51
|
Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol 2015; 6:311-317. [PMID: 26319434 PMCID: PMC4556768 DOI: 10.1016/j.redox.2015.07.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/08/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) against cancer has gained attention due to the successful outcome in some cancers, particularly those on the skin. However, there have been limitations to PDT applications in deep cancers and, occasionally, PDT treatment resulted in tumor recurrence. A better understanding of the underlying molecular mechanisms of PDT-induced cytotoxicity and cytoprotection should facilitate the development of better approaches to inhibit the cytoprotective effects and also augment PDT-mediated cytotoxicity. PDT treatment results in the induction of iNOS/NO in both the tumor and the microenvironment. The role of NO in cytotoxicity and cytoprotection was examined. The findings revealed that NO mediates its effects by interfering with a dysregulated pro-survival/anti-apoptotic NF-κB/Snail/YY1/RKIP loop which is often expressed in cancer cells. The cytoprotective effect of PDT-induced NO was the result of low levels of NO that activates the pro-survival/anti-apoptotic NF-κB, Snail, and YY1 and inhibits the anti-survival/pro-apoptotic and metastasis suppressor RKIP. In contrast, PDT-induced high levels of NO result in the inhibition of NF-kB, Snail, and YY1 and the induction of RKIP, all of which result in significant anti-tumor cytotoxicity. The direct role of PDT-induced NO effects was corroborated by the use of the NO inhibitor, l-NAME, which reversed the PDT-mediated cytotoxic and cytoprotective effects. In addition, the combination of the NO donor, DETANONOate, and PDT potentiated the PDT-mediated cytotoxic effects. These findings revealed a new mechanism of PDT-induced NO effects and suggested the potential therapeutic application of the combination of NO donors/iNOS inducers and PDT in the treatment of various cancers. In addition, the study suggested that the combination of PDT with subtoxic cytotoxic drugs will result in significant synergy since NO has been shown to be a significant chemo-immunosensitizing agent to apoptosis. PDT-mediated cytotoxic and cytoprotective effects depend also by the induction of NO from tumor. The PDT-induced NO modulates the dysregulated NF-kB/Snail/RKIP loop. The direct role of NO induction by PDT was corroborated by the use of the NO inhibitor, l-NAME. The combination of an NO donor and PDT resulted in a increased cytotoxic effect, in vitro and in vivo. Novel potential therapeutic applications are proposed for the use of PDT combined with NO donors.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Emilia Della Pietra
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
52
|
Grimm M, Calgéer B, Teriete P, Biegner T, Munz A, Reinert S. Targeting thiamine-dependent enzymes for metabolic therapies in oral squamous cell carcinoma? Clin Transl Oncol 2015; 18:196-205. [DOI: 10.1007/s12094-015-1352-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
|
53
|
Shen H, Hau E, Joshi S, Dilda PJ, McDonald KL. Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism. Mol Cancer Ther 2015; 14:1794-804. [PMID: 26063767 DOI: 10.1158/1535-7163.mct-15-0247] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022]
Abstract
Because radiotherapy significantly increases median survival in patients with glioblastoma, the modulation of radiation resistance is of significant interest. High glycolytic states of tumor cells are known to correlate strongly with radioresistance; thus, the concept of metabolic targeting needs to be investigated in combination with radiotherapy. Metabolically, the elevated glycolysis in glioblastoma cells was observed postradiotherapy together with upregulated hypoxia-inducible factor (HIF)-1α and its target pyruvate dehydrogenase kinase 1 (PDK1). Dichloroacetate, a PDK inhibitor currently being used to treat lactic acidosis, can modify tumor metabolism by activating mitochondrial activity to force glycolytic tumor cells into oxidative phosphorylation. Dichloroacetate alone demonstrated modest antitumor effects in both in vitro and in vivo models of glioblastoma and has the ability to reverse the radiotherapy-induced glycolytic shift when given in combination. In vitro, an enhanced inhibition of clonogenicity of a panel of glioblastoma cells was observed when dichloroacetate was combined with radiotherapy. Further mechanistic investigation revealed that dichloroacetate sensitized glioblastoma cells to radiotherapy by inducing the cell-cycle arrest at the G2-M phase, reducing mitochondrial reserve capacity, and increasing the oxidative stress as well as DNA damage in glioblastoma cells together with radiotherapy. In vivo, the combinatorial treatment of dichloroacetate and radiotherapy improved the survival of orthotopic glioblastoma-bearing mice. In conclusion, this study provides the proof of concept that dichloroacetate can effectively sensitize glioblastoma cells to radiotherapy by modulating the metabolic state of tumor cells. These findings warrant further evaluation of the combination of dichloroacetate and radiotherapy in clinical trials.
