51
|
Keli A, Ribeiro L, Gipson T, Puchala R, Tesfai K, Tsukahara Y, Sahlu T, Goetsch A. Effects of pasture access regime on performance, grazing behavior, and energy utilization by Alpine goats in early and mid-lactation. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017; 141:107-120. [PMID: 28804001 DOI: 10.1016/j.biochi.2017.08.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Consumption of milk and dairy products is important in Western industrialised countries. Fat content is an important constituent contributing to the nutritional quality of milk and dairy products. In order to improve the health of consumers, there is high interest in improving their fatty acid (FA) composition, which depends principally on rumen and mammary metabolism. This paper reviews the lipid metabolism in ruminants, with a particular focus on the production of trans and conjugated linoleic acids (CLA) and conjugated linolenic acids (CLnA) in the rumen. After the lipolysis of dietary lipids, an extensive biohydrogenation of unsaturated FA occurs by rumen bacteria, leading to numerous cis and trans isomers of 18:1, non-conjugated of 18:2, CLA and CLnA. The paper examines the different putative pathways of ruminal biohydrogenation of cis9-18:1, 18:2n-6, 18:3n-3 and long-chain FA and the bacteria implicated. Then mechanisms relative to the de novo mammary synthesis are presented. Ruminant diet is the main factor regulating the content and the composition of milk fat. Effects of nature of forage and lipid supplementation are analysed in cows and small ruminants species. Finally, the paper briefly presents the effects of these FA on animal models and human cell lines. We describe the properties of ruminant trans 18:1, when compared to industrial trans 18:1, CLA and CLnA on human health from meta-analyses of intervention studies and then explore the underlying mechanisms.
Collapse
Affiliation(s)
- Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France.
| | - Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | | | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France; CRNH Auvergne, F-63009, Clermont-Ferrand, France
| |
Collapse
|
53
|
Canaes TS, Zanferari F, Maganhe BL, Takiya CS, Silva TH, Del Valle TA, Rennó FP. Increasing dietary levels of citral oil on nutrient total tract digestibility, ruminal fermentation, and milk composition in Saanen goats. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Toral PG, Hervás G, Carreño D, Leskinen H, Belenguer A, Shingfield KJ, Frutos P. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. J Dairy Sci 2017; 100:6187-6198. [PMID: 28601459 DOI: 10.3168/jds.2017-12638] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Abstract
The modulation of milk fat nutritional quality through fish oil supplementation seems to be largely explained by the action of n-3 very long chain polyunsaturated fatty acids (PUFA) on ruminal biohydrogenation (BH) of C18 fatty acids (FA). However, relationships among this action, disappearance of those PUFA in the rumen, and potential detrimental consequences on ruminal fermentation remain uncertain. This study compared the effect of 20:5n-3 (eicosapentaenoic acid; EPA), 22:5n-3 (docosapentaenoic acid; DPA), and 22:6n-3 (docosahexaenoic acid; DHA) on rumen fermentation and BH of C18 FA and was conducted simultaneously in cows and sheep to provide novel insights into interspecies differences. The trial was performed in vitro using batch cultures of rumen microorganisms with inocula collected from cannulated cows and ewes. The PUFA were added at a dose of 2% incubated dry matter, and treatment effects on ruminal C18 FA concentrations, PUFA disappearances, and fermentation parameters (gas production, ammonia and volatile FA concentrations, and dry matter and neutral detergent fiber disappearances) were examined after 24 h of incubation. A principal component analysis suggested that responses to PUFA treatments explained most of the variability; those of ruminant species were of lower relevance. Overall, EPA and DHA were equally effective for inhibiting the saturation of trans-11 18:1 to 18:0 and had a similar influence on ruminal fermentation in cows and sheep (e.g., reductions in gas production and acetate:propionate ratio). Nevertheless, DHA further promoted alternative BH pathways that lead to trans-10 18:1 accumulation, and EPA seemed to have specific effects on 18:3n-3 metabolism. Only minor variations attributable to DPA were observed in the studied parameters, suggesting a low contribution of this FA to the action of marine lipids. Although most changes due to the added PUFA were comparable in bovine and ovine, there were also relevant specificities, such as a stronger inhibition of 18:0 formation in cows and a greater increase in 18:3n-3 metabolites in sheep. No direct relationship between in vitro disappearance of the incubated PUFA and effect on BH (in particular, inhibition of the last step) was found in either cows or ewes, calling into question a putative link between extent of disappearance and toxicity for microbiota. Conversely, an association between the influence of these PUFA on ruminal lipid metabolism and fermentation may exist in both species. In vivo verification of these findings would be advisable.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Leon, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Leon, Spain
| | - D Carreño
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Leon, Spain
| | - H Leskinen
- Green Technology, Nutritional Physiology, Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| | - A Belenguer
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Leon, Spain
| | - K J Shingfield
- Institute of Biological, Environmental and Rural Sciences, Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - P Frutos
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Leon, Spain
| |
Collapse
|
55
|
Toral PG, Frutos P, Carreño D, Hervás G. Endogenous synthesis of milk oleic acid in dairy ewes: In vivo measurement using 13C-labeled stearic acid. J Dairy Sci 2017; 100:5880-5887. [PMID: 28527806 DOI: 10.3168/jds.2016-12097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/29/2017] [Indexed: 01/03/2023]
