51
|
Bachtarzi N, Kharroub K, Ruas-Madiedo P. Exopolysaccharide-producing lactic acid bacteria isolated from traditional Algerian dairy products and their application for skim-milk fermentations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
52
|
Fu G, Zhao K, Chen H, Wang Y, Nie L, Wei H, Wan C. Effect of 3 lactobacilli on immunoregulation and intestinal microbiota in a β-lactoglobulin–induced allergic mouse model. J Dairy Sci 2019; 102:1943-1958. [DOI: 10.3168/jds.2018-15683] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
|
53
|
Jia K, Tao X, Liu Z, Zhan H, He W, Zhang Z, Zeng Z, Wei H. Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties. Int J Biol Macromol 2018; 128:710-717. [PMID: 30594615 DOI: 10.1016/j.ijbiomac.2018.12.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
In this study exopolysaccharide (EPS) of Enterococcus faecium WEFA23 from healthy infant's feces was yielded as high as 130 mg/L by fermentation. By purification the EPS was further fractioned into A23-1, A23-2, A23-3 and A23-4 on HiTrap Q HP and Superdex G-200 column. As the major purified fractions, A23-2 and A23-4 were analyzed for the preliminary structures and investigated for the biological properties in vitro. The molecular weight of A23-2 and A23-4 was 2.50 × 104 Da and 3.23 × 104 Da, respectively. A23-2 was composed of mannose, glucose and galactose with a ratio of 1.38:1.00:1.42, while A23-4 consisted of only mannose. The antioxidant ability of A23-2 was significantly higher than that of A23-4, as proved by scavenging test of DPPH radical, hydroxyl radical and superoxide radical. Both A23-2 and A23-4 exhibited strong inhibition against the adhesion of L. monocytogenes CMCC54007 on HT-29 cells no matter for the styles of competition, displacement and exclusion. Notably, for exclusion they had a maximal inhibition rate of 89.85 ± 0.46% and 90.81 ± 2.29%, respectively, at 200 μg/mL.
Collapse
Affiliation(s)
- Kaiying Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhengqi Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weijun He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
54
|
He Y, Xu X, Zhang F, Xu D, Liu Z, Tao X, Wei H. Anti-adhesion of probiotic Enterococcus faecium WEFA23 against five pathogens and the beneficial effect of its S-layer proteins against Listeria monocytogenes. Can J Microbiol 2018; 65:175-184. [PMID: 30395485 DOI: 10.1139/cjm-2018-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enterococcus faecium WEFA23 is a potential probiotic strain isolated from Chinese infant feces. In this study, the antagonistic activity of E. faecium WEFA23 on adhesion to pathogens was investigated. Enterococcus faecium WEFA23 was able to compete, exclude, and displace the adhesion of Escherichia coli O157:H7, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes CMCC54007, Staphylococcus aureus CMCC26003, and Shigella sonnei ATCC 25931 to Caco-2 cells. Among them, L. monocytogenes achieved the strongest inhibition rate in both competition and displacement assays. Those anti-adhesion capacities were related to the bacterial physicochemical properties (hydrophobicity, auto-aggregation, and co-aggregation) of the bacterial surface. For L. monocytogenes, the anti-adhesion capacity was affected by the heat treatment, cell density, and growth phase of E. faecium WEFA23; 108 colony-forming units of viable cells per millilitre at the stationary phase exhibited the strongest anti-adhesion activity. In addition, removal of S-layer proteins of E. faecium WEFA23 by treatment with 5 mol/L LiCl significantly decreased its adhesion capacity, and those S-layer proteins were able to compete, displace, and exclude L. monocytogenes at different levels. Both cells and S-layer proteins of E. faecium WEFA23 significantly reduced the apoptosis of Caco-2 cells induced by L. monocytogenes, which was mediated by caspase-3 activation. This study might be helpful in understanding the anti-adhesion mechanism of probiotics against pathogens.
