51
|
Luo J, Liu S, Lu H, Chen Q, Shi Y. A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Compr Rev Food Sci Food Saf 2022; 21:5272-5290. [PMID: 36161470 DOI: 10.1111/1541-4337.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cyclic peptides possess advanced structural characteristics of stability and play a vital role in medical treatment and agriculture. However, the biological functions of microorganism-derived cyclic peptides (MDCPs) and their applications in food industry were relatively absent. MDCPs are derived from extensive fermented food or soil. In this review, the synthesis approaches and structural characteristics are overviewed, while the interrelationship between bioactivities and functions is emphasized. This review summarizes the bioactivities of MDCPs from in vitro to in vivo, including antimicrobial activities, immune regulation, and antiviral cell activation. Their multiple functions as well as applications during food product processing, packaging, and storage are also comprehensively reviewed. Remarkably, some potential risks and cytotoxicity of MDCPs are also critically discussed. Moreover, future applications of MDCPs in the development of novel food additives and bioengineering materials are organized. Based on this review of native MDCPs, it is noteworthy that expected improvements of synthetic cyclic peptides in bioactive properties present potential valuable applications in future food, including artificial meat.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
52
|
Mahamad Maifiah MH, Zhu Y, Tsuji BT, Creek DJ, Velkov T, Li J. Integrated metabolomic and transcriptomic analyses of the synergistic effect of polymyxin-rifampicin combination against Pseudomonas aeruginosa. J Biomed Sci 2022; 29:89. [PMID: 36310165 PMCID: PMC9618192 DOI: 10.1186/s12929-022-00874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- International Institute for Halal Research and Training, International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
53
|
Evaluation and Validation of the Limited Sampling Strategy of Polymyxin B in Patients with Multidrug-Resistant Gram-Negative Infection. Pharmaceutics 2022; 14:pharmaceutics14112323. [PMID: 36365141 PMCID: PMC9698835 DOI: 10.3390/pharmaceutics14112323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Polymyxin B (PMB) is the final option for treating multidrug-resistant Gram-negative bacterial infections. The acceptable pharmacokinetic/pharmacodynamic target is an area under the concentration–time curve across 24 h at a steady state (AUCss,24h) of 50–100 mg·h/L. The limited sampling strategy (LSS) is useful for predicting AUC values. However, establishing an LSS is a time-consuming process requiring a relatively dense sampling of patients. Further, given the variability among different centers, the predictability of LSSs is frequently questioned when it is extrapolated to other clinical centers. Currently, limited data are available on a reliable PMB LSS for estimating AUCss,24h. This study assessed and validated the practicability of LSSs established in the literature based on data from our center to provide reliable and ready-made PMB LSSs for laboratories performing therapeutic drug monitoring (TDM) of PMB. The influence of infusion and sampling time errors on predictability was also explored to obtain the optimal time points for routine PMB TDM. Using multiple regression analysis, PMB LSSs were generated from a model group of 20 patients. A validation group (10 patients) was used to validate the established LSSs. PMB LSSs from two published studies were validated using a dataset of 30 patients from our center. A population pharmacokinetic model was established to simulate the individual plasma concentration profiles for each infusion and sampling time error regimen. Pharmacokinetic data obtained from the 30 patients were fitted to a two-compartment model. Infusion and sampling time errors observed in real-world clinical practice could considerably affect the predictability of PMB LSSs. Moreover, we identified specific LSSs to be superior in predicting PMB AUCss,24h based on different infusion times. We also discovered that sampling time error should be controlled within −10 to 15 min to obtain better predictability. The present study provides validated PMB LSSs that can more accurately predict PMB AUCss,24h in routine clinical practice, facilitating PMB TDM in other laboratories and pharmacokinetics/pharmacodynamics-based clinical studies in the future.
Collapse
|
54
|
Manioglu S, Modaresi SM, Ritzmann N, Thoma J, Overall SA, Harms A, Upert G, Luther A, Barnes AB, Obrecht D, Müller DJ, Hiller S. Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane. Nat Commun 2022; 13:6195. [PMID: 36271003 PMCID: PMC9587031 DOI: 10.1038/s41467-022-33838-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Polymyxins are last-resort antibiotics with potent activity against multi-drug resistant pathogens. They interact with lipopolysaccharide (LPS) in bacterial membranes, but mechanistic details at the molecular level remain unclear. Here, we characterize the interaction of polymyxins with native, LPS-containing outer membrane patches of Escherichia coli by high-resolution atomic force microscopy imaging, along with structural and biochemical assays. We find that polymyxins arrange LPS into hexagonal assemblies to form crystalline structures. Formation of the crystalline structures is correlated with the antibiotic activity, and absent in polymyxin-resistant strains. Crystal lattice parameters alter with variations of the LPS and polymyxin molecules. Quantitative measurements show that the crystalline structures decrease membrane thickness and increase membrane area as well as stiffness. Together, these findings suggest the formation of rigid LPS-polymyxin crystals and subsequent membrane disruption as the mechanism of polymyxin action and provide a benchmark for optimization and de novo design of LPS-targeting antimicrobials.
Collapse
Affiliation(s)
- Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel, Switzerland
| | | | - Noah Ritzmann
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel, Switzerland
| | - Johannes Thoma
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sarah A Overall
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Harms
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, Switzerland
| | | | | | | | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel, Switzerland.
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, Switzerland.
| |
Collapse
|
55
|
Srivastava D, Patra N. Self-Uptake Mechanism of Polymyxin-Based Lipopeptide against Gram-Negative Bacterial Membrane: Role of the First Adsorbed Lipopeptide. J Phys Chem B 2022; 126:8222-8232. [PMID: 36126341 DOI: 10.1021/acs.jpcb.2c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research in the continuously increasing threat of polymyxin-resistant multidrug-resistant Pseudomonas aeruginosa, which causes severe infection in immunocompromised patients, has resulted in the development of several polymyxin-derived cyclic lipopeptides containing l-α-γ- diamino butyric acid-like FADDI-019 (F19). In this work, F19's insertion into a minimal model of the asymmetric outer membrane of the bacterium, which contained only penta-acylated lipid A (LipA) and lacked keto-d-octulosonic acid and O-antigens, in the top leaflet and phospholipids in the bottom leaflet, was studied. F19 exhibited all of the hallmarks of the self-uptake mechanism into the asymmetric bilayer. While a single monomer of the lipopeptide did not get partitioned into the inside of the bilayer, it competitively displaced Ca2+ from the membrane surface, observed as a decrease in Ca2+ coordination number with phosphate groups (1.89 vs 1.718), resulting in membrane destabilization. This resulted in an increment of the average defect size and the probability of interplay between lipid tails and hydrophobic residues of another F19. When more than one monomer was present in the system, the first monomer remained docked on the surface, while other monomers intercalated into the bilayer interior with their hydrophobic moieties "sleeved" by lipid acyl chains. The free energy barrier for partial insertion of the lipopeptide into a bilayer in the presence of surface-docked second F19 was recorded at ∼1.3 kcal/mol using two-dimensional (2D) well-tempered metadynamics, making it a low barrier process at 300 K. This study is an attempt to demonstrate the self-uptake mechanism of F19 during intercalation process into the bilayer interior, which may help in the design of better alternates for polymyxins to work against polymyxin resistance.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
56
|
Lipid Microenvironment Modulates the Pore-Forming Ability of Polymyxin B. Antibiotics (Basel) 2022; 11:antibiotics11101445. [PMID: 36290103 PMCID: PMC9598075 DOI: 10.3390/antibiotics11101445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of polymyxin B, an antibiotic used to treat infections caused by multidrug-resistant Gram-negative bacteria as a last-line therapeutic option, to form ion pores in model membranes composed of various phospholipids and lipopolysaccharides was studied. Our data demonstrate that polymyxin B predominantly interacts with negatively charged lipids. Susceptibility decreases as follows: Kdo2-Lipid A >> DOPG ≈ DOPS >> DPhPG ≈ TOCL ≈ Lipid A. The dimer and hexamer of polymyxin B are involved in the pore formation in DOPG(DOPS)- and Kdo2-Lipid A-enriched bilayers, respectively. The pore-forming ability of polymyxin B significantly depends on the shape of membrane lipids, which indicates that the antibiotic produces toroidal lipopeptide-lipid pores. Small amphiphilic molecules diminishing the membrane dipole potential and inducing positive curvature stress were shown to be agonists of pore formation by polymyxin B and might be used to develop innovative lipopeptide-based formulations.
