carcinoma (HCT-116) and Epitheliod Carcinoma (Hela) was estimated in vitro. C. vulgaris supplemented with various vitamins showed a significant increase in biomass, pigment content, total protein, and total carbohydrates in comparison to the control. Thiamine was the best vitamin influencing as an antioxidant. C. vulgaris supplemented with thiamine had high antitumor effects in vitro. So, it’s necessary to add vitamins to BG11 media for enhancement of the growth and metabolites.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts, Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt; (E.M.E.); (H.A.H.)
- Correspondence: or
| | - Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ebtihal M. Elkaw
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt; (E.M.E.); (H.A.H.)
| | - Amenah S. Alotaibi
- Biology Department, College of Sciences, Tabuk University, Tabuk 71491, Saudi Arabia; (A.S.A.); (A.M.A.)
| | - Asma Massad Alenzi
- Biology Department, College of Sciences, Tabuk University, Tabuk 71491, Saudi Arabia; (A.S.A.); (A.M.A.)
| | - Hanafy A. Hamza
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt; (E.M.E.); (H.A.H.)
| |
Collapse
|
88
|
Cell Culture-Based Assessment of Toxicity and Therapeutics of Phytochemical Antioxidants. Molecules 2022; 27:molecules27031087. [PMID: 35164354 PMCID: PMC8839249 DOI: 10.3390/molecules27031087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-derived natural products are significant resources for drug discovery and development including appreciable potentials in preventing and managing oxidative stress, making them promising candidates in cancer and other disease therapeutics. Their effects have been linked to phytochemicals such as phenolic compounds and their antioxidant activities. The abundance and complexity of these bio-constituents highlight the need for well-defined in vitro characterization and quantification of the plant extracts/preparations that can translate to in vivo effects and hopefully to clinical use. This review article seeks to provide relevant information about the applicability of cell-based assays in assessing anti-cytotoxicity of phytochemicals considering several traditional and current methods.
Collapse
|
89
|
Ramachandhiran D, Sankaranarayanan C, Murali R, Babukumar S, Vinothkumar V. β-Caryophyllene promotes oxidative stress and apoptosis in KB cells through activation of mitochondrial-mediated pathway - An in-vitro and in-silico study. Arch Physiol Biochem 2022; 128:148-162. [PMID: 31583906 DOI: 10.1080/13813455.2019.1669057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Beta-caryophyllene (BCP), are natural bicyclic sesquiterpenes which are present in numerous plants worldwide. BCP has antioxidant, antimicrobial, and antifungal properties. Here, we studied its anticancer, anti-inflammatory, and cytotoxic effects. Cells treated with BCP, in a dose-dependent manner, exhibited morphological changes, showed lower cell growth, underwent apoptosis and lost the ability to metastasis through the suppression of NF-ҡ B via PI3K/AKT signalling pathway. These results elucidate that the inhibition of NF-ҡ B and PI3K/AKT is one of the most important mechanism by which BCP suppresses cancer cell proliferation and enhances apoptosis.
Collapse
Affiliation(s)
- Duraisamy Ramachandhiran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | | | - Raju Murali
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Postgraduate and Research Department of Biochemistry, Government Arts College For Women, Krishnagiri, India
| | - Sukumar Babukumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Veerasamy Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| |
Collapse
|
90
|
Orchidaceae-Derived Anticancer Agents: A Review. Cancers (Basel) 2022; 14:cancers14030754. [PMID: 35159021 PMCID: PMC8833831 DOI: 10.3390/cancers14030754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Orchids are commonly used in folk medicine for the treatment of infections and tumors but little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. According to the published data, numerous species of orchids contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader research, ’including American and African species, as well as the correct identification of samples, is essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential. Abstract Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.
Collapse
|
91
|
Tafazoli A. Cancer procoagulant inhibitors: New drugs for an old target. J Oncol Pharm Pract 2022; 28:695-697. [PMID: 35040384 DOI: 10.1177/10781552211073606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ali Tafazoli
- Clinical Pharmacy Department, School of Pharmacy, 556492Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
92
|
Melim C, Lauro MR, Pires IM, Oliveira PJ, Cabral C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14010190. [PMID: 35057085 PMCID: PMC8777706 DOI: 10.3390/pharmaceutics14010190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The gastrointestinal (GI) tract is composed of rapidly renewing cells, which increase the likelihood of cancer. Colorectal cancer is one of the most frequently diagnosed GI cancers and currently stands in second place regarding cancer-related mortality. Unfortunately, the treatment of GI is limited, and few developments have occurred in the field over the years. With this in mind, new therapeutic strategies involving biologically active phytocompounds are being evaluated as anti-cancer agents. Vegetables such as broccoli, brussels sprouts, cabbage, cauliflower, and radish, all belonging to the Brassicaceae family, are high in dietary fibre, minerals, vitamins, carotenoids, polyphenols, and glucosinolates. The latter compound is a secondary metabolite characteristic of this family and, when biologically active, has demonstrated anti-cancer properties. This article reviews the literature regarding the potential of Cruciferous vegetables in the prevention and/or treatment of GI cancers and the relevance of appropriate compound formulations for improving the stability and bioaccessibility of the major Cruciferous compounds, with a particular focus on glucosinolates.
