51
|
Neuroprotective Effect of Schisandra Chinensis on Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonian Syndrome in C57BL/6 Mice. Nutrients 2019; 11:nu11071671. [PMID: 31330885 PMCID: PMC6683275 DOI: 10.3390/nu11071671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a well-known botanical medicine and nutritional supplement that has been shown to have potential effects on neurodegeneration. To investigate the potential neuroprotective effect of S. chinensis fruit extract, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to induce behavioral disorders and dopaminergic neuronal damage in mice, and biochemical indicators were examined. Male C57BL/6 mice were used to establish the MPTP-induced parkinsonian syndrome model. Open field and rotarod tests were performed to evaluate the overall manifestation of motor deficits and rodent motor coordination. The mice were divided into 8 groups as follows: normal control; MPTP alone (25 mg/kg, i.p.); S. chinensis extract pretreatment (0.5, 1.5, 5 g/kg, p.o.); and S. chinensis extract treatment (0.5, 1.5, 5 g/kg, p.o.). Liquid chromatography coupled to electrochemical detection was used to monitor neurochemicals in the striatum. Tyrosine hydroxylase content was measured by immunohistochemistry, and biochemical antioxidative indicators were used to evaluate the potential neuroprotective effects of S. chinensis fruit extract. The results demonstrated that treatment with S. chinensis fruit extract ameliorated MPTP-induced deficits in behavior, exercise balance, dopamine level, dopaminergic neurons, and tyrosine hydroxylase-positive cells in the striatum of mice. Among the pretreated and treatment groups, a high dose of S. chinensis fruit extract was the most effective treatment. In conclusion, S. chinensis fruit extract is a potential herbal drug candidate for the amelioration and prevention of Parkinson's disease.
Collapse
|
52
|
The Ameliorative Effects of the Ethyl Acetate Extract of Salicornia europaea L. and Its Bioactive Candidate, Irilin B, on LPS-Induced Microglial Inflammation and MPTP-Intoxicated PD-Like Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6764756. [PMID: 31379989 PMCID: PMC6652089 DOI: 10.1155/2019/6764756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Hyperactivation of microglia, the resident innate immune cells of the central nervous system, exacerbates various neurodegenerative disorders, including Parkinson's disease (PD). Parkinson's disease is generally characterized by a severe loss of dopaminergic neurons in the nigrostriatal pathway, with substantial neuroinflammation and motor deficits. This was experimentally replicated in animal models, using neurotoxins, i.e., LPS (lipopolysaccharides) and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Salicornia europaea L. (SE) has been used as a dietary supplement in Korea and Europe for several years, due to its nutritional and therapeutic value. In this study, we intend to investigate the antineuroinflammatory and anti-PD-like effects of the bioactive fraction/candidate of the SE extract. Initially, we screened various fractions of SE extract using an in vitro antioxidant assay. The optimal fraction was investigated for its in vitro antineuroinflammatory potential in LPS-stimulated BV-2 microglial cells and in vivo anti-PD-like potential in MPTP-intoxicated mice. Subsequently, to identify the potential candidate responsible for the elite therapeutic potential of the optimal fraction, we conducted antioxidant activity-guided isolation and purification; the bioactive candidate was structurally characterized using nuclear magnetic resonance spectroscopy and chromatographic techniques and further investigated for its in vitro antioxidative and antineuroinflammatory potential. The results of our study indicate that SE-EA and its bioactive candidate, Irilin B, effectively alleviate the deleterious effect of microglia-mediated neuroinflammation and promote antioxidative effects. Thus, they exhibit potential as therapeutic candidates against neuroinflammatory and oxidative stress-mediated PD-like neurodegenerative complications.
