51
|
Fessel J. Personalized, Precision Medicine to Cure Alzheimer's Dementia: Approach #1. Int J Mol Sci 2024; 25:3909. [PMID: 38612719 PMCID: PMC11012190 DOI: 10.3390/ijms25073909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The goal of the treatment for Alzheimer's dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal elements produced dementia. Thus, for personalized, precision medicine, all causal elements must be treated so that each individual patient will have her or his causal elements addressed. Twenty-nine drugs cannot concomitantly be administered, so triple combinations of drugs taken from that list are suggested, and each triple combination can be administered sequentially, in any order. Ten combinations given over 13 weeks require 2.5 years, or if given over 26 weeks, they require 5.0 years. Such sequential treatment addresses all 18 elements and should cure dementia. In addition, any comorbid risk factors for AD whose first presence or worsening was within ±1 year of when AD first appeared should receive appropriate, standard treatment together with the sequential combinations. The article outlines a randomized clinical trial that is necessary to assess the safety and efficacy of the proposed treatments; it includes a triple-drug Rx for equipoise. Clinical trials should have durations of both 2.5 and 5.0 years unless the data safety monitoring board (DSMB) determines earlier success or futility since it is uncertain whether three or six months of treatment will be curative in humans, although studies in animals suggest that the briefer duration of treatment might be effective and restore defective neural tracts.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Medicine, Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
52
|
Liu S, Lu Y, Tian D, Zhang T, Zhang C, Hu CY, Chen P, Meng Y. Hydroxytyrosol Alleviates Obesity-Induced Cognitive Decline by Modulating the Expression Levels of Brain-Derived Neurotrophic Factors and Inflammatory Factors in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6250-6264. [PMID: 38491001 DOI: 10.1021/acs.jafc.3c08319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.
Collapse
Affiliation(s)
- Shenlin Liu
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Yalong Lu
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Dan Tian
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Tingting Zhang
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Chaoqun Zhang
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Ching Yuan Hu
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Ping Chen
- Shaanxi Provincial Center for Disease Control and Prevention, Xian, Shaanxi 710054, P. R. China
| | - Yonghong Meng
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| |
Collapse
|
53
|
Chakraborty R, Kobayashi LC, Jock J, Wing C, Chen X, Phillips M, Berkman L, Kahn K, Kabudula CW, Rosenberg M. Child support grant expansion and cognitive function among women in rural South Africa: Findings from a natural experiment in the HAALSI cohort. PLoS One 2024; 19:e0297673. [PMID: 38446751 PMCID: PMC10917272 DOI: 10.1371/journal.pone.0297673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Cash transfers are a promising but understudied intervention that may protect cognitive function in adults. Although South Africa has a rapidly ageing population, little is known about the nature of association between cash transfers and cognitive function in this setting. OBJECTIVES We leveraged age-eligibility expansions to South Africa's Child Support Grant (CSG) to investigate the association between duration of CSG eligibility and cognitive function of biological mothers of child beneficiaries in South Africa. METHODS We analysed 2014/2015 baseline data from 944 women, aged 40-59 years with at least one CSG-eligible child, enrolled in the population-representative HAALSI cohort in Agincourt, South Africa. Duration of CSG eligibility for each mother was calculated based on the birth dates of all their children and the CSG age-eligibility expansion years (2003-2012). Cognitive function was measured using a cognitive battery administered at the HAALSI baseline interview. Linear regression was used to estimate the association between duration of CSG eligibility, dichotomized as low (≤10 years) and high (>10 years) eligibility, and cognitive function z-scores of the mothers. RESULTS High vs. low duration of CSG eligibility, was associated with higher cognitive function z-scores in the full sample [β: 0.15 SD units; 95% CI: 0.04, 0.26; p-value = 0.01]. In mothers with one to four lifetime children, but not five or more, high vs. low duration of CSG eligibility, was associated with higher cognitive function z-scores [β: 0.19 SD units; 95% CI: 0.05, 0.34, p-value = 0.02]. CONCLUSION Government cash transfers given to support raising children may confer substantial protective effects on the subsequent cognitive function of mothers. Further studies are needed to understand how parity may influence this relationship. Our findings bring evidence to policymakers for designing income supplementation programmes to promote healthy cognitive ageing in low-income settings.