Collapse
Affiliation(s)
- Han Shen
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Eric Hau
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia. Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
| | - Swapna Joshi
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Pierre J Dilda
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerrie L McDonald
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
54
|
Zhang C, Liu C, Cao S, Xu Y. Elucidation of drivers of high-level production of lactates throughout a cancer development. J Mol Cell Biol 2015; 7:267-79. [PMID: 26003569 DOI: 10.1093/jmcb/mjv031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/07/2015] [Indexed: 01/31/2023] Open
Abstract
Lactates play key roles in facilitating or protecting the development of a cancer in most cancer types. While its beneficial effects to cancer development have been extensively studied, very little is known about what derives the high-level production of lactates in a cancer throughout its entire development. Here we present a novel computational analysis of transcriptomic data of nine primary cancer types, plus a few precancerous and metastatic cancer, to address this issue. Our approach is to identify stress types, which are known to play key roles in cancer development and show strong co-expressions with lactate dehydrogenase-A (LDHA), at different stages of cancer development. A number of interesting observations are made through our analyses, including (i) all nine primary cancer types show similar association patterns between stresses and LDHA, namely the strengths of the associations increase from early- to intermediate-stage cancer tissues but then make a substantial down turn at the most advanced stage; (ii) while the detailed stress types associated with LDHA may vary across different cancer types, stresses induced by apoptosis and adaptive immune responses are present universally, suggesting that these two stresses are possibly two key drivers to keep the high-level production of lactates; and (iii) there is a clear distinction between stress types associated with LDHA in precancerous tissues vs. cancer and metastasis tissues. We anticipate that the analyses can provide highly useful information for designing personalized treatments for different cancers at different stages, as stopping lactate production could have devastating effects on a cancer development.
Collapse
Affiliation(s)
- Chi Zhang
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Chao Liu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Sha Cao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA College of Computer Science and Technology, Jilin University, Changchun, China School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
55
|
Basic and Clinical Aspects of Photodynamic Therapy. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Meng MB, Wang HH, Guo WH, Wu ZQ, Zeng XL, Zaorsky NG, Shi HS, Qian D, Niu ZM, Jiang B, Zhao LJ, Yuan ZY, Wang P. Targeting pyruvate kinase M2 contributes to radiosensitivity of non-small cell lung cancer cells in vitro and in vivo. Cancer Lett 2014; 356:985-93. [PMID: 25444918 DOI: 10.1016/j.canlet.2014.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 11/09/2014] [Indexed: 02/05/2023]
Abstract
Aerobic glycolysis, a metabolic hallmark of cancer, is associated with radioresistance in non-small cell lung cancer (NSCLC). Pyruvate kinase M2 isoform (PKM2), a key regulator of glycolysis, is expressed exclusively in cancers. However, the impact of PKM2 silencing on the radiosensitivity of NSCLC has not been explored. Here, we show a plasmid of shRNA-PKM2 for expressing a short hairpin RNA targeting PKM2 (pshRNA-PKM2) and demonstrate that treatment with pshRNA-PKM2 effectively inhibits PKM2 expression in NSCLC cell lines and xenografts. Silencing of PKM2 expression enhanced ionizing radiation (IR)-induced apoptosis and autophagy in vitro and in vivo, accompanied by inhibiting AKT and PDK1 phosphorylation, but enhanced ERK and GSK3β phosphorylation. These results demonstrated that knockdown of PKM2 expression enhances the radiosensitivity of NSCLC cell lines and xenografts as well as may aid in the design of new therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wen-Hao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Clinical Medicine School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xian-Liang Zeng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Hua-Shan Shi
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Clinical Medicine School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Qian
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhi-Min Niu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Jiang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu-Jun Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
57
|
Plotnikoff GA. Introduction: What to Eat when you Can't Eat. Glob Adv Health Med 2014; 3:56-72. [PMID: 25568833 PMCID: PMC4268644 DOI: 10.7453/gahmj.2014.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
58
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
59
|
Sawayama H, Ishimoto T, Sugihara H, Miyanari N, Miyamoto Y, Baba Y, Yoshida N, Baba H. Clinical impact of the Warburg effect in gastrointestinal cancer (review). Int J Oncol 2014; 45:1345-54. [PMID: 25070157 DOI: 10.3892/ijo.2014.2563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/09/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer cells exhibit altered glucose metabolism, termed the Warburg effect, which is described by the increased uptake of glucose and the conversion of glucose to lactate in cancer cells under adequate oxygen tension. Recent genetic and metabolic analyses have provided insights into the molecular mechanisms of genes that are involved in the Warburg effect and tumorigenesis. The aim of this review was to discuss significant molecular insights into clinical impacts of the Warburg effect such as oncogenic alterations and overexpression of transcriptional factors (c-Myc and hypoxia-inducible factor), metabolite transporters (glucose transporters) and glycolytic enzymes (hexokinases 2, pyruvate kinase M2, pyruvate dehydrogenase kinase, isozyme 1, lactate dehydrogenase A). Overexpression of transcriptional factors, metabolite transporters and glycolytic enzymes was associated with poor prognosis and may be associated with chemoradiotherapy resistance in multiple gastrointestinal cancer cell types. Novel small molecules targeting these enzymes or transporters exert anti-proliferative effects. Glycolytic enzymes and metabolite transporters may be significant biomarkers for predicting cancer prognosis and may be therapeutic targets in gastrointestinal cancer.