Collapse
|
57
|
Yang J, Liu S, Lu J, Sun T, Wang P, Zhang X. An area under the concentration-time curve threshold as a predictor of efficacy and nephrotoxicity for individualizing polymyxin B dosing in patients with carbapenem-resistant gram-negative bacteria. Crit Care 2022; 26:320. [PMID: 36258197 PMCID: PMC9578216 DOI: 10.1186/s13054-022-04195-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Evidence supports therapeutic drug monitoring of polymyxin B, but clinical data for establishing an area under the concentration-time curve across 24 h at steady state (AUCss,24 h) threshold are still limited. This study aimed to examine exposure-response/toxicity relationship for polymyxin B to establish an AUCss,24 h threshold in a real-world cohort of patients. METHODS Using a validated Bayesian approach to estimate AUCss,24 h from two samples, AUCss,24 h threshold that impacted the risk of polymyxin B-related nephrotoxicity and clinical response were derived by classification and regression tree (CART) analysis and validated by Cox regression analysis and logical regression analysis. RESULTS A total of 393 patients were included; acute kidney injury (AKI) was 29.0%, clinical response was 63.4%, and 30-day all-cause mortality was 35.4%. AUCss,24 h thresholds for AKI of > 99.4 mg h/L and clinical response of > 45.7 mg h/L were derived by CART analysis. Cox and logical regression analyses showed that AUCss,24 h of > 100 mg h/L was a significant predictor of AKI (HR 16.29, 95% CI 8.16-30.25, P < 0.001) and AUCss,24 h of ≥ 50 mg h/L (OR 4.39, 95% CI 2.56-7.47, P < 0.001) was independently associated with clinical response. However, these exposures were not associated with mortality. In addition, the correlation between trough concentration (1.2-2.8 mg/L) with outcomes was similar to AUCss,24 h. CONCLUSIONS For critically ill patients, AUCss,24 h threshold of 50-100 mg h/L was associated with decreased nephrotoxicity while assuring clinical efficacy. Therapeutic drug monitoring is recommended for individualizing polymyxin B dosing.
Collapse
Affiliation(s)
- Jing Yang
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shaohua Liu
- grid.412633.10000 0004 1799 0733Department of General Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jingli Lu
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Tongwen Sun
- grid.412633.10000 0004 1799 0733Department of General Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Peile Wang
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaojian Zhang
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
58
|
Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J Funct Biomater 2022; 13:jfb13040175. [PMID: 36278644 PMCID: PMC9589978 DOI: 10.3390/jfb13040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous epithelial cells and sometimes leukocytes release AMPs as their first line of defense. AMPs encompass cationic histatins, defensins, and cathelicidin to encounter oral pathogens with minimal resistance. However, their concentrations are significantly below the effective levels and AMPs are unstable under physiological conditions due to proteolysis, acid hydrolysis, and salt effects. In parallel to a search for more effective AMPs from natural sources, considerable efforts have focused on synthetic stable and low-cytotoxicy AMPs with significant activities against microorganisms. Using natural AMP templates, various attempts have been used to synthesize sAMPs with different charges, hydrophobicity, chain length, amino acid sequence, and amphipathicity. Thus far, sAMPs have been designed to target Streptococcus mutans and other common oral pathogens. Apart from sAMPs with antifungal activities against Candida albicans, future endeavors should focus on sAMPs with capabilities to promote remineralization and antibacterial adhesion. Delivery systems using nanomaterials and biomolecules are promising to stabilize, reduce cytotoxicity, and improve the antimicrobial activities of AMPs against oral pathogens. Nanostructured AMPs will soon become a viable alternative to antibiotics due to their antimicrobial mechanisms, broad-spectrum antimicrobial activity, low drug residue, and ease of synthesis and modification.
Collapse
Affiliation(s)
- Albert Donald Luong
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - John H. T. Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
- Correspondence: or
| |
Collapse
|
59
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
60
|
Effects of Medicinal Leech-Related Cationic Antimicrobial Peptides on Human Blood Cells and Plasma. Molecules 2022; 27:molecules27185848. [PMID: 36144584 PMCID: PMC9503446 DOI: 10.3390/molecules27185848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma. Eight CAMPs were included in the study. Hemolysis and lactate dehydrogenase assays showed that the potency to disrupt erythrocyte, neutrophil and mononuclear cell membranes descended in the order pept_1 > pept_3 ~ pept_5 > pept_2 ~ pept_4. Pept_3 caused both cell lysis and aggregation. Blood plasma and albumin inhibited the CAMP-induced hemolysis. The chemiluminescence method allowed the detection of pept_3-mediated neutrophil activation. In plasma coagulation assays, pept_3 prolonged the activated partial thromboplastin time (APTT) and prothrombin time (at 50 μM by 75% and 320%, respectively). Pept_3 was also capable of causing fibrinogen aggregation. Pept_6 prolonged APTT (at 50 μM by 115%). Pept_2 was found to combine higher bactericidal activity with lower effects on cells and coagulation. Our data emphasize the necessity of investigating CAMP interaction with plasma.
Collapse
|
61
|
Huang T, Zeng M, Fu H, Zhao K, Song T, Guo Y, Zhou J, Zhai L, Liu C, Prithiviraj B, Wang X, Chu Y. A novel antibiotic combination of linezolid and polymyxin B octapeptide PBOP against clinical Pseudomonas aeruginosa strains. Ann Clin Microbiol Antimicrob 2022; 21:38. [PMID: 36038932 PMCID: PMC9422153 DOI: 10.1186/s12941-022-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Antibiotic-resistant Gram-negative bacteria are becoming a major public health threat such as the important opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). The present study investigated enhancement of the linezolid spectrum, which is normally used to treat Gram-positive bacteria, at inhibiting P. aeruginosa growth. Methods The checkerboard test or time-kill assay were carried out to determine the antibacterial effects of linezolid in cooperation with polymyxin B octapeptide PBOP (LP) against P. aeruginosa based on in vitro model. The protective effect of LP against P. aeruginosa infection was assessed based on a Caenorhabditis elegans (C. elegans) model. Results The synergistic activity and antibacterial effects were significantly increased against P. aeruginosa by LP treatment, while linezolid and PBOP as monotherapies exhibited no remarkably bactericidal activity against the clinical strains. Additionally, LP treatment modified biofilm production, morphology, swimming motility of P. aeruginosa, and protected C. elegans from P. aeruginosa infection. Conclusions This research demonstrates that LP combination has significant synergistic activity against P. aeruginosa, and PBOP is potential to be an activity enhancer. Notably, this strategy improved the antibacterial activity spectrum of linezolid and other anti-Gram-positive agents and represents an effective choice to surmount the antibiotic resistance of bacteria in the long term. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00531-5.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Mao Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Huiyao Fu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Tao Song
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Yidong Guo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Jingyu Zhou
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Longfei Zhai
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Chaolan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Balakrishnan Prithiviraj
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China.
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
62
|
Hassen B, Hammami S, Hassen A, Abbassi MS. Molecular mechanisms and clonal lineages of colistin-resistant bacteria across the African continent: A scoping review. Lett Appl Microbiol 2022; 75:1390-1422. [PMID: 36000241 DOI: 10.1111/lam.13818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
Colistin (also known as Polymyxin E), a polymyxin antibiotic discovered in the late 1940s, has recently reemerged as a last-line treatment option for multidrug-resistant infections. However, in recent years, colistin-resistant pathogenic bacteria have been increasingly reported worldwide. Accordingly, the presented review was undertaken to identify, integrate and synthesize current information regarding the detection and transmission of colistin-resistant bacteria across the African continent, in addition to elucidating their molecular mechanisms of resistance. PubMed, Google Scholar, and Science Direct were employed for study identification, screening and extraction. Overall, based on the developed literature review protocol and associated inclusion/exclusion criteria, 80 studies published between 2000 and 2021 were included comprising varying bacterial species and hosts. Numerous mechanisms of colistin resistance were reported, including chromosomal mutation(s) and transferable plasmid-mediated colistin resistance (encoded by mcr genes). Perhaps unexpectedly, mcr-variants have exhibited rapid emergence and spread across most African regions. The genetic variant mcr-1 is predominant in humans, animals, and the natural environment, and is primarily carried by IncHI2- type plasmid. The highest numbers of studies reporting the dissemination of colistin-resistant Gram-negative bacteria were conducted in the North African region.