Collapse
Affiliation(s)
- Catarina Melim
- Faculty of Medicine, Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria R. Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Isabel M. Pires
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK;
| | - Paulo J. Oliveira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Célia Cabral
- Faculty of Medicine, Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-066
| |
Collapse
|
93
|
Rashidi R, Forouzanfar F, Soukhtanloo M, Ghasemian S, Mousavi SH. Cytotoxic effects of Garcinia mangostana pericarp extract in cancer cell lines. Curr Drug Discov Technol 2022; 19:e130122200196. [PMID: 35049434 DOI: 10.2174/1570163819666220113100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Garcinia mangostana, commonly also called mangosteen, is an evergreen tropical tree, and its pericarps have been used in traditional herbal medicine for different diseases. The anticancer efficacy of the ethanolic extract from pericarps of Garcinia mangostana was investigated in human prostate cancer cells (PC3), melanoma cells (B16F10), breast cancer cells (MCF7) and glioblastoma (U87) cell lines. METHODS 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability. propidium iodide (PI) staining and analysis on a flow cytometer was used to identify apoptosis. Action on cell migration was evaluated by scratch assay and gelatin zymography. Furthermore, the level of intracellular reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity was measured. Moreover, we investigated the synergistic efficacy with several combinations of Garcinia mangostana extract (GME) with doxorubicin. RESULTS GME reduced cell viability in malignant cell dose and time-dependently. GME-induced sub-G1 peak in flow cytometry histogram of treated cells control representing apoptotic cell death is involved in GME toxicity. Furthermore, GME exhibited inhibitory effects on the migration ability of U87 cells, which was accompanied by inhibition in the activity and expression of MMP2 (matrix metalloproteinase-2). Besides, GSH level and SOD activity was significantly reduced while there was an increase in ROS and MDA concentration following 24 hr GME treatment. Moreover, combination of GME (1.5-25μg/mL) with Dox (6 µg/mL) displayed synergistic efficacy and cell growth inhibition. CONCLUSION In conclusion, GME could cause cell death in PC3, MCF7, U87, and B16F10 cell lines, in which apoptosis plays an imperative role. Plant extract decreased the migration ability of the cells by inhibiting the activity and expression of Matrix metalloproteinases (MMPs). G. mangostana could be a promising therapeutic strategy to treat cancer in the future.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Ghasemian
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
94
|
The impact of medicinal plant Ocimum minimum L. on fatty acid synthesis process in breast cancer cells. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
95
|
Pemmaraju DB, Ghosh A, Gangasani JK, Murthy U, Naidu V, Rengan AK. Herbal biomolecules as nutraceuticals. HERBAL BIOMOLECULES IN HEALTHCARE APPLICATIONS 2022:525-549. [DOI: 10.1016/b978-0-323-85852-6.00025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
96
|
SIPAHLI S, DWARKA D, AMONSOU E, MELLEM J. In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.55220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - John MELLEM
- Durban University of Technology, South Africa
| |
Collapse
|
97
|
Ilyas S, Simanullang RH, Hutahaean S, Rosidah R, Situmorang PC. Correlation of Myc Expression with Wee1 Expression by Zanthoxylum acanthopodium in Cervical Carcinoma Histology. Pak J Biol Sci 2022; 25:1014-1020. [PMID: 36591933 DOI: 10.3923/pjbs.2022.1014.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
<b>Background and Objective:</b> Natural herbs and molecular therapy can be used to treat cervical cancer. The Myc and Wee1 control tumour cell fate and microenvironmental changes like angiogenesis activation and host immune response suppression. The study aims to know about the correlation of Myc and Wee1 expressions as a molecular therapy given by <i>Zanthoxylum acanthopodium</i>. <b>Materials and Methods:</b> There are five rat groups: Group K<sup></sup> is the untreated group, Group K<sup>+</sup> is the rats injected with benzopyrene, Group P<sub>1</sub> is the administration of <i>Zanthoxylum acanthopodium</i> 100 mg kg<sup>1</sup> b.wt., Group P<sub>2</sub> is the administration of <i>Zanthoxylum acanthopodium</i> 200 mg kg<sup>1</sup> b.wt. and Group P<sub>3</sub> is the administration of <i>Zanthoxylum acanthopodium</i> 400 mg kg<sup>1</sup> b.wt. The rats are dissected 30 days after receiving <i>Zanthoxylum acanthopodium</i>. To stain the cervical tissues, immunohistochemistry is performed. <b>Results:</b> <i>Zanthoxylum acanthopodium</i> administration caused epithelial thickening and decreased Myc expression in previously uncontrolled carcinomas from untreated malignancies, which now slowed and stopped growing into the normal epithelium. Wee1 expression revealed that this herb could repair tissue by drastically reducing Wee1 expression at a dose of 100-400 mg kg<sup>1</sup> b.wt. Similarly, at the highest dose, cervical carcinoma stops growing and the nucleus begins to form normally (p<0.01). <b>Conclusion:</b> The higher Myc expression on andaliman administration in cervical carcinoma decreases Wee1 expression in cervical carcinoma so these two proteins have a strong and significant correlation. <i>Zanthoxylum acanthopodium</i> can be administered at various dosages to lower the number of positive indexes of Myc and Wee1 expression in cervical carcinoma.