Collapse
Affiliation(s)
- Rishika Chakraborty
- Department of Environmental and Occupational Health, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Lindsay C. Kobayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Janet Jock
- O’Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, United States of America
| | - Coady Wing
- O’Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, United States of America
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Meredith Phillips
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Lisa Berkman
- Harvard Center for Population and Development Studies, Cambridge, Massachusetts, United States of America
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Chodziwadziwa Whiteson Kabudula
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Molly Rosenberg
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
54
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
55
|
Marsh DT, Sugiyama A, Imai Y, Kato R, Smid SD. The structurally diverse phytocannabinoids cannabichromene, cannabigerol and cannabinol significantly inhibit amyloid β-evoked neurotoxicity and changes in cell morphology in PC12 cells. Basic Clin Pharmacol Toxicol 2024; 134:293-309. [PMID: 37697481 DOI: 10.1111/bcpt.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Phytocannabinoids (pCBs) have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer's disease protein beta amyloid (Aβ). We characterized the capacity of six pCBs-cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), cannabidivarin (CBDV), cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (Δ9 -THC)-to disrupt Aβ aggregation and protect against Aβ-evoked neurotoxicity in PC12 cells. METHODS Neuroprotection against lipid peroxidation and Aβ-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualize pCB effects on Aβ aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology. RESULTS CBD inhibited lipid peroxidation with no significant effect on Aβ toxicity, whilst CBN, CBDV and CBG provided neuroprotection. CBC, CBG and CBN inhibited Aβ1-42 -induced neurotoxicity in PC12 cells, as did Δ9 -THC, CBD and CBDV. CBC, CBN and CBDV inhibited Aβ aggregation, whilst Δ9 -THC reduced aggregate density. Aβ1-42 induced morphological changes in PC12 cells, including a reduction in neuritic projections and rounded cell morphology. CBC and CBG inhibited this effect, whilst Δ9 -THC, CBD and CBDV did not alter Aβ1-42 effects on cell morphology. CONCLUSIONS These findings highlight the neuroprotective activity of CBC, CBG and CBN as novel pCBs associated with variable effects on Aβ-evoked neurite damage and inhibition of amyloid β aggregation.
Collapse
Affiliation(s)
- Dylan T Marsh
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ayato Sugiyama
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
- Institute of Glyco-core Research (IGCORE), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
56
|
Noda K, Lim Y, Goto R, Sengoku S, Kodama K. Cost-effectiveness comparison between blood biomarkers and conventional tests in Alzheimer's disease diagnosis. Drug Discov Today 2024; 29:103911. [PMID: 38311028 DOI: 10.1016/j.drudis.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Dementia management has evolved with drugs such as lecanemab, shifting management from palliative care to early diagnosis and intervention. However, the administration of these drugs presents challenges owing to the invasiveness, high cost and limited availability of amyloid-PET and cerebrospinal fluid tests for guiding drug administration. Our manuscript explores the potential of less invasive blood biomarkers as a diagnostic method, with a cost-effectiveness analysis and a comparison with traditional tests. Our findings suggest that blood biomarkers are a cost-effective alternative, but with lower accuracy, indicating the need for multiple specific biomarkers for precision. This underscores the importance of future research on new blood biomarkers and their clinical efficacy.