Collapse
Affiliation(s)
- B Hassen
- University of Tunis El Manar, Laboratory of Bacteriological Research, Institute of Veterinary Research of Tunisia, 20 street Jebel Lakhdhar, Bab Saadoun, Tunis, 1006, Tunisia
| | - S Hammami
- University of Manouba, IRESA, School of Veterinary Medicine of Sidi-Thabet, Ariana, Tunis, Tunisia
| | - A Hassen
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP, 273, 8020, Soliman, Tunisia
| | - M S Abbassi
- University of Tunis El Manar, Laboratory of Bacteriological Research, Institute of Veterinary Research of Tunisia, 20 street Jebel Lakhdhar, Bab Saadoun, Tunis, 1006, Tunisia.,University of Tunis El Manar, Faculty de Medicine of Tunis, Laboratory of antibiotic resistance LR99ES09, Tunis, Tunisia
| |
Collapse
|
63
|
Repac Antić D, Parčina M, Gobin I, Petković Didović M. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Antibiotics (Basel) 2022; 11:1105. [PMID: 36009974 PMCID: PMC9405089 DOI: 10.3390/antibiotics11081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems to be one of the major ways to ensure progress. This review article provides insight into the modes of action of antibacterial agents, class by class, through the perspective of chelation. We covered a wide scope of antibacterials, from a century-old quintessential chelating agent nitroxoline, currently unearthed due to its newly discovered anticancer and antibiofilm activities, over the commonly used antibacterial classes, to new cephalosporin cefiderocol and a potential future class of tetramates. We show the impressive spectrum of roles that chelation plays in antibacterial MOAs. This, by itself, demonstrates the importance of understanding the fundamental chemistry behind such complex processes.
Collapse
Affiliation(s)
- Davorka Repac Antić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, Bonn University Hospital, 53127 Bonn, Germany
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mirna Petković Didović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
64
|
da Costa RA, Andrade IEPC, Pinto OHB, de Souza BBP, Fulgêncio DLA, Mendonça ML, Kurokawa AS, Ortega DB, Carvalho LS, Krüger RH, Ramada MHS, Barreto CC. A novel family of non-secreted tridecaptin lipopeptide produced by Paenibacillus elgii. Amino Acids 2022; 54:1477-1489. [PMID: 35864259 DOI: 10.1007/s00726-022-03187-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.
Collapse
Affiliation(s)
- Rosiane Andrade da Costa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | | | - Otávio Henrique Bezerra Pinto
- Laboratory of Enzymology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | | | - Débora Luíza Albano Fulgêncio
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Marise Leite Mendonça
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Adriane Silva Kurokawa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Daniel Barros Ortega
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil.,Graduate Program in Environmental Technology and Water Resources, University of Brasilia, Campus Universitário Darcy Ribeiro, SG-12, Brasília, Brazil
| | - Lucas Silva Carvalho
- Laboratory of Enzymology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Laboratory of Enzymology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil.,Graduate Program in Gerontology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Cristine Chaves Barreto
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil.
| |
Collapse
|
65
|
Takiguchi S, Hirota-Takahata Y, Nishi T. Total Synthesis and Structural Elucidation of Ogipeptins. Org Lett 2022; 24:4935-4938. [PMID: 35796660 DOI: 10.1021/acs.orglett.2c01863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first total synthesis of ogipeptin A was achieved. Recently, using the advanced Marfey's method, we determined the absolute configuration patterns of three β-hydroxy-α,γ-diaminobutyric acids (β-OH Dabs) composing ogipeptins. On the basis of this result, we conducted solid-phase total synthesis of three diastereomers of ogipeptin A. The analytical data of one diastereomer exactly corresponded with those of natural ogipeptin A. Therefore, the absolute configurations of ogipeptins have been elucidated.
Collapse
Affiliation(s)
- Shingo Takiguchi
- Daiichi Sankyo RD Novare Company, Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yuki Hirota-Takahata
- Daiichi Sankyo RD Novare Company, Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takahide Nishi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
66
|
Ahmad A, Nii T, Mori T, Katayama Y, Toyofuku M, Kishimura A. Nanostructure Control of an Antibiotic-based Polyion Complex Using a Series of Polycations with Different Side-chain Modification Rates. Macromol Rapid Commun 2022; 43:e2200316. [PMID: 35661316 DOI: 10.1002/marc.202200316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/07/2022] [Indexed: 11/08/2022]
Abstract
Developing nanovehicles for delivering antibiotics is a promising approach to overcome the issue of antibiotic resistance. This study aims to utilize a polyion complex (PICs) system for developing novel nanovehicles for polymyxin-type antibiotics, which are known as last resort drugs. The formation of antibiotic-based PIC nanostructures was investigated using colistimethate sodium (CMS), an anionic cyclic short peptide, and a series of block catiomers bearing different amounts of guanidinium moieties on their side chains. In addition, only the modified catiomer, and not the unmodified catiomer, self-assembles with CMS, implying the importance of the guanidine moieties for enhancing the interaction between the catiomer and CMS via the formation of multivalent hydrogen bonding. Moreover, micellar and vesicular PIC nanostructures are selectively formed depending on the ratio of the guanidine residues. Size-exclusion chromatography revealed that the encapsulation efficiency of CMS is dependent on the guanidinium modification ratio. The antimicrobial activity of the PIC nanostructures is also confirmed, indicating that the complexation of CMS in the PICs and further release from the PICs successfully occurs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Asmariah Ahmad
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Advanced Medical Innovation, Kyushu University 3-1-1 Maedashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023, Taiwan, ROC
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
67
|
Performance evaluation of colistin rapid NP test for detection of colistin resistance in colistin resistant Enterobacterales. Med J Armed Forces India 2022. [DOI: 10.1016/j.mjafi.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
68
|
Identification of metabolite extraction method for targeted exploration of antimicrobial resistance associated metabolites of Klebsiella pneumoniae. Sci Rep 2022; 12:8939. [PMID: 35624184 PMCID: PMC9142494 DOI: 10.1038/s41598-022-12153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial resistant Klebsiella pneumoniae (K. pneumoniae), as being a pathogen of critical clinical concern, urgently demands effective therapeutic options. However, the discovery of novel antibiotics over the last three decades has declined drastically and necessitates exploring novel strategies. Metabolomic modulation has been the promising approach for the development of effective therapeutics to deal with AMR; however, only limited efforts have been made to-date, possibly due to the unavailability of suitable metabolites extraction protocols. Therefore, in order to establish a detailed metabolome of K. pneumoniae and identify a method for targeted exploration of metabolites that are involved in the regulation of AMR associated processes, metabolites were extracted using multiple methods of metabolites extraction (freeze-thaw cycle (FTC) and sonication cycle (SC) method alone or in combination (FTC followed by SC; FTC + SC)) from K. pneumoniae cells and then identified using an orbitrap mass analyzer (ESI-LC-MS/MS). A total of 151 metabolites were identified by using FTC, 132 metabolites by using FTC+SC, 103 metabolites by using SC and 69 metabolites common among all the methods used which altogether enabled the identification of 199 unique metabolites. Of these 199, 70 metabolites were known to have an association with AMR phenotype and among these, the FTC + SC method yielded better (identified 55 metabolites), quantitatively and qualitatively compared to FTC and SC alone (identified 51 and 41 metabolites respectively). Each method of metabolite extraction showed a definite degree of biasness and specificity towards chemical classes of metabolites and jointly contributed to the development of a detailed metabolome of the pathogen. FTC method was observed to give higher metabolomic coverage as compared to SC alone and FTC + SC. However, FTC + SC resulted in the identification of a higher number of AMR associated metabolites of K. pneumoniae compared to FTC and SC alone.