Collapse
|
53
|
Jayaraj RL, Beiram R, Azimullah S, Meeran MFN, Ojha SK, Adem A, Jalal FY. Lycopodium Attenuates Loss of Dopaminergic Neurons by Suppressing Oxidative Stress and Neuroinflammation in a Rat Model of Parkinson's Disease. Molecules 2019; 24:molecules24112182. [PMID: 31185705 PMCID: PMC6600474 DOI: 10.3390/molecules24112182] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug's multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Richard L Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Fakhreya Yousuf Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
54
|
Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, Lee E. LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS One 2019; 14:e0210248. [PMID: 30645642 PMCID: PMC6333340 DOI: 10.1371/journal.pone.0210248] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson's disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced inflammation and pathogenesis. In this study, we investigated the role of LRRK2 in Mn-induced toxicity using human microglial cells (HMC3), LRRK2-wild-type (WT) and LRRK2-knockout (KO) RAW264.7 macrophage cells. Results showed that Mn activated LRRK2 kinase by phosphorylation of its serine residue at the 1292 position (S1292) as a marker of its kinase activity in macrophage and microglia, while inhibition with GSK2578215A (GSK) and MLi-2 abolished Mn-induced LRRK2 activation. LRRK2 deletion and its pharmacological inhibition attenuated Mn-induced apoptosis in macrophages and microglia, along with concomitant decreases in the pro-apoptotic Bcl-2-associated X (Bax) protein. LRRK2 deletion also attenuated Mn-induced production of reactive oxygen species (ROS) and the pro-inflammatory cytokine TNF-α. Mn-induced phosphorylation of mitogen-activated protein kinase (MAPK) p38 and ERK signaling proteins was significantly attenuated in LRRK2 KO cells and GSK-treated cells. Moreover, inhibition of MAPK p38 and ERK as well as LRRK2 attenuated Mn-induced oxidative stress and cytotoxicity. These findings suggest that LRRK2 kinase activity plays a critical role in Mn-induced toxicity via downstream activation of MAPK signaling in macrophage and microglia. Collectively, these results suggest that LRRK2 could be a potential molecular target for developing therapeutics to treat Mn-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| |
Collapse
|
55
|
Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci 2018; 209:455-465. [DOI: 10.1016/j.lfs.2018.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
|
56
|
Chamoli M, Chinta SJ, Andersen JK. An inducible MAO-B mouse model of Parkinson’s disease: a tool towards better understanding basic disease mechanisms and developing novel therapeutics. J Neural Transm (Vienna) 2018; 125:1651-1658. [DOI: 10.1007/s00702-018-1887-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
|
57
|
Blanco-Lezcano L, Alberti-Amador E, Díaz-Hung ML, González-Fraguela ME, Estupiñán-Díaz B, Serrano-Sánchez T, Francis-Turner L, Jiménez-Martín J, Vega-Hurtado Y, Fernández-Jiménez I. Tyrosine Hydroxylase, Vesicular Monoamine Transporter and Dopamine Transporter mRNA Expression in Nigrostriatal Tissue of Rats with Pedunculopontine Neurotoxic Lesion. Behav Sci (Basel) 2018; 8:bs8020020. [PMID: 29389881 PMCID: PMC5836003 DOI: 10.3390/bs8020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The degeneration of the pedunculopontine nucleus (PPN) precedes the degeneration of the nigral cells in the pre-symptomatic stages of Parkinson's disease (PD). Although the literature recognizes that a lesion of the PPN increases the vulnerability of dopaminergic cells, it is unknown if this risk is associated with the loss of capability of handling the dopaminergic function. METHODS In this paper, the effects of a unilateral neurotoxic lesion of the PPN in tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) mRNA expression in nigrostriatal tissue were evaluated. Three experimental groups were organized: non-treated rats, NMDA-lesioned rats and Sham-operated rats. RESULTS Seven days after the PPN lesion, in nigral tissue, TH mRNA expression was higher in comparison with control groups (p < 0.05); in contrast, VMAT2 mRNA expression showed a significant decrease (p < 0.01). DAT mRNA expression showed a significant decrease (p < 0.001) in the striatal tissue. Comparing nigral neuronal density of injured and control rats revealed no significant difference seven days post-PPN injury. CONCLUSIONS Findings suggest that the PPN lesion modifies the mRNA expression of the proteins associated with dopaminergic homeostasis at nigrostriatal level. It could represent vulnerability signals for nigral dopaminergic cells and further increase the risk of degeneration of these cells.