Collapse
Affiliation(s)
- Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobutomo Miyanari
- Department of Surgery, National Hospital Organization Kumamoto Medical Center, Kumamoto 860-0008, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
60
|
Breitbach S, Sterzing B, Magallanes C, Tug S, Simon P. Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise. J Appl Physiol (1985) 2014; 117:119-30. [DOI: 10.1152/japplphysiol.00002.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To investigate the kinetics of cell-free DNA (cfDNA) due to exercise, we established a direct real-time PCR for the quantification of cfDNA from unpurified capillary plasma by amplification of a 90- and a 222-bp multilocus L1PA2 sequence. Twenty-six male athletes performed an incremental treadmill test. For cfDNA measurement, capillary samples were collected serially from the fingertip preexercise, during, and several times postexercise. Venous blood was drawn before and immediately after exercise to compare capillary and venous cfDNA values. To elucidate the strongest association of cfDNA accumulations with either cardiorespiratory or metabolic function during exercise, capillary cfDNA values were correlated with standard measures like heart rate, oxygen consumption, or lactate concentrations. The venous cfDNA concentrations were significantly higher compared with the capillary plasma, but in both fractions cfDNA increased 9.8-fold and the values correlated significantly ( r = 0.796). During incremental treadmill running, the capillary cfDNA concentrations increased nearly parallel to the lactate values. The values correlated best with heart rate and energy expenditure, followed by oxygen consumption, Borg values, and lactate levels (0.710 ≤ r ≥ 0.808). With this article, we present a sensitive procedure for the direct quantification of cfDNA in unpurified capillary plasma instead of purified venous plasma. Further studies should investigate the differences between capillary and venous cfDNA that might mirror different physiological mechanisms. Enhanced cardiorespiratory function during exercise might lead to the accumulation of cfDNA via the release of stress hormones that already increase at intensities below the anaerobic threshold. Furthermore, cfDNA might be released by neutrophil extracellular traps.
Collapse
Affiliation(s)
- Sarah Breitbach
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn Sterzing
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carlos Magallanes
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Suzan Tug
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
61
|
Yang W, Wei J, Guo T, Shen Y, Liu F. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance. Exp Cell Res 2014; 326:22-35. [PMID: 24930954 DOI: 10.1016/j.yexcr.2014.05.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches.
Collapse
Affiliation(s)
- Wei Yang
- Department of Radiobiology, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, No.199 Renai Road, Suzhou 215123, China.
| | - Jing Wei
- Department of Radiobiology, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, No.199 Renai Road, Suzhou 215123, China
| | - Tiantian Guo
- Department of Radiobiology, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, No.199 Renai Road, Suzhou 215123, China
| | - Yueming Shen
- Department of Radiobiology, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, No.199 Renai Road, Suzhou 215123, China
| | - Fenju Liu
- Department of Radiobiology, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, No.199 Renai Road, Suzhou 215123, China
| |
Collapse
|
62
|
Proteomic analysis of effects by x-rays and heavy ion in HeLa cells. Radiol Oncol 2014; 48:142-54. [PMID: 24991204 PMCID: PMC4078033 DOI: 10.2478/raon-2013-0087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/19/2013] [Indexed: 02/06/2023] Open
Abstract
Background Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiation-induced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects. Materials and methods. The radioresistant cell line Hela cells were used. In our study, the stable isotope labelling with amino acids (SILAC) method coupled with 2D-LC-LTQ Orbitrap mass spectrometry was applied to identity and quantify the differentially expressed proteins after irradiation. The Western blotting experiment was used to validate the data. Results A total of 123 and 155 significantly changed proteins were evaluated with treatment of 2 Gy carbon and X-rays after radiation 1 h, respectively. These deregulated proteins were found to be mainly involved in several kinds of metabolism processes through Gene Ontology (GO) enrichment analysis. The two groups perform different response to different types of irradiation. Conclusions The radioresistance of the cancer cells treated with 2 Gy X-rays irradiation may be largely due to glycolysis enhancement, while the greater killing effect of 2 Gy carbon may be due to unchanged glycolysis and decreased amino acid metabolism.