Collapse
Affiliation(s)
- Yao He
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Xiongpeng Xu
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Fen Zhang
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Di Xu
- b Technische Mikrobiologie, Technische Universität München, Freising 85354, Germany
| | - Zhengqi Liu
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Xueying Tao
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Hua Wei
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
55
|
Xu X, Luo D, Bao Y, Liao X, Wu J. Characterization of Diversity and Probiotic Efficiency of the Autochthonous Lactic Acid Bacteria in the Fermentation of Selected Raw Fruit and Vegetable Juices. Front Microbiol 2018; 9:2539. [PMID: 30405588 PMCID: PMC6205992 DOI: 10.3389/fmicb.2018.02539] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
The diversity of indigenous lactic acid bacteria (LAB) in fermented broccoli, cherry, ginger, white radish, and white-fleshed pitaya juices was analyzed using culture-independent and -dependent approaches. The major properties of selected probiotic strains, including dynamic variations in pH, viable cell counts, antibiotic resistance, bacterial adhesion to hydrophobic compounds, and survivability during simulated gastrointestinal transit, were investigated using broccoli as the fermentation substrate. In broccoli and ginger juices, the genus Lactobacillus occupied the dominant position (abundances of 79.0 and 30.3%, respectively); in cherry and radish juices, Weissella occupied the dominant position (abundances of 78.3 and 83.2%, respectively); and in pitaya juice, Streptococcus and Lactococcus occupied the dominant positions (52.2 and 37.0%, respectively). Leuconostoc mesenteroides, Weissella cibaria/soli/confusa, Enterococcus gallinarum/durans/hirae, Pediococcus pentosaceus, Bacillus coagulans, and Lactococcus garvieae/lactis subspecies were identified by partial 16S rRNA gene sequencing. In general, the selected autochthonous LAB isolates displayed no significant differences in comparison with commercial strains with regard to growth rates or acidification in fermented broccoli juice. Among all the isolates, L. mesenteroides B4-25 exhibited the highest antibiotic resistance profile (equal to that of L. plantarum CICC20265), and suitable adhesion properties (adhesion of 13.4 ± 5.2% ∼ 36.4 ± 3.2% and 21.6 ± 1.4% ∼ 69.6 ± 2.3% to ethyl acetate and xylene, respectively). Furthermore, P. pentosaceus Ca-4 and L. mesenteroides B-25 featured the highest survival rates (22.4 ± 2.6 and 21.2 ± 1.4%, respectively), after simulated gastrointestinal transit. These results indicated a high level of diversity among the autochthonous bacterial community in fermented fruit and vegetable juices, and demonstrated the potential of these candidate probiotics for applications in fermentation.
Collapse
Affiliation(s)
- Xinxing Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Dongsheng Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Yejun Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| |
Collapse
|
56
|
Zielińska D, Kolożyn-Krajewska D. Food-Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5063185. [PMID: 30402482 PMCID: PMC6191956 DOI: 10.1155/2018/5063185] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
One of the most promising areas of development in the human nutritional field over the last two decades has been the use of probiotics and recognition of their role in human health and disease. Lactic acid-producing bacteria are the most commonly used probiotics in foods. It is well known that probiotics have a number of beneficial health effects in humans and animals. They play an important role in the protection of the host against harmful microorganisms and also strengthen the immune system. Some probiotics have also been found to improve feed digestibility and reduce metabolic disorders. They must be safe, acid and bile tolerant, and able to adhere and colonize the intestinal tract. The means by which probiotic bacteria elicit their health effects are not understood fully, but may include competitive exclusion of enteric pathogens, neutralization of dietary carcinogens, production of antimicrobial metabolites, and modulation of mucosal and systemic immune function. So far, lactic acid bacteria isolated only from the human gastrointestinal tract are recommended by the Food and Agriculture Organization (FAO) and World Health Organization (WHO) for use as probiotics by humans. However, more and more studies suggest that strains considered to be probiotics could be isolated from fermented products of animal origin, as well as from non-dairy fermented products. Traditional fermented products are a rich source of microorganisms, some of which may exhibit probiotic properties. They conform to the FAO/WHO recommendation, with one exception; they have not been isolated from human gastrointestinal tract. In light of extensive new scientific evidence, should the possibility of changing the current FAO/WHO requirements for the definition of probiotic bacteria be considered?