Collapse
|
98
|
Koroth J, Mahadeva R, Ravindran F, Parashar TR, Teja V, Karki SS, Choudhary B. Curcumin derivative 1, 2-bis [(3E, 5E)-3, 5-bis [(2-chlorophenyl) methylene]-4-oxo-1-piperidyl] ethane-1, 2-dione (ST03) induces mitochondria mediated apoptosis in ovarian cancer cells and inhibits tumor progression in EAC mouse model. Transl Oncol 2022; 15:101280. [PMID: 34801859 PMCID: PMC8607274 DOI: 10.1016/j.tranon.2021.101280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Curcumin is known for its anticancer properties, but its clinical application is limited due to its poor bioavailability and chemical stability. In this study we report the curcumin derivative, ST03 (1,2-bis[(3E,5E)-3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidyl]ethane-1,2-dione) exhibits ∼ 14 fold better bioavailability compared to curcumin and is detectable in plasma up to 12 h. ST03 induces ROS, activates the intrinsic apoptotic pathway as evident by disruption of mitochondrial membrane potential, and induction of proapoptotic proteins in ovarian cancer lines PA1 and A2780. ST03 also blocked the migration of ovarian cancer cells. ST03 exerted its antitumor effect in-vivo in the EAC mouse model by activating the intrinsic apoptotic pathway. Our findings demonstrate ST03, a curcumin derivative, with better bioavailability and stability with no discernable toxicity in vivo to be a promising drug candidate for anticancer therapies.
Collapse
Affiliation(s)
- Jinsha Koroth
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore 560100, Karnataka, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore 560100, Karnataka, India
| | - Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore 560100, Karnataka, India
| | - Tanvi R Parashar
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore 560100, Karnataka, India
| | - Vinay Teja
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore 560100, Karnataka, India
| | - Subhas S Karki
- Department of Pharmaceutical Chemistry, KLE Academy of Higher Education and Research, KLE College of Pharmacy, Rajajinagar, Bangalore, KN, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore 560100, Karnataka, India.
| |
Collapse
|
99
|
Yasmeen, Iqubal MK, Khan MA, Agarwal NB, Ali J, Baboota S. Nanoformulations-based advancement in the delivery of phytopharmaceuticals for skin cancer management. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
100
|
Kim TW, Ko SG. The Herbal Formula JI017 Induces ER Stress via Nox4 in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10121881. [PMID: 34942984 PMCID: PMC8698338 DOI: 10.3390/antiox10121881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Chemotherapy is a powerful anti-tumor therapeutic strategy; however, resistance to treatment remains a serious concern. To overcome chemoresistance, combination therapy with anticancer drugs is a potential strategy. We developed a novel herbal extract, JI017, with lower toxicity and lesser side effects. JI017 induced programmed cell death and excessive unfolded protein response through the release of intracellular reactive oxygen species (ROS) and calcium in breast cancer cells. JI017 treatment increased the expression of endoplasmic reticulum (ER) stress markers, including p-PERK, p-eIF2α, ATF4, and CHOP, via the activation of both exosomal GRP78 and cell lysate GRP78. The ROS inhibitors diphenyleneiodonium and N-acetyl cysteine suppressed apoptosis and excessive ER stress by inhibiting Nox4 in JI017-treated breast cancer cells. Furthermore, in paclitaxel-resistant breast cancer cell lines, MCF-7R and MDA-MB-231R, a combination of JI017 and paclitaxel overcame paclitaxel resistance by blocking epithelial-mesenchymal transition (EMT) processes, such as the downregulation of E-cadherin expression and the upregulation of HIF-1α, vimentin, Snail, and Slug expression. These findings suggested that JI017 exerts a powerful anti-cancer effect in breast cancer and a combination therapy of JI017 and paclitaxel may be a potential cancer therapy for paclitaxel resistant breast cancer.
Collapse
Affiliation(s)
| | - Seong-Gyu Ko
- Correspondence: ; Tel.: +82-2-961-0329; Fax: +82-2-961-1165
| |
Collapse
|