Collapse
|
69
|
Huang T, Lv Z, Lin J, Zhao K, Zhai L, Wang X, Chu Y. A Potent Antibiotic Combination of Linezolid and Polymycin B Nonapeptide Against Klebsiella pneumoniae Infection In Vitro and In Vivo. Front Pharmacol 2022; 13:887941. [PMID: 35559242 PMCID: PMC9086963 DOI: 10.3389/fphar.2022.887941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The emergence of antibiotic resistant Gram-negative bacteria such as Klebsiella pneumoniae (KP) is becoming a major public health threat and imposing a financial burden worldwide. A serious lack of new drugs under development is undermining efforts to fight them. In this study, we report a potent combination of linezolid and polymyxin B nonapeptide PBNP (LP) against KP infection in vitro and in vivo. The checkerboard test and the time-kill assay were performed to detect the antibacterial activity of LP against KP in vitro. And the Caenorhabditis elegans (C. elegans) was used as infection model to evaluate the protective effect of LP against KP infection in vivo. The LP combination showed significantly synergistic activity and antibacterial effects against KP, while linezolid and PBNP as monotherapies revealed no dramatically antibacterial activity against the KP strains. Additionally, we found that the LP treatment altered the biofilm production and morphology of KP. Furthermore, the LP treatments significantly protected C. elegans from KP infection. In conclusion, this study indicated that the LP combination exhibited significantly synergistic activity against KP and PBNP can be used as a potential activity enhancer. More importantly, this strategy provided the improvement of antibacterial activity spectrum of agents like linezolid and represented a potent alternative to overcome antibiotic resistance in the future.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zheng Lv
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Longfei Zhai
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
70
|
Li Q, Qian C, Zhang X, Zhu T, Shi W, Gao M, Feng C, Xu M, Lin H, Lin L, Lu J, Lin X, Li K, Xu T, Bao Q, Li C, Zhang H. Colistin Resistance and Molecular Characterization of the Genomes of mcr-1-Positive Escherichia coli Clinical Isolates. Front Cell Infect Microbiol 2022; 12:854534. [PMID: 35601104 PMCID: PMC9120429 DOI: 10.3389/fcimb.2022.854534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Research on resistance against polymyxins induced by the mcr-1 gene is gaining interest. In this study, using agar dilution method, polymerase chain reaction, and comparative genomic analysis, we investigated the colistin resistance mechanism of clinical E. coli isolates. The minimum inhibitory concentration (MIC) analysis results revealed that of the 515 isolates tested, bacteria with significantly increased MIC levels against colistin were isolated in 2019. Approximately one-fifth (17.14% to 19.65%) of the isolates showed MIC values ≥1 mg/L against colistin in 2015, 2016, and 2017. However, in 2019, up to three-quarters (74.11%, 146/197) of the isolates showed MIC values ≥1 mg/L against colistin indicating an increase in colistin resistance. Six isolates (EC7518, EC4968, EC3769, EC16, EC117, EC195, 1.13%, 6/515) were found to carry the mcr-1 gene and a novel mcr-1 variant with Met2Ile mutation was identified in EC3769. All six strains showed higher MIC levels (MIC=4 mg/L) than any mcr-1-negative strains (MIC ≤ 2 mg/L). Whole-genome sequencing of the six mcr-1-positive isolates revealed that EC195 carried the highest number of resistance genes (n = 28), nearly a half more than those of the following EC117 (n = 19). Thus, EC195 showed a wider resistance spectrum and higher MIC levels against the antimicrobials tested than the other five isolates. Multi-locus sequence typing demonstrated that these mcr-1-positive strains belonged to six different sequence types. The six mcr-1 genes were located in three different incompatibility group plasmids (IncI2, IncHI2 and IncX4). The genetic context of mcr-1 was related to a sequence derived from Tn6330 (ISApl1-mcr-1-pap2-ISApl1). Investigations into the colistin resistance mechanism and characterization of the molecular background of the mcr genes may help trace the development and spread of colistin resistance in clinical settings.
Collapse
Affiliation(s)
- Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ming Xu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Changchong Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| |
Collapse
|
71
|
Population pharmacokinetics of polymyxin B in critically ill patients receiving continuous venovenous hemofiltration. Int J Antimicrob Agents 2022; 60:106599. [DOI: 10.1016/j.ijantimicag.2022.106599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
|
72
|
Wu J, Zhai T, Sun J, Yu Q, Feng Y, Li R, Wang H, Ouyang Q, Yang T, Zhan Q, Deng L, Qin M, Wang F. Mucus-permeable polymyxin B-hyaluronic acid/ poly (lactic-co-glycolic acid) nanoparticle platform for the nebulized treatment of lung infections. J Colloid Interface Sci 2022; 624:307-319. [DOI: 10.1016/j.jcis.2022.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
73
|
Wu XL, Long WM, Lu Q, Teng XQ, Qi TT, Qu Q, He GF, Qu J. Polymyxin B-Associated Nephrotoxicity and Its Predictors: A Retrospective Study in Carbapenem-Resistant Gram-Negative Bacterial Infections. Front Pharmacol 2022; 13:672543. [PMID: 35571125 PMCID: PMC9096016 DOI: 10.3389/fphar.2022.672543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polymyxin B (PMB), a kind of polymyxin, was widely used in carbapenem-resistant Gram-negative bacterial (CR-GNB) infections. However, adverse reactions such as nephrotoxicity and neurotoxicity limit its use in clinical practice. The aim of this study was to explore PMB associated with nephrotoxicity and its predictors. Patients who received PMB intravenous drip for more than 72 h were eligible for the study. Characteristics of patients, concomitant nephrotoxic agents, underlying disease, and antimicrobial susceptibility were submitted for descriptive analysis. Univariate analysis and binary logistic regression were used to assess the factors leading to acute kidney injury (AKI). AKI was assessed with serum creatinine variations according to the classification of risk (stage R), injury (stage I), failure (stage F), loss, and end-stage of kidney disease. Among 234 patients with CR-GNB infections who used PMB in our study, 67 (28.63%) patients developed AKI, including 31 (14.25%) patients in stage R, 15 (6.41%) patients in stage I, and 21 (8.97%) patients in stage F. The incident rate of PMB-related nephrotoxicity in patients with normal renal function was 32.82% (43/131). The higher risk factors of AKI include males [odds ratio (OR) = 3.237; 95% confidence interval (95%CI) = 1.426–7.350], digestive system diseases [OR = 2.481 (1.127–5.463)], using furosemide (>20 mg/day) [OR = 2.473 (1.102–5.551)], and baseline serum creatinine [OR = 0.994 (0.990–0.999)]. Nonparametric tests of K-independent samples showed that baseline serum creatinine and the PMB maintenance dose were associated with the severity of nephrotoxicity (both p < 0.05). Male, digestive system diseases, using furosemide (>20 mg/day), and high baseline serum creatinine were the independent risk factors of PMB-associated AKI development. The maintenance dose of PMB may be related to the severity of AKI. These risk factors should be taken into consideration when initiating PMB-based therapy. The serum creatinine value should be closely monitored when using PMB.
Collapse
Affiliation(s)
- Xiao-Li Wu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Ming Long
- Department of Pharmacy, Second People’s Hospital of Huaihua City, Huaihua, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting-Ting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Ge-Fei He
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Jian Qu,
| |
Collapse
|
74
|
Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022; 621:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), bacterial infections are one of the greatest threats to global health, food production, and life expectancy. In this sense, the development of innovative formulations aiming at greater therapeutic efficacy, safety, and shorter treatment duration compared to conventional products is urgently needed. Lipid-based nanocarriers (LBNs) have demonstrated the potential to enhance the effectiveness of available antibiotics. Among them, liposome, nanoemulsion, solid lipid nanoparticle (SLN), and nanostructured lipid carrier (NLC) are the most promising due to their solid technical background for laboratory and industrial production. This review describes recent advances in developing antibiotic-loaded LBNs against susceptible and resistant bacterial strains and biofilm. LBNs revealed to be a promising alternative to deliver antibiotics due to their superior characteristics compared to conventional preparations, including their modified drug release, improved bioavailability, drug protection against chemical or enzymatic degradation, greater drug loading capacity, and biocompatibility. Antibiotic-loaded LBNs can improve current clinical drug therapy, bring innovative products and rescue discarded antibiotics. Thus, antibiotic-loaded LBNs have potential to open a window of opportunities to continue saving millions of lives and prevent the devastating impact of bacterial infection.