Collapse
Affiliation(s)
- Kenta Noda
- Graduate School of Design and Architecture, Nagoya City University, Nagoya 464-0083, Japan
| | | | - Rei Goto
- Graduate School of Health Management, Keio University, Fujisawa 252-0883, Kanagawa, Japan; Graduate School of Business Administration, Keio University, Yokohama 223-8526, Japan
| | - Shintaro Sengoku
- School of Environment and Society, Tokyo Institute of Technology, Tokyo 108-0023, Japan
| | - Kota Kodama
- Graduate School of Design and Architecture, Nagoya City University, Nagoya 464-0083, Japan; Ritsumeikan University, Osaka 567-8570, Japan; Faculty of Data Science, Nagoya City University, Nagoya 467-8501, Japan; Center for Research and Education on Drug Discovery, The Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
57
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
58
|
Tariot PN, Boada M, Lanctôt KL, Hahn-Pedersen J, Dabbous F, Udayachalerm S, Raket LL, Halchenko Y, Michalak W, Weidner W, Cummings J. Relationships of change in Clinical Dementia Rating (CDR) on patient outcomes and probability of progression: observational analysis. Alzheimers Res Ther 2024; 16:36. [PMID: 38355706 PMCID: PMC10868090 DOI: 10.1186/s13195-024-01399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Understanding the relationship among changes in Clinical Dementia Rating (CDR), patient outcomes, and probability of progression is crucial for evaluating the long-term benefits of disease-modifying treatments. We examined associations among changes in Alzheimer's disease (AD) stages and outcomes that are important to patients and their care partners including activities of daily living (ADLs), geriatric depression, neuropsychiatric features, cognitive impairment, and the probabilities of being transitioned to a long-term care facility (i.e., institutionalization). We also estimated the total time spent at each stage and annual transition probabilities in AD. METHODS The study included participants with unimpaired cognition, mild cognitive impairment (MCI) due to AD, and mild, moderate, and severe AD dementia in the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) database. The associations among change in AD stages and change in relevant outcomes were estimated using linear mixed models with random intercepts. The probability of transitioning to long-term care facilities was modeled using generalized estimating equations. The total length of time spent at AD stages and annual transition probabilities were estimated with multistate Markov models. RESULTS The estimated average time spent in each stage was 3.2 years in MCI due to AD and 2.2, 2.0, and 2.8 years for mild, moderate, and severe AD dementia, respectively. The annual probabilities of progressing from MCI to mild, moderate, and severe AD dementia were 20, 4, and 0.7%, respectively. The incremental change to the next stage of participants with unimpaired cognition, MCI, and mild, moderate, and severe AD dementia (to death) was 3.2, 20, 26.6, 31, and 25.3%, respectively. Changes in ADLs, neuropsychiatric features, and cognitive measures were greatest among participants who transitioned from MCI and mild AD dementia to more advanced stages. Participants with MCI and mild and moderate AD dementia had increasing odds of being transitioned to long-term care facilities over time during the follow-up period. CONCLUSIONS The findings demonstrated that participants with early stages AD (MCI or mild dementia) were associated with the largest changes in clinical scale scores. Early detection, diagnosis, and intervention by disease-modifying therapies are required for delaying AD progression. Additionally, estimates of transition probabilities can inform future studies and health economic modeling.
Collapse
Affiliation(s)
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, 08028, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | | | | | | | - Lars Lau Raket
- Novo Nordisk A/S, 2860, Søborg, Denmark
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Wendy Weidner
- Alzheimer's Disease International, London, SE1 4PU, UK
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, UNLV, Las Vegas, NV, 89154, USA
| |
Collapse
|
59
|
Thompson E, Schroder A, He T, Shand C, Soskic S, Oxtoby NP, Barkhof F, Alexander DC. Combining multimodal connectivity information improves modelling of pathology spread in Alzheimer's disease. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-19. [PMID: 38947941 PMCID: PMC11211996 DOI: 10.1162/imag_a_00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 07/02/2024]
Abstract
Cortical atrophy and aggregates of misfolded tau proteins are key hallmarks of Alzheimer's disease. Computational models that simulate the propagation of pathogens between connected brain regions have been used to elucidate mechanistic information about the spread of these disease biomarkers, such as disease epicentres and spreading rates. However, the connectomes that are used as substrates for these models are known to contain modality-specific false positive and false negative connections, influenced by the biases inherent to the different methods for estimating connections in the brain. In this work, we compare five types of connectomes for modelling both tau and atrophy patterns with the network diffusion model, which are validated against tau PET and structural MRI data from individuals with either mild cognitive impairment or dementia. We then test the hypothesis that a joint connectome, with combined information from different modalities, provides an improved substrate for the model. We find that a combination of multimodal information helps the model to capture observed patterns of tau deposition and atrophy better than any single modality. This is validated with data from independent datasets. Overall, our findings suggest that combining connectivity measures into a single connectome can mitigate some of the biases inherent to each modality and facilitate more accurate models of pathology spread, thus aiding our ability to understand disease mechanisms, and providing insight into the complementary information contained in different measures of brain connectivity.