Collapse
Affiliation(s)
- Lisette Blanco-Lezcano
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Esteban Alberti-Amador
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| | - Mei-Li Díaz-Hung
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - María Elena González-Fraguela
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Bárbara Estupiñán-Díaz
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Teresa Serrano-Sánchez
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Liliana Francis-Turner
- Experimental Group: "Experimental Models for Zoo-Human Sciences", Faculty of Sciences, Tolima University, 42nd Street, Barrio Santa Elena, Parte Alta, CP 730001, Colombia.
| | - Javier Jiménez-Martín
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand.
| | - Yamilé Vega-Hurtado
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| | - Isabel Fernández-Jiménez
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| |
Collapse
|
58
|
Molecular Imaging of the Serotonergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:173-210. [DOI: 10.1016/bs.irn.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N. microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. Int J Mol Sci 2017; 18:ijms18122698. [PMID: 29236052 PMCID: PMC5751299 DOI: 10.3390/ijms18122698] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is the most prevalent central nervous system (CNS) movement disorder and the second most common neurodegenerative disease overall. PD is characterized by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) within the midbrain, accumulation of alpha-synuclein (α-SYN) in Lewy bodies and neurites and excessive neuroinflammation. The neurodegenerative processes typically begin decades before the appearance of clinical symptoms. Therefore, the diagnosis is achievable only when the majority of the relevant DAergic neurons have already died and for that reason available treatments are only palliative at best. The causes and mechanism(s) of this devastating disease are ill-defined but complex interactions between genetic susceptibility and environmental factors are considered major contributors to the etiology of PD. In addition to the role of classical gene mutations in PD, the importance of regulatory elements modulating gene expression has been increasingly recognized. One example is the critical role played by microRNAs (miRNAs) in the development and homeostasis of distinct populations of neurons within the CNS and, in particular, in the context of PD. Recent reports demonstrate how distinct miRNAs are involved in the regulation of PD genes, whereas profiling approaches are unveiling variations in the abundance of certain miRNAs possibly relevant either to the onset or to the progression of the disease. In this review, we provide an overview of the miRNAs recently found to be implicated in PD etiology, with particular focus on their potential relevance as PD biomarkers, as well as their possible use in PD targeted therapy.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
| | - Francesca L'Episcopo
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Salvo Caniglia
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Nunzio Testa
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
| |
Collapse
|
60
|
Segovia F, Górriz JM, Ramírez J, Martínez-Murcia FJ, Salas-Gonzalez D. Preprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution. Front Aging Neurosci 2017; 9:326. [PMID: 29062277 PMCID: PMC5640782 DOI: 10.3389/fnagi.2017.00326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
18F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson's disease (PD) that allows us to examine postsynaptic dopamine D2/3 receptors. Like other neuroimaging modalities used for PD diagnosis, most of the total intensity of 18F-DMFP-PET images is concentrated in the striatum. However, other regions can also be useful for diagnostic purposes. An appropriate delimitation of the regions of interest contained in 18F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this manuscript we propose a novel methodology to preprocess 18F-DMFP-PET data that improves the accuracy of computer aided diagnosis systems for PD. First, the data were segmented using an algorithm based on Hidden Markov Random Field. As a result, each neuroimage was divided into 4 maps according to the intensity and the neighborhood of the voxels. The maps were then individually normalized so that the shape of their histograms could be modeled by a Gaussian distribution with equal parameters for all the neuroimages. This approach was evaluated using a dataset with neuroimaging data from 87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by the proposed method provided higher accuracy results than the ones preprocessed with previous approaches.
Collapse
Affiliation(s)
- Fermín Segovia
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Juan M Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | | | - Diego Salas-Gonzalez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| |
Collapse
|
61
|
Kiss R, Zhu M, Jójárt B, Czajlik A, Solti K, Fórizs B, Nagy É, Zsila F, Beke-Somfai T, Tóth G. Structural features of human DJ-1 in distinct Cys106 oxidative states and their relevance to its loss of function in disease. Biochim Biophys Acta Gen Subj 2017; 1861:2619-2629. [PMID: 28844983 DOI: 10.1016/j.bbagen.2017.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/28/2023]
Abstract
DJ-1 (PARK7) is a multifunctional protein linked to the onset and progression of a number of diseases, most of which are associated with high oxidative stress. The Cys106 of DJ-1 is unusually reactive and thus sensitive to oxidation, and due to high oxidative stress it was observed to be in various oxidized states in disease condition. The oxidation state of Cys106 of DJ-1 is believed to determine the specific functions of the protein in normal and disease conditions. Here we report molecular dynamics simulation and biophysical experimental studies on DJ-1 in reduced (Cys106, S-), oxidized (Cys106, SO2-), and over-oxidized (Cys106, SO3-) states. To simulate the different oxidation states of Cys106 in DJ-1, AMBER related force field parameters were developed and reported for 3-sulfinoalanine and cysteine sulfonic acid. Our studies found that the overall structure of DJ-1 in different oxidation states was similar globally, while it differed locally significantly, which have implications on its stability, function and its link to disease on-set. Importantly, the results suggest that over-oxidation may trigger loss of functions due to local structural modification in the Cys106 containing pocket of DJ-1 and structurally destabilize the dimeric state of DJ-1, which is believed to be its bioactive conformation. Such loss of functions would result in reduced ability of DJ-1 to protect from oxidative stress insults and may lead to increased progression of disease.