Collapse
|
75
|
Madu Emeka P, Ineta Badg L, Estrella E, Belgira An G, Ezzat Khal H. Investigation of Colistin and Polymyxin B on Clinical Extreme Resistant Enterobacteriaceae Isolates for Surveillance Purposes. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.699.713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
76
|
Song G, Zhou Y, Niu S, Deng X, Qiu J, Li L, Wang J. Nordihydroguaiaretic acid reverses the antibacterial activity of colistin against MCR-1-positive bacteria in vivo/in vitro by inhibiting MCR-1 activity and injuring the bacterial cell membrane. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153946. [PMID: 35158237 DOI: 10.1016/j.phymed.2022.153946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colistin (polymyxin E) is an effective antibiotic for the treatment of most multidrug-resistant Gram-negative bacteria. However, some bacteria, including bacterial spp. belonging to the Enterobacteriaceae family, have an acquired resistance against polymyxins, which is attributed to they possess plasmid-carried resistance genes (mcr-1 and its variants). So, there is an urgent need to develop new therapeutic strategies to target broad spectrum resistant spp. from Enterobacteriaceae family in response to the loss of the protective barrier of last-line antibiotics. Here, we report the adjuvant capacity of nordihydroguaiaretic acid (NDGA) for restoring the antibacterial activity of colistin against MCR-1-positive E. coli ZJ487 in vivo/in vitro. METHODS A checkerboard assay, time-killing analysis, isobolograms, growth curves and inducible resistance test showed the effect of NDGA combined with colistin in vitro. TLC was used to detect the inhibitory effect of NDGA on MCR-1. Colony determination and hematoxylin and eosin (HE) staining were used to assess the synergistic effect of NDGA and colistin in mice. RESULTS Our results showed that NDGA in combination with colistin showed a synergistic bactericidal action without inducing resistance. NDGA directly inhibited MCR-1 activity and resulted in measurable injury to the bacterial cell membrane to recover the antibacterial effect of colistin. Most importantly, NDGA in combination with colistin exhibited an in vivo synergistic effect in murine peritonitis infection models, as evidenced by the survival rate of MCR-1-positive E. coli ZJ487-infected mice which increased from 6.67 to 50.0%. CONCLUSION Our study demonstrated that NDGA effectively rescues the efficiency of colistin against MCR-positive E. coli ZJ487 by simultaneously inhibiting both, the MCR activity and the injury to the cell membrane of bacteria.
Collapse
Affiliation(s)
- Ge Song
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China; State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China; State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sen Niu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China; State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Li
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China; State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
77
|
Oberrauch S, Lu J, Cornthwaite-Duncan L, Hussein M, Li J, Rao G, Velkov T. Intraventricular Drug Delivery and Sampling for Pharmacokinetics and Pharmacodynamics Study. J Vis Exp 2022:10.3791/63540. [PMID: 35435913 PMCID: PMC10400305 DOI: 10.3791/63540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Although the blood-brain barrier (BBB) protects the brain from foreign entities, it also prevents some therapeutics from crossing into the central nervous system (CNS) to ameliorate diseases or infections. Drugs are administered directly into the CNS in animals and humans to circumvent the BBB. The present protocol describes a unique way of treating brain infections through intraventricular delivery of antibiotics, i.e., polymyxins, the last-line antibiotics to treat multi-drug resistant Gram-negative bacteria. A straightforward stereotaxic surgery protocol was developed to implant a guide cannula reaching into the lateral ventricle in rats. After a recovery period of 24 h, rats can be injected consciously and repeatedly through a cannula that is fitted to the guide. Injections can be delivered manually as a bolus or infusion using a microinjection pump to obtain a slow and controlled flow rate. The intraventricular injection was successfully confirmed with Evans Blue dye. Cerebrospinal fluid (CSF) can be drained, and the brain and other organs can be collected. This approach is highly amenable for studies involving drug delivery to the CNS and subsequent assessment of pharmacokinetic and pharmacodynamic activity.
Collapse
Affiliation(s)
- Sara Oberrauch
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne
| | - Jing Lu
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne
| | - Maytham Hussein
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University
| | - Gauri Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill;
| | - Tony Velkov
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne;
| |
Collapse
|
78
|
Patil NA, Thombare VJ, Li R, He X, Lu J, Yu HH, Wickremasinghe H, Pamulapati K, Azad MAK, Velkov T, Roberts KD, Li J. An Efficient Approach for the Design and Synthesis of Antimicrobial Peptide-Peptide Nucleic Acid Conjugates. Front Chem 2022; 10:843163. [PMID: 35372270 PMCID: PMC8964499 DOI: 10.3389/fchem.2022.843163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 01/23/2023] Open
Abstract
Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.
Collapse
Affiliation(s)
- Nitin A. Patil
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Nitin A. Patil,
| | - Varsha J. Thombare
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rong Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Xiaoji He
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jing Lu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Heidi H. Yu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Hasini Wickremasinghe
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Kavya Pamulapati
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mohammad A. K. Azad
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kade D. Roberts
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
79
|
Krishnan M, Choi J, Jang A, Choi S, Yeon J, Jang M, Lee Y, Son K, Shin SY, Jeong MS, Kim Y. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule. Proc Natl Acad Sci U S A 2022; 119:e2115669119. [PMID: 35238667 PMCID: PMC8915966 DOI: 10.1073/pnas.2115669119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 01/21/2023] Open
Abstract
SignificanceSimilar to mammalian TLR4/MD-2, the Toll9/MD-2-like protein complex in the silkworm, Bombyx mori, acts as an innate pattern-recognition receptor that recognizes lipopolysaccharide (LPS) and induces LPS-stimulated expression of antimicrobial peptides such as cecropins. Here, we report that papiliocin, a cecropin-like insect antimicrobial peptide from the swallowtail butterfly, competitively inhibits the LPS-TLR4/MD-2 interaction by directly binding to human TLR4/MD-2. Structural elements in papiliocin, which are important in inhibiting TLR4 signaling via direct binding, are highly conserved among insect cecropins, indicating that its TLR4-antagonistic activity may be related to insect Toll9-mediated immune response against microbial infection. This study highlights the potential of papiliocin as a potent TLR4 antagonist and safe peptide antibiotic for treating gram-negative sepsis.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Jiwon Yeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Mihee Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
80
|
Cao X, Zhang Q, Zhu Y, Li S, Cai Y, Li P, Liu D, Leng Y, Ye S, Xu Z, Li H, Shen B, Liao Q, Liu L, Xie Z. Structural Characterization and Immunoenhancing Effects of a Polysaccharide from the Soft Coral Lobophytum sarcophytoides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:203-215. [PMID: 35175461 DOI: 10.1007/s10126-022-10099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on the soft coral Lobophytum sarcophytoides (Lobophytum sp.) are mainly about small molecules, and there has been no systematic research on polysaccharides. In the study, a novel polysaccharide (LCPs-1-A) with immunoenhancing functions was successfully extracted and purified from the soft coral Lobophytum sp. After preliminary analysis, our data indicated that LCPs-1-A was composed of glucose and had a molecular weight of 4.90 × 106 Da. Moreover, our findings showed that LCPs-1-A could promote the proliferation and phagocytosis of RAW264.7 cells, stimulate the production of NO and ROS, and increase the mRNA expression of IL-1β, IL-6, and TNF-α, which indicated that LCPs-1-A had a good immunoenhancing activity. Through further studies, we found that LCPs-1-A might play an immunoenhancing role through the TLR4/NF-κB signaling pathway. Therefore, our results demonstrated that LCPs-1-A might be a natural immunostimulant for use in medical and food industries.
Collapse
Affiliation(s)
- Xueqin Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yanglu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yun Leng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Simin Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Baochun Shen
- School of Pharmacy, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
81
|
Adhikari S, Essandoh MA, Starr WC, Sah P, La Force CN, Eleshy RG, Lutter EI, Nelson TL. Eumelanin-Inspired Antimicrobial with Biocidal Activity against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2022; 5:545-551. [PMID: 35113537 DOI: 10.1021/acsabm.1c01036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reliance on antibiotics and antimicrobials to treat bacterial infectious diseases is threatened by the emergence of antibiotic resistance and multi-drug-resistant organisms, thus having the potential to greatly impact human health. Thus, the discovery and development of antimicrobials capable of acting on antibiotic-resistant bacteria is a major area of significance in scientific research. Herein, we present the development of a eumelanin-inspired antimicrobial capable of killing methicillin-resistant Staphylococcus aureus (MRSA). By ligating quaternary ammonium-functionalized "arms" to a eumelanin-inspired indole with intrinsic antimicrobial activity, an antimicrobial agent with enhanced activity was prepared. This resulting antimicrobial, EIPE-1, had a minimum inhibitory concentration of 16 μg/mL (17.1 μM) against a clinical isolate of MRSA obtained from an adult cystic fibrosis patient. The biocidal activity occurred within 30 min of exposure and resulted in changes to the bacterial cell surface as visualized with a scanning electron microscope. Taken together, these studies demonstrate that EIPE-1 is effective at killing MRSA.