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Danuta Kolożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
57
|
Yang SJ, Lee JE, Lim SM, Kim YJ, Lee NK, Paik HD. Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Sci Biotechnol 2018; 28:491-499. [PMID: 30956861 DOI: 10.1007/s10068-018-0473-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Probiotic properties including antioxidant and immune-enhancing effects of Lactobacillus plantarum 200655 isolated from kimchi were evaluated. The tolerance of three strains (L. plantarum 200655, L. plantarum KCTC 3108, and L. rhamnosus GG to bile salts (0.3% oxgall, 24 h) was similar, and L. plantarum 200655 showed the highest tolerance to gastric juice (0.3% pepsin, 3 h). All strains presented similar autoaggregation ability. L. plantarum 200655 showed higher cell surface hydrophobicity and adhesion ability on HT-29 cells. L. plantarum 200655 did not produce β-glucuronidase and was sensitive to ampicillin, tetracycline, chloramphenicol, and doxycycline. Additionally, L. plantarum 200655 showed the highest antioxidant effects in DPPH and ABTS radical scavenging, and β-carotene bleaching assays. RAW 264.7 cells treated with L. plantarum 200655 produced more nitric oxide, induced nitric oxide synthase, and cytokine related to immune-enhancing effects such as interleukin-1β and interleukin-6. Therefore, L. plantarum 200655 could be useful as a probiotic strain for older people.
Collapse
Affiliation(s)
- Seo-Jin Yang
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ji-Eun Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Sung-Min Lim
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Yu-Jin Kim
- Korean Culture Center of Microorganisms, Seoul, 03641 Republic of Korea
| | - Na-Kyoung Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
58
|
Liu YW, Liong MT, Tsai YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J Microbiol 2018; 56:601-613. [DOI: 10.1007/s12275-018-8079-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
|
59
|
Wang W, He J, Pan D, Wu Z, Guo Y, Zeng X, Lian L. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress. PLoS One 2018; 13:e0196231. [PMID: 29795550 PMCID: PMC5967736 DOI: 10.1371/journal.pone.0196231] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion-related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum's adhesion mechanisms under initial pH stress.
Collapse
Affiliation(s)
- Wenwen Wang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Jiayi He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, P. R. China
- Department of Food Science and Nutrition, Ginling College, Nanjing Normal University, Nanjing, P. R. China
- * E-mail: (DDP); (ZW)
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, P. R. China
- * E-mail: (DDP); (ZW)
| | - Yuxing Guo
- Department of Food Science and Nutrition, Ginling College, Nanjing Normal University, Nanjing, P. R. China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, Zhejiang, China
| |
Collapse
|
60
|
Kazemi R, Taheri-Kafrani A, Motahari A, Kordesedehi R. Allergenicity reduction of bovine milk β-lactoglobulin by proteolytic activity of lactococcus lactis BMC12C and BMC19H isolated from Iranian dairy products. Int J Biol Macromol 2018; 112:876-881. [PMID: 29428389 DOI: 10.1016/j.ijbiomac.2018.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/30/2022]
Abstract
Nowadays health benefits of bioactive food constituents, known as probiotic microorganisms, are a growing awareness. Cow's milk is a nutritious food containing probiotic bacteria. However, milk allergenicity is one of the most common food allergies. The milk protein, β-lactoglobulin (BLG), is in about 80% of all main cases of milk allergies for children and infants. With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated new proteolytic strains of cocci lactic acid bacteria from traditional Iranian dairy products. The proteases produced by these strains had strong proteolytic activity against BLG. Proteolysis of BLG, observed after sodium dodecyl sulfate-PAGE, was confirmed by the analysis of the peptide profiles by reversed-phase HPLC. The two isolates were submitted to 16S rDNA sequencing and identified as Lactcoccus lactis subsp. cremoris and Lactcoccus lactis subsp. hordniea. The competitive ELISA experiments confirmed that these isolates, with high proteolytic activity, reduce significantly the allergenicity of BLG. Accordingly, these isolates can reduce the immunoreactivity of bovine milk proteins, which can be helpful for the production of low-allergic dairy products.