Abstract
The use of stable isotopes is a reliable and risk-free alternative to radioactive tracers for directly examining in vivo fatty acid (FA) metabolism. However, very limited information is available in ruminants, and none is available in sheep. Therefore, we conducted an experiment in dairy ewes to determine, for the first time in this species, the uptake, Δ9-desaturation, and secretion of 13C-labeled stearic acid (SA) into milk with the aim of measuring in vivo endogenous synthesis of milk oleic acid (OA) and stearoyl-CoA desaturase activity. Six lactating Assaf ewes fed a total mixed ration (forage:concentrate ratio = 30:70) received an intravenous injection of 2 g of 13C-labeled SA. At -24, -15, 0, 4, 8, 12, 16, 20, 24, 36, 48, 60, and 72 h postinjection (p.i.), milk yield was recorded and milk samples were collected to examine fat concentration and FA composition, including compound-specific isotope analysis of SA and OA by gas chromatography-combustion isotope ratio mass spectrometry. Over the p.i. period, the SA proportion ranged from 7.6 to 8.3% of total FA, with a maximum 13C enrichment of 1.9%, whereas OA was more abundant (14.3-15.4% of total FA) and had lower 13C enrichments (up to 0.69%). On average, 15% of the isotopic tracer was transferred to milk within 72 h p.i., and 47 to 50% of the SA taken up by the mammary gland would have been desaturated to OA. The proportion of oleic acid being synthesized endogenously was estimated to represent between 48 and 57% of the amount secreted in milk. Further research under different dietary conditions is recommended.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - D Carreño
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
56
|
Bernard L, Toral P, Rouel J, Chilliard Y. Effects of extruded linseed and level and type of starchy concentrate in a diet containing fish oil on dairy goat performance and milk fatty acid composition. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
57
|
Hepatic and subcutaneous adipose tissue variations in transition dairy goats fed saturated or unsaturated fat supplemented diets. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
Investigating mutual relationship among milk fatty acids by multivariate factor analysis in dairy cows. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
59
|
Effect of ruminally unprotected Echium oil on milk yield, composition and fatty acid profile in mid-lactation goats. J DAIRY RES 2016; 83:28-34. [PMID: 26869109 DOI: 10.1017/s0022029915000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study investigated the effects on goat milk yield and composition of a diet supplemented with Echium plantagineum oil (EPO). Twenty-four mid-lactation multiparous Camosciata goats were divided into two balanced groups and fed for 44 d a diet based on hay and concentrate, supplemented (EPO group, Echium) or not (CON group, control) with 40 ml of ruminally unprotected EPO. Individual milk yield was recorded and individual milk samples were collected at 11, 22, 33, and 44 d after supplementation. Milk samples were analysed for milk components and fatty acids (FA). Data were statistically analysed by repeated-measures analysis of variance. Milk yield, protein and lactose contents were significantly higher in EPO than CON group. The inclusion of EPO significantly decreased total saturated FA and total branched-chain FA, and contemporarily sharply increased trans biohydrogenation intermediates (P ⩽ 0.001). Milk concentration of α-linolenic, stearidonic and γ-linolenic acids increased by 23, 1000 and 67%, respectively (P ⩽ 0.001). Due to extensive ruminal biohydrogenation, their apparent transfer rate was less than 3%. As a consequence, the milk concentrations of very long-chain (VLC) polyunsaturated fatty acids (PUFA), such as eicosapentaenoic (20:5 n-3) and dihomo-γ-linolenic (20:3 n-6) acids, significantly increased with EPO treatment, but values remained very low. Docosahexaenoic acid (22:6 n-3) was undetectable in all analysed milk samples. Results show that ruminally unprotected EPO can enhance milk yield and protein and improve the overall goat milk FA profile. However, this kind of supplementation cannot be considered a valuable strategy to develop goat functional dairy products enriched with VLC n-3 PUFA for human consumption.
Collapse
|
60
|
Toral P, Hervás G, Carreño D, Frutos P. Does supplemental 18:0 alleviate fish oil-induced milk fat depression in dairy ewes? J Dairy Sci 2016; 99:1133-1144. [DOI: 10.3168/jds.2015-10304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/28/2015] [Indexed: 01/15/2023]
|
61
|
Toral PG, Bernard L, Belenguer A, Rouel J, Hervás G, Chilliard Y, Frutos P. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil. J Dairy Sci 2015; 99:301-16. [PMID: 26601590 DOI: 10.3168/jds.2015-10292] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/26/2015] [Indexed: 12/31/2022]
Abstract
Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms affected by the experimental diets (e.g., Ruminococcaceae, Lachnospiraceae, and Succinivibrionaceae in the bovine, and Pseudobutryrivibrio, Clostridium cluster IV, Prevotella, and Veillonellaceae in the caprine), which hindered the assignation of bacterial populations to particular BH steps or pathways. Furthermore, most relevant variations in microbial groups corresponded to as yet uncultured bacteria and suggest that these microorganisms may play a predominant role in the ruminal lipid metabolism in both cows and goats.
Collapse
Affiliation(s)
- P G Toral
- INRA, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France; Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - L Bernard
- INRA, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - A Belenguer
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - J Rouel
- INRA, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - Y Chilliard
- INRA, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|