Collapse
Affiliation(s)
- Santosh Adhikari
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Martha A Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - William C Starr
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Prakash Sah
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Colleen N La Force
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rawan G Eleshy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Erika I Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Toby L Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
82
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
83
|
Hussein M, Wong LJ, Zhao J, Rees VE, Allobawi R, Sharma R, Rao GG, Baker M, Li J, Velkov T. Unique mechanistic insights into pathways associated with the synergistic activity of polymyxin B and caspofungin against multidrug-resistant Klebsiella pneumoniae. Comput Struct Biotechnol J 2022; 20:1077-1087. [PMID: 35284046 PMCID: PMC8897686 DOI: 10.1016/j.csbj.2022.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/03/2022] Open
|
84
|
High Frequency of Class I and II Integrons and the Presence of aadA2 and dfrA12 Gene Cassettes in the Clinical Isolates of Acinetobacter baumannii from Shiraz, Southwest of Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.119436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Acinetobacter baumannii is a global concern that causes healthcare-associated infections due to multidrug resistance against commercially available antimicrobial agents. Objectives: The present study was conducted to determine the antimicrobial susceptibility of A. baumannii isolates from clinical specimens in Shiraz, Iran. In addition, the possible relationship of susceptibility patterns with the presence of integrons and related gene cassettes is investigated. Methods: A. baumannii isolates were collected, and their susceptibility to various antibiotics was tested using the Kirby-Bauer disk diffusion method. Moreover, molecular analyses were performed to detect the presence of the OXA-51-like gene, as well as class I, II, and III integrons, and associated gene cassettes. Results: The majority of isolates were resistant to imipenem (99.4%), piperacillin (98.2%), gentamycin (98.2%), meropenem (97.7%), ceftazidime (95.4%), amikacin (95.4%), and trimethoprim-sulfamethoxazole (90.8%). All strains showed multidrug resistance to the tested antibiotics. The distribution analysis of integrons genes revealed that 90.2, 72.4, and 12.1% of the isolates carried intI1, intI2, and intI3 genes, respectively. Moreover, two types of prevalent gene cassettes, including aad and dfr, were detected in class 1 integron-carrying strains. Conclusions: The current study showed the high prevalence of A. baumannii isolates harboring integrons in our investigated medical center, which may indicate the distribution of multidrug resistance events. The different gene cassette arrays in the present study highlight the remarkable role of geographical issues in disseminating multidrug-resistant isolates. This could be attributed to distinct therapeutic interventions in different areas. The results demonstrate the necessity of continuous surveillance to prevent the distribution of multidrug resistance among A. baumannii strains in Iran.
Collapse
|
85
|
Oğuzhan Kaya H, Karpuz M, Nur Topkaya S. Electrochemical Analysis of Liposome‐encapsulated Colistimethate Sodium. ELECTROANAL 2022. [DOI: 10.1002/elan.202100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hüseyin Oğuzhan Kaya
- Izmir Katip Çelebi University Faculty of Pharmacy Department of Analytical Chemistry 35620 İzmir Turkey
| | - Merve Karpuz
- İzmir Katip Çelebi University Faculty of Pharmacy Department of Radiopharmacy 35620 İzmir Turkey
| | - Seda Nur Topkaya
- Izmir Katip Çelebi University Faculty of Pharmacy Department of Analytical Chemistry 35620 İzmir Turkey
| |
Collapse
|
86
|
Azyzov IS, Martinovich А. Detection of mcr-1-mediated resistance to polymyxins in Enterobacterales using colistin disk chelator application. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.254-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective.
To evaluate the possibility of using the colistin disk chelator application (CDCA) method as simple and available screening tool for detection of mcr-1-mediated resistance to polymyxins in Enterobacterales.
Materials and Methods.
A total of 47 colistin-resistant Enterobacterales isolates obtained in 2014–2020 within multicenter MARATHON study were included in the experiment. Colistin susceptibility testing was performed using Mueller–Hinton broth microdilution method according to ISO 20776-1:2006. Interpretation of the results was performed according to EUCAST v.12.0 clinical breakpoints. MCR-genes were detected by multiplex real-time PCR. Phenotypic screening for mcr-expression was performed on Mueller–Hinton agar by application of dipicolinic acid in concentration of 1,000 mcg/disk in 10 µL volume per disk and 0.5 M solution of EDTA in 5 µL volume per disk. Chelating effect was registered by differences in zone of growth inhibition around colistin disks with and without chelator. Measurements were performed with the help of caliper in millimeters. Statistical data processing was carried out in accordance with guidelines for statistical analysis in medical researches using MS-Excel tool.
Results.
In 25 of 47 included in the experiment enterobacteria isolates mcr-genes were detected by molecular method. MCR-detection by CDCA method identified the average difference value of the zones of growth inhibition for colistin and its combination with EDTA and DPA as 4.1 mm and 3.7 mm respectively for mcr-positive isolates and 1.7 mm and 1.2 mm respectively for mcr-negative isolates. Statistical analysis estimated that a difference of ≥ 3 mm in zone of growth inhibition for combination of colistin with one of the chelating agents when compared to colistin only allows us to conclude that a studied isolated carries mcr-1-mediated resistance to polymyxins. In addition, sensitivity of the test was 96% and specificity was 91% if DPA is used, while EDTA showed only 88% sensitivity and 77% specificity.
Conclusions.
Proposed method appears as available technique for phenotypic screening of the Enterobacterales order for mcr-1-mediated resistance to polymyxins for practical laboratories in present conditions. The use of DPA is preferred because of better specificity and sensitivity rates.
Collapse
|
87
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1379-1384. [DOI: 10.1093/jac/dkac021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
|
88
|
Silva KED, Rossato L, Leite AF, Simionatto S. Overview of polymyxin resistance in Enterobacteriaceae. Rev Soc Bras Med Trop 2022; 55:e0349. [PMID: 35239902 PMCID: PMC8909443 DOI: 10.1590/0037-8682-0349-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Polymyxin antibiotics are disfavored owing to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the increasing global prevalence of infections caused by multidrug-resistant (MDR) gram-negative bacteria, have renewed clinical interest in these polypeptide antibiotics. This review highlights the current information regarding the mechanisms of resistance to polymyxins and their molecular epidemiology. Knowledge of the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterial agents and rapid treatment choices.
Collapse
|
89
|
Han ML, Nang SC, Lin YW, Zhu Y, Yu HH, Wickremasinghe H, Barlow CK, Creek DJ, Crawford S, Rao G, Dai C, Barr JJ, Chan K, Turner Schooley R, Velkov T, Li J. Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant Klebsiella pneumoniae by a bacteriophage-polymyxin combination. Comput Struct Biotechnol J 2022; 20:485-495. [PMID: 35070170 PMCID: PMC8760530 DOI: 10.1016/j.csbj.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/21/2023] Open
Abstract
Resistance to the last-line polymyxins is emerging in multidrug-resistant Klebsiella pneumoniae and phage therapy is a promising alternative. However, phage monotherapy often rapidly causes resistance and few studies have examined antibiotic-phage combinations against K. pneumoniae. Here, we investigated the combination of polymyxin B with a novel phage pK8 against an mcr-1-carrying polymyxin-resistant clinical isolate Kp II-503 (polymyxin B MIC, 8 mg/L). The phage genome was sequenced and bacterial metabolomes were analysed at 4 and 24 h following the treatment with polymyxin B (16 mg/L), phage pK8 (102 PFU/mL) and their combination. Minimal metabolic changes across 24 h were observed with polymyxin B alone; whereas a significant inhibition of the citrate cycle, pentose phosphate pathway, amino acid and nucleotide metabolism occurred with the phage-polymyxin combination at both 4 and 24 h, but with phage alone only at 4 h. The development of resistance to phage alone was associated with enhanced membrane lipid and decreased amino acid biosynthesis in Kp II-503. Notably, cAMP, cGMP and cCMP were significantly enriched (3.1–6.6 log2fold) by phage alone and the combination only at 4 h. This is the first systems pharmacology study to investigate the enhanced bacterial killing by polymyxin-phage combination and provides important mechanistic information on phage killing, resistance and antibiotic-phage combination in K. pneumoniae.