Collapse
|
63
|
Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy. PLoS One 2014; 9:e95529. [PMID: 24763311 PMCID: PMC3999036 DOI: 10.1371/journal.pone.0095529] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/27/2014] [Indexed: 01/18/2023] Open
Abstract
Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.
Collapse
|
64
|
The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin Oncol (R Coll Radiol) 2013; 25:569-77. [PMID: 23850153 DOI: 10.1016/j.clon.2013.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/17/2022]
Abstract
A comprehensive, mechanistic understanding of radiobiological phenomena that can be integrated within the broader context of cancer biology offers the prospect of transforming clinical practice in radiation oncology. In this review, we revisit the six established biological hallmarks of cancer and examine how they have provided insights into novel therapeutic strategies. In addition, we discuss the potential of two emerging hallmarks to continue to expand our understanding beyond the narrow confines of the traditional 5Rs of radiobiology.
Collapse
|
65
|
Zwicker F, Kirsner A, Peschke P, Roeder F, Debus J, Huber PE, Weber KJ. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo. Strahlenther Onkol 2013; 189:684-92. [PMID: 23793865 DOI: 10.1007/s00066-013-0354-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/14/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. MATERIALS AND METHODS The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. RESULTS DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. CONCLUSION DCA induced tumor-specific radiosensitization in vitro but not in vivo. DCA also induced development of hypoxia in tumor tissue in vivo. Further investigations relating to the interplay between tumor cell metabolism and tumor microenvironment are necessary to explain the limited success of metabolic targeting in radiotherapy.
Collapse
Affiliation(s)
- F Zwicker
- Department of Radiation Oncology, University Hospital Center Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
66
|
Meijer TWH, Kaanders JHAM, Span PN, Bussink J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 2013; 18:5585-94. [PMID: 23071360 DOI: 10.1158/1078-0432.ccr-12-0858] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy, an important treatment modality in oncology, kills cells through induction of oxidative stress. However, malignant tumors vary in their response to irradiation as a consequence of resistance mechanisms taking place at the molecular level. It is important to understand these mechanisms of radioresistance, as counteracting them may improve the efficacy of radiotherapy. In this review, we describe how the hypoxia-inducible factor 1 (HIF-1) pathway has a profound effect on the response to radiotherapy. The main focus will be on HIF-1-controlled protection of the vasculature postirradiation and on HIF-1 regulation of glycolysis and the pentose phosphate pathway. This aberrant cellular metabolism increases the antioxidant capacity of tumors, thereby countering the oxidative stress caused by irradiation. From the results of translational studies and the first clinical phase I/II trials, it can be concluded that targeting HIF-1 and tumor glucose metabolism at several levels reduces the antioxidant capacity of tumors, affects the tumor microenvironment, and sensitizes various solid tumors to irradiation.
Collapse
Affiliation(s)
- Tineke W H Meijer
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
67
|
Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, Gounon P, Lacas-Gervais S, Noël A, Pouysségur J, Barbry P, Mazure NM, Mari B. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis 2013; 4:e544. [PMID: 23492775 PMCID: PMC3615727 DOI: 10.1038/cddis.2013.71] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The resistance of hypoxic cells to radiotherapy and chemotherapy is a major problem in the treatment of cancer. Recently, an additional mode of hypoxia-inducible factor (HIF)-dependent transcriptional regulation, involving modulation of a specific set of micro RNAs (miRNAs), including miR-210, has emerged. We have recently shown that HIF-1 induction of miR-210 also stabilizes HIF-1 through a positive regulatory loop. Therefore, we hypothesized that by stabilizing HIF-1 in normoxia, miR-210 may protect cancer cells from radiation. We developed a non-small cell lung carcinoma (NSCLC)-derived cell line (A549) stably expressing miR-210 (pmiR-210) or a control miRNA (pmiR-Ctl). The miR-210-expressing cells showed a significant stabilization of HIF-1 associated with mitochondrial defects and a glycolytic phenotype. Cells were subjected to radiation levels ranging from 0 to 10 Gy in normoxia and hypoxia. Cells expressing miR-210 in normoxia had the same level of radioresistance as control cells in hypoxia. Under hypoxia, pmiR-210 cells showed a low mortality rate owing to a decrease in apoptosis, with an ability to grow even at 10 Gy. This miR-210 phenotype was reproduced in another NSCLC cell line (H1975) and in HeLa cells. We have established that radioresistance was independent of p53 and cell cycle status. In addition, we have shown that genomic double-strand breaks (DSBs) foci disappear faster in pmiR-210 than in pmiR-Ctl cells, suggesting that miR-210 expression promotes a more efficient DSB repair. Finally, HIF-1 invalidation in pmiR-210 cells removed the radioresistant phenotype, showing that this mechanism is dependent on HIF-1. In conclusion, miR-210 appears to be a component of the radioresistance of hypoxic cancer cells. Given the high stability of most miRNAs, this advantage could be used by tumor cells in conditions where reoxygenation has occurred and suggests that strategies targeting miR-210 could enhance tumor radiosensitization.