Collapse
Affiliation(s)
- Rezvan Kazemi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Ahmad Motahari
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 74147-85318, Iran
| | - Reihane Kordesedehi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
61
|
Modeling the Combined Effects of Temperature, pH, and Sodium Chloride and Sodium Lactate Concentrations on the Growth Rate of Lactobacillus plantarum ATCC 8014. J FOOD QUALITY 2018. [DOI: 10.1155/2018/1726761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, microorganisms with probiotic or antimicrobial properties are receiving major attention as alternative resources for food preservation. Lactic acid bacteria are able to synthetize compounds with antimicrobial activity against pathogenic and spoilage flora. Among them, Lactobacillus plantarum ATCC 8014 has exhibited this capacity, and further studies reveal that the microorganism is able to produce bacteriocins. An assessment of the growth of L. plantarum ATCC 8014 at different conditions becomes crucial to predict its development in foods. A response surface model of the growth rate of L. plantarum was built in this study as a function of temperature (4, 7, 10, 13, and 16°C), pH (5.5, 6.0, 6.5, 7.0, and 7.5), and sodium chloride (0, 1.5, 3.0, 4.5, and 6.0%) and sodium lactate (0, 1, 2, 3, and 4%) concentrations. All the factors were statistically significant at a confidence level of 90% (p<0.10). When temperature and pH increased, there was a corresponding increase in the growth rate, while a negative relationship was observed between NaCl and Na-lactate concentrations and the growth parameter. A mathematical validation was carried out with additional conditions, demonstrating an excellent performance of the model. The developed model could be useful for designing foods with L. plantarum ATCC 8014 added as a probiotic.
Collapse
|
62
|
In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb Pathog 2017; 112:135-141. [DOI: 10.1016/j.micpath.2017.09.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022]
|
63
|
Eckert C, Serpa VG, Felipe dos Santos AC, Marinês da Costa S, Dalpubel V, Lehn DN, Volken de Souza CF. Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
64
|
Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H, Tao X. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci 2017; 100:6895-6905. [PMID: 28711240 DOI: 10.3168/jds.2016-11944] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Exopolysaccharide (EPS) was extracted and purified from Lactobacillus plantarum WLPL04, which has been confirmed previously as a potential probiotic for its antagonistic and immune-modulating activity. It has a molecular weight of 6.61 × 104 Da, consisting of xylose, glucose, and galactose in an approximate molar ratio of 3.4:1.8:1. Microstructural studies demonstrated that the EPS appeared as a smooth sheet structure with many homogeneous rod-shaped lumps. The preliminary in vitro assays indicated that the EPS could significantly inhibit the adhesion of Escherichia coli O157:H7 to HT-29 cells in competition, replacement, and inhibition assays at a dose of 1.0 mg/mL, with an inhibition rate of 20.24 ± 2.23, 29.71 ± 1.21, and 30.57 ± 1.73%, respectively. Additionally, the EPS exhibited strong inhibition against biofilm formation by pathogenic bacteria, including Pseudomonas aeruginosa CMCC10104, E. coli O157:H7, Salmonella Typhimurium ATCC13311, and Staphylococcus aureus CMCC26003. Furthermore, the EPS showed good inhibitory activity against the proliferation of HT-29 cells. The characteristics and bioactivities of this EPS may make it a promising candidate in developing functional food.