Collapse
|
90
|
Bottalico L, Charitos IA, Potenza MA, Montagnani M, Santacroce L. The war against bacteria, from the past to present and beyond. Expert Rev Anti Infect Ther 2021; 20:681-706. [PMID: 34874223 DOI: 10.1080/14787210.2022.2013809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human defense against microorganisms dates back to the ancient civilizations, with attempts to use substances from vegetal, animal, or inorganic origin to fight infections. Today, the emerging threat of multidrug-resistant bacteria highlights the consequences of antibiotics inappropriate use, and the urgent need for novel effective molecules. METHODS AND MATERIALS We extensively researched on more recent data within PubMed, Medline, Web of Science, Elsevier's EMBASE, Cochrane Review for the modern pharmacology in between 1987 - 2021. The historical evolution included a detailed analysis of past studies on the significance of medical applications in the ancient therapeutic field. AREAS COVERED We examined the history of antibiotics development and discovery, the most relevant biochemical aspects of their mode of action, and the biomolecular mechanisms conferring bacterial resistance to antibiotics. EXPERT OPINION The list of pathogens showing low sensitivity or full resistance to most currently available antibiotics is growing worldwide. Long after the 'golden age' of antibiotic discovery, the most novel molecules should be carefully reserved to treat serious bacterial infections of susceptible bacteria. A correct diagnostic and therapeutic procedure can slow down the spreading of nosocomial and community infections sustained by multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Lucrezia Bottalico
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (Cediclo), University of Bari, Bari, Italy
| | - Ioannis Alexandros Charitos
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (Cediclo), University of Bari, Bari, Italy.,Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine,University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
91
|
Hanafin PO, Nation RL, Scheetz MH, Zavascki AP, Sandri AM, Kwa AL, Cherng BPZ, Kubin CJ, Yin MT, Wang J, Li J, Kaye KS, Rao GG. Assessing the predictive performance of population pharmacokinetic models for intravenous polymyxin B in critically ill patients. CPT Pharmacometrics Syst Pharmacol 2021; 10:1525-1537. [PMID: 34811968 PMCID: PMC8674003 DOI: 10.1002/psp4.12720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
Polymyxin B (PMB) has reemerged as a last‐line therapy for infections caused by multidrug‐resistant gram‐negative pathogens, but dosing is challenging because of its narrow therapeutic window and pharmacokinetic (PK) variability. Population PK (POPPK) models based on suitably powered clinical studies with appropriate sampling strategies that take variability into consideration can inform PMB dosing to maximize efficacy and minimize toxicity and resistance. Here we reviewed published PMB POPPK models and evaluated them using an external validation data set (EVD) of patients who are critically ill and enrolled in an ongoing clinical study to assess their utility. Seven published POPPK models were employed using the reported model equations, parameter values, covariate relationships, interpatient variability, parameter covariance, and unexplained residual variability in NONMEM (Version 7.4.3). The predictive ability of the models was assessed using prediction‐based and simulation‐based diagnostics. Patient characteristics and treatment information were comparable across studies and with the EVD (n = 40), but the sampling strategy was a main source of PK variability across studies. All models visually and statistically underpredicted EVD plasma concentrations, but the two‐compartment models more accurately described the external data set. As current POPPK models were inadequately predictive of the EVD, creation of a new POPPK model based on an appropriately powered clinical study with an informed PK sampling strategy would be expected to improve characterization of PMB PK and identify covariates to explain interpatient variability. Such a model would support model‐informed precision dosing frameworks, which are urgently needed to improve PMB treatment efficacy, limit resistance, and reduce toxicity in patients who are critically ill.
Collapse
Affiliation(s)
- Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Marc H Scheetz
- Department of Pharmacy Practice and Pharmacometric Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois, USA
| | - Alexandre P Zavascki
- Department of Internal Medicine, Medical School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Infectious Diseases Service, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Ana M Sandri
- Infectious Diseases Service, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin P Z Cherng
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Christine J Kubin
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Michael T Yin
- Division of Infectious Diseases, Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jiping Wang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
92
|
Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics. Antimicrob Agents Chemother 2021; 66:e0087821. [PMID: 34748386 DOI: 10.1128/aac.00878-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is among the highest priority pathogens for drug development, because of its resistance to antibiotics, extraordinary adaptability, and persistence. Anti-pseudomonal research is strongly encouraged to address the acute scarcity of innovative antimicrobial lead structures. In an effort to understand the physiological response of P. aeruginosa to clinically relevant antibiotics, we investigated the proteome after exposure to ciprofloxacin, levofloxacin, rifampicin, gentamicin, tobramycin, azithromycin, tigecycline, polymyxin B, colistin, ceftazidime, meropenem, and piperacillin/tazobactam. We further investigated the response to CHIR-90, which represents a promising class of lipopolysaccharide biosynthesis inhibitors currently under evaluation. Radioactive pulse-labeling of newly synthesized proteins followed by 2D-PAGE was used to monitor the acute response of P. aeruginosa to antibiotic treatment. The proteomic profiles provide insights into the cellular defense strategies for each antibiotic. A mathematical comparison of these response profiles based on upregulated marker proteins revealed similarities of responses to antibiotics acting on the same target area. This study provides insights into the effects of commonly used antibiotics on P. aeruginosa and lays the foundation for the comparative analysis of the impact of novel compounds with precedented and unprecedented modes of action.
Collapse
|
93
|
Zhang X, Qi S, Duan X, Han B, Zhang S, Liu S, Wang H, Zhang H, Sun T. Clinical outcomes and safety of polymyxin B in the treatment of carbapenem-resistant Gram-negative bacterial infections: a real-world multicenter study. J Transl Med 2021; 19:431. [PMID: 34656132 PMCID: PMC8520283 DOI: 10.1186/s12967-021-03111-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/07/2021] [Indexed: 01/13/2023] Open
Abstract
Background High morbidity and mortality due to carbapenem-resistant Gram-negative bacilli (CR-GNB) has led to the resurgence of polymyxin B (PMB) use in the last decade. The aim of our multicenter, real-world study was to evaluate the effectiveness and safety of PMB in the treatment of CR-GNB infections. Methods The real-world study included patients treated with intravenous PMB for at least 7 days during the period of October 2018 through June 2019. Associations between these clinical features and 28-day mortality or all-cause hospital mortality were explored through univariate analyses and multivariable logistic regression. Results The study included 100 patients. Many patients presented with combined chronic conditions, septic shock, mechanical ventilation, and the presence of Klebsiella pneumoniae. The mean duration of PMB therapy was 11 days (range 7–38 days). Temperature (38 °C vs 37.1 °C), white blood cells (14.13 × 109/l vs 9.28 × 109/l), C-reactive protein (103.55 ug/l vs 47.60 ug/l), procalcitonin (3.89 ng/ml vs 1.70 ng/ml) and APACHE II levels (17.75 ± 7.69 vs 15.98 ± 7.95) were significantly decreased after PMB treatment. The bacteria eradication rate was 77.65%. The overall mortality at discharge was 15%, and 28-day mortality was 40%. Major adverse reactions occurred in 16 patients. Nephrotoxicity was observed in 7 patients (7%). Conclusions Our results provide positive clinical and safety outcomes for PMB in the treatment of CR-GNB. Timely and appropriate use of PMB may be particularly useful in treating patients with sepsis in CR-GNB infections.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
| | - Shaoyan Qi
- Department of ICU, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoguang Duan
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
| | - Bing Han
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
| | - Shuguang Zhang
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
| | - Shaohua Liu
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
| | - Haixu Wang
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
| | - Haibo Zhang
- Interdepartmental Division of Critical Care Medicine, Departments of Anesthesia and Physiology, University of Toronto, Room 619, LKSKI, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
| | - Tongwen Sun
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
94
|
Boda RLB, Caluag CAM, Dante RAS, Petate AGJ, Candaza HPT, Rivera WL, Jacinto SD, Sabido PMG. Evaluation of
l
‐2,4‐diaminobutyric acid‐based ultrashort cationic lipopeptides as potential antimicrobial and anticancer agents. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ramoncito Luis B. Boda
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
- Natural Sciences Research Institute, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Carl Angelo M. Caluag
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Rachelle Anne S. Dante
- Institute of Biology, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Art Gersun J. Petate
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Hermie Patrice T. Candaza
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Windell L. Rivera
- Institute of Biology, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Sonia D. Jacinto
- Institute of Biology, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Portia Mahal G. Sabido
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| |
Collapse
|
95
|
Birk B, Haake V, Sperber S, Herold M, Wallisch SK, Huener HA, Verlohner A, Amma MM, Walk T, Hernandez TR, Hewitt NJ, Kamp H, van Ravenzwaay B. Use of in vitro metabolomics in NRK cells to help predicting nephrotoxicity and differentiating the MoA of nephrotoxicants. Toxicol Lett 2021; 353:43-59. [PMID: 34626816 DOI: 10.1016/j.toxlet.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
We describe a strategy using an in vitro metabolomics assay with tubular rat NRK-52E cells to investigate the Modes of Action (MoAs) of nephrotoxic compounds. Chemicals were selected according to their MoAs based on literature information: acetaminophen, 4-aminophenol and S-(trichlorovinyl-)L-cysteine (TCVC), (covalent protein binding); gentamycin, vancomycin, polymycin B and CdCl2 (lysosomal overload) and tenofovir and cidofovir (mitochondrial DNA-interaction). After treatment and harvesting of the cells, intracellular endogenous metabolites were quantified relative to vehicle control. Metabolite patterns were evaluated in a purely data-driven pattern generation process excluding published information. This strategy confirmed the assignment of the chemicals to the respective MoA except for TCVC and CdCl2. Finally, TCVC was defined as unidentified and CdCl2 was reclassified to the MoA "covalent protein binding". Hierarchical cluster analysis of 58 distinct metabolites from the patterns enabled a clear visual separation of chemicals in each MoA. The assay reproducibility was very good and metabolic responses were consistent. These results support the use of metabolome analysis in NRK-52E cells as a suitable tool for understanding and investigating the MoA of nephrotoxicants. This assay could enable the early identification of nephrotoxic compounds and finally reduce animal testing.