Collapse
Affiliation(s)
- S Grosso
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique, CNRS UMR 7275, Sophia Antipolis, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Deiab S, Mazzio E, Messeha S, Mack N, Soliman KFA. High-Throughput Screening to Identify Plant Derived Human LDH-A Inhibitors. ACTA ACUST UNITED AC 2013; 3:603-615. [PMID: 24478981 PMCID: PMC3903096 DOI: 10.9734/ejmp/2013/5995] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aims Lactate dehydrogenase (LDH)-A is highly expressed in diverse human malignant tumors, parallel to aggressive metastatic disease, resistance to radiation/chemotherapy and clinically poor outcome. Although this enzyme constitutes a plausible target in treatment of advanced cancer, there are few known LDH-A inhibitors. Study Design In this work, we utilized a high-throughput enzyme micro-array format to screen and evaluate > 900 commonly used medicinal plant extracts (0.00001-.5 mg/ml) for capacity to inhibit activity of recombinant full length human LDHA; EC .1.1.1.27. Methodology The protein sequence of purified enzyme was confirmed using 1D gel electrophoresis- MALDI-TOF-MS/MS, enzyme activity was validated by oxidation of NADH (500μM) and kinetic inhibition established in the presence of a known inhibitor (Oxalic Acid). Results Of the natural extracts tested, the lowest IC50s [<0.001 mg/ml] were obtained by: Chinese Gallnut (Melaphis chinensis gallnut), Bladderwrack (Fucus vesiculosus), Kelp (Laminaria Japonica) and Babul (Acacia Arabica). Forty-six additional herbs contained significant LDH-A inhibitory properties with IC50s [<0.07 mg/ml], some of which have common names of Arjun, Pipsissewa, Cinnamon, Pink Rose Buds/Petals, Wintergreen, Cat’s Claw, Witch Hazel Root and Rhodiola Root. Conclusion These findings reflect relative potency by rank of commonly used herbs and plants that contain human LDH-A inhibitory properties. Future research will be required to isolate chemical constituents within these plants responsible for LDH-A inhibition and investigate potential therapeutic application.
Collapse
Affiliation(s)
- S Deiab
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida 32307, USA
| | - E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida 32307, USA
| | - S Messeha
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida 32307, USA
| | - N Mack
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida 32307, USA
| | - K F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
69
|
Zhou S, Liu R, Yuan K, Yi T, Zhao X, Huang C, Wei Y. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. MASS SPECTROMETRY REVIEWS 2012; 32:267-311. [PMID: 23165949 DOI: 10.1002/mas.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 02/05/2023]
Abstract
Tumorigenesis is always concomitant with microenvironmental alterations. The tumor microenvironment is a heterogeneous and complex milieu, which exerts a variety of stresses on tumor cells for proliferation, survival, or death. Recently, accumulated evidence revealed that metabolic and oxidative stresses both play significant roles in tumor development and progression that converge on a common autophagic pathway. Tumor cells display increased metabolic autonomy, and the hallmark is the exploitation of aerobic glycolysis (termed Warburg effect), which increased glucose consumption and decreased oxidative phosphorylation to support growth and proliferation. This characteristic renders cancer cells more aggressive; they devour tremendous amounts of nutrients from microenvironment to result in an ever-growing appetite for new tumor vessel formation and the release of more "waste," including key determinants of cell fate like lactate and reactive oxygen species (ROS). The intracellular ROS level of cancer cells can also be modulated by a variety of stimuli in the tumor microenvironment, such as pro-growth and pro-inflammatory factors. The intracellular redox state serves as a double-edged sword in tumor development and progression: ROS overproduction results in cytotoxic effects and might lead to apoptotic cell death, whereas certain level of ROS can act as a second-messenger for regulation of such cellular processes as cell survival, proliferation, and metastasis. The molecular mechanisms for cancer cell responses to metabolic and oxidative stresses are complex and are likely to involve multiple molecules or signaling pathways. In addition, the expression and modification of these proteins after metabolic or oxidative stress challenge are diverse in different cancer cells and endow them with different functions. Therefore, MS-based high-throughput platforms, such as proteomics, are indispensable in the global analysis of cancer cell responses to metabolic and oxidative stress. Herein, we highlight recent advances in the understanding of the metabolic and oxidative stresses associated with tumor progression with proteomics-based systems biology approaches.