Collapse
Affiliation(s)
- Róbert Kiss
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Max Zhu
- Cantabio Pharmaceuticals, Sunnyvale, CA, USA
| | - Balázs Jójárt
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Hungary
| | - András Czajlik
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Solti
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Éva Nagy
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Zsila
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Tóth
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Sunnyvale, CA, USA.
| |
Collapse
|
62
|
Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats. Mol Neurobiol 2016; 54:5632-5645. [PMID: 27624385 DOI: 10.1007/s12035-016-0084-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich fraction of UD contain flavonoids and phenolic compounds, which have a promising approach in therapeutics of PD.
Collapse
|
63
|
Shi X, Chen YH, Liu H, Qu HD. Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease in mice. Mol Med Rep 2016; 14:2397-404. [PMID: 27484986 PMCID: PMC4991680 DOI: 10.3892/mmr.2016.5573] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Paeonol is a major phenolic compound of the Chinese herb, Cortex Moutan, and is known for its antioxidant, anti-inflammatory and antitumor properties. The present study was designed to investigate the therapeutic potential and underlying mechanisms of paeonol on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse model of Parkinson's disease (PD). MPTP (25 mg/kg), followed by probenecid (250 mg/kg), was administered via i.p. injection for five consecutive days to induce the mouse model of PD. Paeonol (20 mg/kg) was administrated orally for 21 days. Behavior was assessed using the rotarod performance and open-field tests. Additionally, the levels of tyrosine hydroxylase (TH), microglia, interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) in the substantia nigra pars compacta (SNpc) were evaluated by immunohistochemical staining. MPTP/p-induced motor deficits were observed to be significantly improved following long-term treatment with paeonol. Paeonol treatment decreased MPTP/p-induced oxidative stress, as determined by evaluating the activity levels of superoxide dismutase, catalase and glutathione. Additionally, MPTP/p-induced neuroinflammation was assessed by examining the levels of microglia and IL-1β, which were significantly decreased following paeonol treatment. Paeonol treatment improved the MPTP/p-induced dopaminergic neurodegeneration, as measured by observing the increased TH level in the SNpc. Furthermore, the BDNF level was significantly elevated in the paeonol treatment group compared with mice treated with MPTP/p only. In conclusion, paeonol exerted therapeutic effects in the MPTP/p-induced mouse model of PD, possibly by decreasing the damage from oxidative stress and neuroinflammation, and by enhancing the neurotrophic effect on dopaminergic neurons. The results demonstrate paeonol as a potential novel treatment for PD.
Collapse
Affiliation(s)
- Xiaojin Shi
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Hua Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hong-Dang Qu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
64
|
Geldenhuys WJ, Guseman TL, Pienaar IS, Dluzen DE, Young JW. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson's disease. PeerJ 2015; 3:e1175. [PMID: 26339553 PMCID: PMC4558067 DOI: 10.7717/peerj.1175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/21/2015] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We anticipated that (1) treated mice should use slower, shorter, and less frequent strides and (2) that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic compounds for protecting against or reversing neuropathology associated with PD neurodegeneration.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University (NEOMED) , Rootstown, OH , USA
| | - Tamara L Guseman
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, (NEOMED) , Rootstown, OH , USA
| | - Ilse S Pienaar
- Center for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London , London , United Kingdom
| | - Dean E Dluzen
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, (NEOMED) , Rootstown, OH , USA ; Current affiliation: Department of Anatomy, Southern Illinois University School of Medicine , Carbondale, IL , USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, (NEOMED) , Rootstown, OH , USA
| |
Collapse
|
65
|
Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 2014; 86:192-202. [DOI: 10.1016/j.neuropharm.2014.07.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/27/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
|