Collapse
Affiliation(s)
- Barbara Birk
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
| | | | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | | | - Meike M Amma
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; BASF Metabolome Solutions GmbH, Berlin, Germany
| | | |
Collapse
|
96
|
Chemical composition and biological activity of Peucedanum dhana A. Ham essential oil. Sci Rep 2021; 11:19079. [PMID: 34580393 PMCID: PMC8476492 DOI: 10.1038/s41598-021-98717-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/06/2021] [Indexed: 11/08/2022] Open
Abstract
The essential oil was extracted from Peucedanum dhana A. Ham, which grows in Thailand, using a Clevenger apparatus, resulting in an oil yield of 0.76% w/w. Forty-two compounds were identified using gas chromatography-mass spectrometry. The major compounds were trans-piperitol (51.23%), β-pinene (11.72%), o-cymene (11.12%), γ-terpinene (9.21%), and limonene (4.91%). The antimicrobial activity of the P. dhana essential oil was investigated by measuring the inhibition zone diameter, minimum inhibitory concentration (MIC), and minimum microbicidal concentration (MMC). The inhibition zone diameters of P. dhana essential oil (1000 µg/mL) against tested pathogens ranged from 10.70 to 40.80 mm. Significant antimicrobial activity against tested pathogens was obtained, with MIC and MMC values of 62.50–250 µg/mL and 250–1000 µg/mL, respectively. Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes exposed to P. dhana essential oil at the MIC were analysed by flow cytometry using propidium iodide (PI) and SYTO9 to assess membrane integrity compared to trans-piperitol and β-pinene. After 24 h, treatments with trans-piperitol resulted in the most significant cell membrane alteration and depolarization followed by P. dhana essential oil and β-pinene, respectively. It was demonstrated that the P. dhana essential oil presented antibacterial action against E. coli, P. aeruginosa, and E. aerogenes. The antioxidant activity of P. dhana essential oil was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) scavenging activity assays. The IC50 values obtained from the DPPH and ABTS methods were 9.13 and 9.36 mg/mL, respectively. The cytotoxic effect of P. dhana oil was tested against human colonic adenocarcinoma (SW480), human lung adenocarcinoma (A549), cervical cancer (Hela), and murine fibroblast (3T3L1) cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The essential oil had cytotoxicity against all cancer cells, with significant cytotoxicity towards SW480 cells. As a control experiment, two pure compounds—trans-piperitol and β-pinene, were also tested for their antimicrobial, antioxidant, and cytotoxic activity. Both compounds showed varied activity in all assays. The results indicate that P. dhana essential oil could be used as a source of functional ingredients in food and pharmaceutical applications.
Collapse
|
97
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
98
|
Colistin and Carbapenem-Resistant Acinetobacter baumannii Aci46 in Thailand: Genome Analysis and Antibiotic Resistance Profiling. Antibiotics (Basel) 2021; 10:antibiotics10091054. [PMID: 34572636 PMCID: PMC8468411 DOI: 10.3390/antibiotics10091054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the last-line antibiotics against invasive Gram-negative bacterial infection is a rising concern in public health. Multidrug resistant (MDR) Acinetobacter baumannii Aci46 can resist colistin and carbapenems with a minimum inhibitory concentration of 512 µg/mL as determined by microdilution method and shows no zone of inhibition by disk diffusion method. These phenotypic characteristics prompted us to further investigate the genotypic characteristics of Aci46. Next generation sequencing was applied in this study to obtain whole genome data. We determined that Aci46 belongs to Pasture ST2 and is phylogenetically clustered with international clone (IC) II as the predominant strain in Thailand. Interestingly, Aci46 is identical to Oxford ST1962 that previously has never been isolated in Thailand. Two plasmids were identified (pAci46a and pAci46b), neither of which harbors any antibiotic resistance genes but pAci46a carries a conjugational system (type 4 secretion system or T4SS). Comparative genomics with other polymyxin and carbapenem-resistant A. baumannii strains (AC30 and R14) identified shared features such as CzcCBA, encoding a cobalt/zinc/cadmium efflux RND transporter, as well as a drug transporter with a possible role in colistin and/or carbapenem resistance in A. baumannii. Single nucleotide polymorphism (SNP) analyses against MDR ACICU strain showed three novel mutations i.e., Glu229Asp, Pro200Leu, and Ala138Thr, in the polymyxin resistance component, PmrB. Overall, this study focused on Aci46 whole genome data analysis, its correlation with antibiotic resistance phenotypes, and the presence of potential virulence associated factors.
Collapse
|
99
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
100
|
Georgieva M, Heinonen T, Vitale A, Hargraves S, Causevic S, Pillonel T, Eberl L, Widmann C, Jacquier N. Bacterial surface properties influence the activity of the TAT-RasGAP 317-326 antimicrobial peptide. iScience 2021; 24:102923. [PMID: 34430812 PMCID: PMC8365389 DOI: 10.1016/j.isci.2021.102923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is an increasing threat for public health, underscoring the need for new antibacterial agents. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics. TAT-RasGAP317-326 is a recently described AMP effective against a broad range of bacteria, but little is known about the conditions that may influence its activity. Using RNA-sequencing and screening of mutant libraries, we show that Escherichia coli and Pseudomonas aeruginosa respond to TAT-RasGAP317-326 by regulating metabolic and stress response pathways, possibly implicating two-component systems. Our results also indicate that bacterial surface properties, in particular integrity of the lipopolysaccharide layer, influence peptide binding and entry. Finally, we found differences between bacterial species with respect to their rate of resistance emergence against this peptide. Our findings provide the basis for future investigation on the mode of action of TAT-RasGAP317-326, which may help developing antimicrobial treatments based on this peptide.
Collapse
Affiliation(s)
- Maria Georgieva
- Department of Biomedical Sciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Tytti Heinonen
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Simone Hargraves
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Senka Causevic
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne 1005, Switzerland
- Corresponding author
| | - Nicolas Jacquier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
- Corresponding author
| |
Collapse
|