Collapse
Affiliation(s)
- Shengtao Zhou
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
70
|
Granchi C, Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem 2012; 7:1318-50. [PMID: 22684868 PMCID: PMC3516916 DOI: 10.1002/cmdc.201200176] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Indexed: 12/12/2022]
Abstract
Can we consider cancer to be a "metabolic disease"? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have increased needs for both energy and biosynthetic intermediates to support their growth and invasiveness. However, their high proliferation rate often generates regions that are insufficiently oxygenated. Therefore, their carbohydrate metabolism must rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the Warburg effect, constitutes a fundamental adaptation of tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that antiglycolytic agents may cause serious side effects toward normal cells. The key to selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anticancer drugs with minimal toxicity. There is growing evidence to support many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant antiglycolytic agents that have been investigated thus far for the treatment of cancer.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| | - Filippo Minutolo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| |
Collapse
|
71
|
Affiliation(s)
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
72
|
Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer Stem Cells as a Predictive Factor in Radiotherapy. Semin Radiat Oncol 2012; 22:151-74. [DOI: 10.1016/j.semradonc.2011.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
73
|
Yaromina A, Meyer S, Fabian C, Zaleska K, Sattler UGA, Kunz-Schughart LA, Mueller-Klieser W, Zips D, Baumann M. Effects of three modifiers of glycolysis on ATP, lactate, hypoxia, and growth in human tumor cell lines in vivo. Strahlenther Onkol 2012; 188:431-7. [PMID: 22349632 DOI: 10.1007/s00066-011-0054-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/08/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND High pretreatment tumor lactate content is associated with poor outcome after fractionated irradiation in human squamous cell carcinoma (hSCC) xenografts. Therefore, decreasing lactate content might be a promising approach for increasing tumor radiosensitivity. As the basis for such experiments, the effects of the biochemical inhibitors pyruvate dehydrogenase kinase dichloroacetate (DCA), lactate dehydrogenase oxamate, and monocarboxylic acid transporter-1 α-cyano-4-hydroxycinnamate (CHC) on tumor micromilieu and growth were investigated. MATERIALS AND METHODS Oxygen consumption (OCR) and extracellular acidification rates (ECAR) were measured in FaDu and UT-SCC-5 hSCC in response to DCA in vitro. Mice bearing FaDu, UT-SCC-5, and WiDr colorectal adenocarcinoma received either DCA in drinking water or DCA injected twice a day, or CHC injected daily. WiDr was also treated daily with oxamate. FaDu and UT-SCC-5 were either excised 8 days after treatment for histology or tumor growth was monitored. WiDr tumors were excised at 8 mm. Effect of inhibitors on ATP, lactate, hypoxia, and Ki67 labeling index (LI) was evaluated. RESULTS DCA increased OCR and decreased ECAR in vitro. None of the treatments with inhibitors significantly changed lactate content, hypoxia levels, and Ki67 LI in the three tumor lines in vivo. ATP concentration significantly decreased after only daily twice injections of DCA in FaDu accompanied by a significant increase in necrotic fraction. Tumor growth was not affected by any of the treatments. CONCLUSION Overall, tumor micromilieu and tumor growth could not be changed by glycolysis modifiers in the three tumor cell lines in vivo. Further studies are necessary to explore the impact of metabolic targets on radiation response.
Collapse
Affiliation(s)
- A Yaromina
- OncoRay - National Center for Radiation Research in Oncology, Dept. of Radiation Oncology, Experimental Radiotherapy, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Fabian C, Koetz L, Favaro E, Indraccolo S, Mueller-Klieser W, Sattler UGA. Protein profiles in human ovarian cancer cell lines correspond to their metabolic activity and to metabolic profiles of respective tumor xenografts. FEBS J 2012; 279:882-91. [PMID: 22240028 DOI: 10.1111/j.1742-4658.2012.08479.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many solid tumors show a large variability in glycolytic activity and lactate accumulation, which has been correlated with different metastatic spread, radioresistance and patient survival. To investigate potential differences in protein profiles underlying these metabolic variances, the highly glycolytic human ovarian cancer cell line OC316 was investigated and compared with the less glycolytic line IGROV-1. Extracellular acidification and oxygen consumption were analyzed with an extracellular flux analyzer. Glycolysis-associated proteins, including specific membrane transporters, were quantified through in-cell western analyses. Metabolic properties of corresponding tumor xenografts were assessed via induced metabolic bioluminescence imaging. Extracellular flux analyses revealed elevated bioenergetics of OC316 cells. Hexokinase II, pyruvate kinase, pyruvate dehydrogenase E1 beta subunit and pyruvate dehydrogenase kinase 1, as well as the glucose transporter 1 and the monocarboxylate transporter 4, were overexpressed in these cells compared with IGROV-1. When generating tumor xenografts in SCID mice, cells maintained their glycolytic behavior, i.e. OC316 showed higher lactate concentrations than IGROV-1 tumors. In summary, a congruency between protein profiles and metabolic properties has been demonstrated in the human ovarian cancer lines investigated. Also, a perpetuation of glycolytic characteristics during the transition from in vitro to the in vivo situation has been documented. This model system could be useful for systematic studies on therapeutic intervention by manipulation of tumor glycolysis and associated pathways.