Collapse
Affiliation(s)
- Zhengqi Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liang Qiu
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Fen Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xiongpeng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
65
|
Sharma C, Gulati S, Thakur N, Singh BP, Gupta S, Kaur S, Mishra SK, Puniya AK, Gill JPS, Panwar H. Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech 2017; 7:53. [PMID: 28444600 DOI: 10.1007/s13205-017-0682-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays a vital role in host well-being and lactic acid bacteria (LAB) have gained an overwhelming attention as health promoter. This perception has evolved from traditional dairy products to a money-spinning market of probiotics. The safety of probiotics is coupled to their intended use and LAB may act as pool of antimicrobial resistance genes that could be transferred to pathogens, either in food matrix or in gastrointestinal tract, which could be detrimental to host. This study evaluated the antibiotic susceptibility patterns of LAB isolated from curd (20) and human milk (11) samples. Antibiotic susceptibility was determined against 26 common antibiotics, following reference disc diffusion assay. A varied response in terms of susceptibility and resistance towards antibiotics was recorded. Among curd isolates, D7 (Lactobacillus plantarum) was the most resistant followed by D4, D8, D10 and D25. Among human milk isolates, HM-1 (L. casei) showed the highest resistance profile. All LAB isolates displayed high susceptibility pattern towards imipenem and meropenem. In general, high resistivity was exhibited by human milk isolates. The present study showed that antibiotic resistance is widespread among different lactobacilli, which may pose a food safety concern. Therefore, antibiotic sensitivity should be considered as a vital tool for safety assessment of probiotics.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Sachin Gulati
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Nishchal Thakur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Sanjolly Gupta
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Simranpreet Kaur
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Santosh Kumar Mishra
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Jatinder Pal Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, 141004, India.
| |
Collapse
|
66
|
Shakibaie M, Mohammadi-Khorsand T, Adeli-Sardou M, Jafari M, Amirpour-Rostami S, Ameri A, Forootanfar H. Probiotic and antioxidant properties of selenium-enriched Lactobacillus brevis LSe isolated from an Iranian traditional dairy product. J Trace Elem Med Biol 2017; 40:1-9. [PMID: 28159215 DOI: 10.1016/j.jtemb.2016.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
The present study was designed to isolate a highly selenium-tolerant lactobacillus strain from an Iranian traditional dairy product named as Spar. Different criteria such as tolerance to the low pH, simulated gastric juice (SGJ), simulated intestinal juice (SIJ) and bile salts tolerance as well as Caco-2 cell adhesion assay were examined to evaluate the probiotic potentials of the selected isolate. Furthermore, the antioxidant properties of the isolate cultivated in medium containing and free of SeO32- ions were evaluated using DPPH scavenging and reducing power assays. The isolate was identified using conventional identification and 16S rDNA gene sequencing methods as Lactobacillus brevis LSe. The obtained results showed that the isolate was able to tolerate high concentration of sodium selenite (3.16mM). By decreasing the pH of the SGJ from 6 to 3, the survival percent of L. brevis LSe was not significantly changed over the time (p>0.05). In addition, the survival percent of the isolate in the SIJ (pH 6 and pH 8) was not statistically altered after 3h, 6h and 24h of incubation (p>0.05). In the presence of bile salts (0.3% and 0.6%) the survival rate of L. brevis LSe was not significantly decreased (p>0.05).L. brevis LSe also demonstrated the satisfactory ability to adhere to Caco-2 cells which were similar to that of the reference strain L. plantarum. The obtained results of antioxidant evaluation showed that L. brevis LSe containing elemental Se exhibited significantly higher radical scavenging ability (36.5±1.31%) and reducing power (OD700, 0.14) than L. brevis LSe cultured in selenite-free medium (p<0.05). To sum up, further investigations should be conducted to merit the probable potential health benefit of Se-enriched L. brevis LSe and its application as Se-containing supplements or fermented foods.
Collapse
Affiliation(s)
- Mojtaba Shakibaie
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tayebe Mohammadi-Khorsand
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Jafari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Amirpour-Rostami
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
67
|
Zhang F, Qiu L, Xu X, Liu Z, Zhan H, Tao X, Shah NP, Wei H. Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. J Dairy Sci 2016; 100:1618-1628. [PMID: 28041735 DOI: 10.3168/jds.2016-11870] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/23/2016] [Indexed: 01/04/2023]
Abstract
The aim of this study was to select probiotic Enterococcus strains that have the potential to improve metabolic syndrome (MS). Ten Enterococcus strains isolated from healthy infants were evaluated for their probiotic properties in vitro, and Enterococcus faecium WEFA23 was selected due to its cholesterol removal ability (1.89 ± 0.07 mg/1010 cfu), highest glycodeoxycholic acid-hydrolase activity (1.86 ± 0.01 U/mg), and strong adhesion capacity to Caco-2 cells (17.90 ± 0.19%). The safety of E. faecium WEFA23 was verified by acute oral administration in mice, and it was found to have no adverse effects on general health status, bacterial translocation, and gut mucosal histology. Moreover, the beneficial effects of E. faecium WEFA23 on high-fat diet-induced MS in rats were investigated, and we found WEFA23 significantly decreased body weight, serum lipid levels (total cholesterol, triacylglycerols, and low-density lipoprotein cholesterol), blood glucose level, and insulin resistance in rats fed with a high-fat diet. This indicated that administration of E. faecium WEFA23 improved almost all key markers of MS, including obesity, hyperlipidemia, hyperglycemia, and insulin resistance. Our results supported E. faecium WEFA23 as a candidate for cholesterol-lowering dairy products and improvement of MS. Our research provided novel insights on Enterococcus as a strategy to combat MS.