Collapse
Affiliation(s)
- Christian Fabian
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
Increased glucose uptake and accumulation of lactate, even under normoxic conditions (i.e., aerobic glycolysis or the Warburg Effect), is a common feature of cancer cells. This phenomenon clearly indicates that lactate is not a surrogate of tumor hypoxia. Tumor lactate can predict for metastases and overall survival of patients, as shown by several studies of different entities. Metastasis of tumors is promoted by lactate-induced secretion of hyaluronan by tumor-associated fibroblasts that create a milieu favorable for migration. Lactate itself has been found to induce the migration of cells and cell clusters. Furthermore, radioresistance has been positively correlated with lactate concentrations, suggesting an antioxidative capacity of lactate. Findings on interactions of tumor metabolites with immune cells indicate a contribution of lactate to the immune escape. Furthermore, lactate bridges the gap between high lactate levels in wound healing, chronic inflammation, and cancer development. Tumor cells ensure sufficient oxygen and nutrient supply for proliferation through lactate-induced secretion of VEGF, resulting in the formation of new vessels. In summary, accumulation of lactate in solid tumors is a pivotal and early event in the development of malignancies. The determination of lactate should enter further clinical trials to confirm its relevance in cancer biology.
Collapse
Affiliation(s)
- Franziska Hirschhaeuser
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
76
|
Bohndiek SE, Kettunen MI, Hu DE, Kennedy BWC, Boren J, Gallagher FA, Brindle KM. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc 2011; 133:11795-801. [PMID: 21692446 PMCID: PMC3144679 DOI: 10.1021/ja2045925] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 01/12/2023]
Abstract
Dynamic nuclear polarization (DNP) of (13)C-labeled metabolic substrates in vitro and their subsequent intravenous administration allow both the location of the hyperpolarized substrate and the dynamics of its subsequent conversion into other metabolic products to be detected in vivo. We report here the hyperpolarization of [1-(13)C]-ascorbic acid (AA) and [1-(13)C]-dehydroascorbic acid (DHA), the reduced and oxidized forms of vitamin C, respectively, and evaluate their performance as probes of tumor redox state. Solution-state polarization of 10.5 ± 1.3% was achieved for both forms at pH 3.2, whereas at pH 7.0, [1-(13)C]-AA retained polarization of 5.1 ± 0.6% and [1-(13)C]-DHA retained 8.2 ± 1.1%. The spin-lattice relaxation times (T(1)'s) for these labeled nuclei are long at 9.4 T: 15.9 ± 0.7 s for AA and 20.5 ± 0.9 s for DHA. Extracellular oxidation of [1-(13)C]-AA and intracellular reduction of [1-(13)C]-DHA were observed in suspensions of murine lymphoma cells. The spontaneous reaction of DHA with the cellular antioxidant glutathione was monitored in vitro and was approximately 100-fold lower than the rate observed in cell suspensions, indicating enzymatic involvement in the intracellular reduction. [1-(13)C]-DHA reduction was also detected in lymphoma tumors in vivo. In contrast, no detectable oxidation of [1-(13)C]-AA was measured in the same tumors, consistent with the notion that tumors maintain a reduced microenvironment. This study demonstrates that hyperpolarized (13)C-labeled vitamin C could be used as a noninvasive biomarker of redox status in vivo, which has the potential to translate to the clinic.