Collapse
Affiliation(s)
- Fen Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiongpeng Xu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhengqi Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hui Zhan
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xueying Tao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Hua Wei
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
68
|
Jeon EB, Son SH, Jeewanthi RKC, Lee NK, Paik HD. Characterization of Lactobacillus plantarum Lb41, an isolate from kimchi and its application as a probiotic in cottage cheese. Food Sci Biotechnol 2016; 25:1129-1133. [PMID: 30263385 PMCID: PMC6049116 DOI: 10.1007/s10068-016-0181-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus plantarum Lb41 was determined probiotic properties and applied to cottage cheese. L. plantarum Lb41 showed high viability (>80%) in artificial gastric (pH 2.5, 0.3% pepsin for 3 h) and bile (0.3% oxgall for 24 h) acids, and adhered strongly to HT-29 cells (7.5% adhesion). It did not produce β-glucuronidase and was resistant to several antibiotics. L. plantarum Lb41 did not inhibit proliferation of normal MRC-5 cells, but showed antiproliferative effects on AGS, HT-29, and LoVo cells, based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. In addition, L. plantarum Lb41 reduced nitric oxide production by macrophages. Cottage cheese containing this strain did not show significant differences in physicochemical properties, but the number of lactic acid bacteria was maintained longer than that in control cheese. These results indicate that L. plantarum Lb41 could potentially be used as a probiotic in foods.
Collapse
Affiliation(s)
- Eun Bi Jeon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Sung-Ho Son
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | | | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
69
|
Melnik BC, John SM, Carrera-Bastos P, Schmitz G. Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation. Clin Transl Allergy 2016; 6:18. [PMID: 27175277 PMCID: PMC4864898 DOI: 10.1186/s13601-016-0108-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breastfeeding has protective effects for the development of allergies and atopy. Recent evidence underlines that consumption of unboiled farm milk in early life is a key factor preventing the development of atopic diseases. Farm milk intake has been associated with increased demethylation of FOXP3 and increased numbers of regulatory T cells (Tregs). Thus, the questions arose which components of farm milk control the differentiation and function of Tregs, critical T cell subsets that promote tolerance induction and inhibit the development of allergy and autoimmunity. FINDINGS Based on translational research we identified at least six major signalling pathways that could explain milk's biological role controlling stable FoxP3 expression and Treg differentiation: (1) via maintaining appropriate magnitudes of Akt-mTORC1 signalling, (2) via transfer of milk fat-derived long-chain ω-3 fatty acids, (3) via transfer of milk-derived exosomal microRNAs that apparently decrease FOXP3 promoter methylation, (4) via transfer of exosomal transforming growth factor-β, which induces SMAD2/SMAD3-dependent FoxP3 expression, (5) via milk-derived Bifidobacterium and Lactobacillus species that induce interleukin-10 (IL-10)-mediated differentiation of Tregs, and (6) via milk-derived oligosaccharides that serve as selected nutrients for the growth of bifidobacteria in the intestine of the new born infant. CONCLUSION Accumulating evidence underlines that milk is a complex signalling and epigenetic imprinting network that promotes stable FoxP3 expression and long-lasting Treg differentiation, crucial postnatal events preventing atopic and autoimmune diseases.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| | | | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|