Collapse
Affiliation(s)
- Sarah E. Bohndiek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| | - Mikko I. Kettunen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| | - De-en Hu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| | - Brett W. C. Kennedy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joan Boren
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| | - Ferdia A. Gallagher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| | - Kevin M. Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K., and Cancer Research UK Cambridge Research Institute, Li-Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K
| |
Collapse
|
77
|
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61:250-81. [PMID: 21617154 PMCID: PMC3209659 DOI: 10.3322/caac.20114] [Citation(s) in RCA: 3453] [Impact Index Per Article: 246.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
Collapse
Affiliation(s)
- Patrizia Agostinis
- Department of Molecular Cell Biology, Cell Death Research & Therapy Laboratory, Catholic University of Leuven, B-3000 Leuven, Belgium,
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA,
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA,
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA,
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA,
| | | | - Johan Moan
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
- Institute of Physics, University of Oslo, Blindern 0316 Oslo, Norway;
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
| | - Dominika Nowis
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology & Immunology, University of Liège, B-4000 Liège Belgium,
| | - Brian C. Wilson
- Ontario Cancer Institute/University of Toronto, Toronto, ON M5G 2M9, Canada,
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| |
Collapse
|
78
|
Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport. Pflugers Arch 2011; 461:527-36. [DOI: 10.1007/s00424-011-0945-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/21/2022]
|
79
|
FDG for dose painting: A rational choice. Radiother Oncol 2010; 97:163-4. [DOI: 10.1016/j.radonc.2010.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/16/2010] [Indexed: 12/11/2022]
|
80
|
Jamal M, Rath BH, Williams ES, Camphausen K, Tofilon PJ. Microenvironmental regulation of glioblastoma radioresponse. Clin Cancer Res 2010; 16:6049-59. [PMID: 21037023 DOI: 10.1158/1078-0432.ccr-10-2435] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Brain tumor xenografts initiated from human glioblastoma (GBM) stem-like cells (TSC) simulate the biological characteristics of GBMs in situ. Therefore, to determine whether the brain microenvironment affects the intrinsic radiosensitivity of GBM cells, we compared the radioresponse of GBM TSCs grown in vitro and as brain tumor xenografts. EXPERIMENTAL DESIGN As indicators of DNA double-strand breaks (DSB), γH2AX, and 53BP1 foci were defined after irradiation of 2 GBM TSC lines grown in vitro and as orthotopic xenografts in nude mice. Microarray analysis was conducted to compare gene expression patterns under each growth condition. RESULTS Dispersal of radiation-induced γH2AX and 53BP1 foci was faster in the tumor cells grown as orthotopic xenografts compared with cells irradiated in vitro. In addition, cells irradiated in vivo were approximately 3-fold less susceptible to foci induction as compared with cells grown in vitro. Microarray analysis revealed a significant number of genes whose expression was commonly affected in the 2 GBM models by orthotopic growth conditions. Consistent with the decrease in sensitivity to foci induction, genes related to reactive oxygen species (ROS) metabolism were expressed at higher levels in the brain tumor xenografts. CONCLUSION γH2AX and 53BP1 foci analyses indicate that GBM cells irradiated within orthotopic xenografts have a greater capacity to repair DSBs and are less susceptible to their induction than tumor cells irradiated under in vitro growth conditions. Because DSB induction and repair are critical determinants of radiosensitivity, these results imply that the brain microenvironment contributes to GBM radioresistance.
Collapse
Affiliation(s)
- Muhammad Jamal
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
81
|
Rotte A, Pasham V, Eichenmüller M, Bhandaru M, Föller M, Lang F. Upregulation of Na+/H+ exchanger by the AMP-activated protein kinase. Biochem Biophys Res Commun 2010; 398:677-82. [PMID: 20609358 DOI: 10.1016/j.bbrc.2010.06.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
Abstract
AMP-activated protein kinase (AMPK) is activated upon energy depletion and serves to restore energy balance by stimulating energy production and limiting energy utilization. Specifically, it enhances cellular glucose uptake by stimulating GLUT and SGLT1 and glucose utilization by stimulating glycolysis. During O(2) deficiency glycolytic degradation of glucose leads to formation of lactate and H(+), thus imposing an acid load to the energy-deficient cell. Cellular acidification inhibits glycolysis and thus impedes glucose utilization. Maintenance of glycolysis thus requires cellular H(+) export. The present study explored whether AMPK influences Na(+)/H(+) exchanger (NHE) activity and/or Na(+)-independent acid extrusion. NHE1 expression was determined by RT-PCR and Western blotting. Cytosolic pH (pH(i)) was estimated utilizing BCECF fluorescence and Na(+)/H(+) exchanger activity from the Na(+)-dependent re-alkalinization (DeltapH(i)) after an ammonium pulse. As a result, human embryonic kidney (HEK) cells express NHE1. The pH(i) and DeltapH(i) in those cells were significantly increased by treatment with AMPK stimulator AICAR (1mM) and significantly decreased by AMPK inhibitor compound C (10 microM). The effect of AICAR on pH(i) and DeltapH(i) was blunted in the presence of the Na(+)/H(+) exchanger inhibitor cariporide (10microM), but not by the H(+) ATPase inhibitor bafilomycin (10nM). AICAR significantly enhanced lactate formation, an effect significantly blunted in the presence of cariporide. These observations disclose a novel function of AMPK, i.e. regulation of cytosolic pH.
Collapse
Affiliation(s)
- Anand Rotte
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, D72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|