Collapse
Affiliation(s)
- Elinor Thompson
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Anna Schroder
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Tiantian He
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Cameron Shand
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Sonja Soskic
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Daniel C. Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | | |
Collapse
|
60
|
Zeng Y, Qian S, Cao Y, Xiao W. Unravelling the complex interplay of cuproptosis, lncRNAs, and immune infiltration in Alzheimer's disease: a step towards novel therapeutic targets. Ann Hum Biol 2024; 51:2342531. [PMID: 38771661 DOI: 10.1080/03014460.2024.2342531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/27/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Cuproptosis, a type of cell death involving copper ion accumulation and oxidative stress, has been implicated in the development of Alzheimer's disease (AD). AIM This study aimed to explore the potential mechanisms and roles of cuproptosis-related genes (CRGs), long non-coding RNAs (lncRNAs), and immune cells in the development of cuproptosis in AD. SUBJECTS AND METHODS Gene expression profiles of AD were acquired from the Gene Expression Omnibus (GEO) database, and differential analysis was conducted to identify CRGs. Random Forest (RF) modelling was employed to select the most crucial CRGs, which were subsequently validated in the test set. A nomogram model was created to predict AD risk and categorise AD subtypes based on the identified CRGs. A lncRNA-related ceRNA network was built, and immune cell infiltration analysis was conducted. RESULTS Twelve differentially expressed CRGs were identified in the AD dataset. The RF model pinpointed the five most critical CRGs, which were validated in the test set with an AUC of 0.90. A lncRNA-related ceRNA network was developed, and immune cell infiltration analysis revealed high levels of M1 macrophages and mast cells, along with low levels of memory B cells in AD samples. Correlation analysis unveiled associations between CRGs, lncRNAs, and differentially infiltrating immune cells. CONCLUSION This research offers insights into the potential mechanisms and roles of CRGs, lncRNAs, and immune cells in the development of cuproptosis in AD. The identified CRGs and lncRNAs may serve as potential therapeutic targets for AD, and the nomogram model may assist in early AD diagnosis and subtyping.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siqi Qian
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuan Cao
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
61
|
Yang R, Zhao R, Chaudry F, Wang T, Brunton P, Khurshid Z, Ratnayake J. Modern sedative agents and techniques used in dentistry for patients with special needs: A review. J Taibah Univ Med Sci 2024; 19:153-163. [PMID: 38047240 PMCID: PMC10692720 DOI: 10.1016/j.jtumed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
According to the World Health Organisation, approximately 1.3 billion people worldwide experience substantial disability due to physical, mental or sensory impairment. People with special needs require special consideration and more time or altered delivery methods when receiving dental treatments. Various factors, such as patients' lack of cooperation, cognitive impairment and complex medical status, may lead dental practitioners to recommend conscious sedation. Several pharmacological agents and administrative routes are available, which achieve varying levels of sedation ranging from minimal to deep. Pre-operative assessment and careful case selection are necessary to determine the appropriate sedative agent, route of administration and level of sedation for each patient. Thus, a thorough understanding of the pharmacokinetics, risks and benefits, and implications of various sedatives available for PSN is essential to achieve the desired clinical outcomes. This review critically presents the considerations associated with the use of various sedative agents for PSN in dentistry. Considerations include patients' pre-anaesthesia medical comorbidities, cardiorespiratory adverse effects and cooperativeness, and the viable alternative treatment modalities.
Collapse
Affiliation(s)
- Ruijia Yang
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Rusin Zhao
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Fatima Chaudry
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Tao Wang
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Paul Brunton
- Department of Prosthodontics and Dental Implantology, Curtin University, Bentley, Australia
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, KSA
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
62
|
Chang YK, Etnier JL, Li RH, Ren FF, Ai JY, Chu CH. Acute Exercise Effect on Neurocognitive Function Among Cognitively Normal Late-Middle-Aged Adults With/Without Genetic Risk of AD: The Moderating Role of Exercise Volume and APOE Genotype. J Gerontol A Biol Sci Med Sci 2024; 79:glad179. [PMID: 37526237 DOI: 10.1093/gerona/glad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Acute exercise is a behavior that benefits cognitive function; however, its effect on populations with different risks for Alzheimer's disease (AD) and the role of exercise variance and Apolipoprotein E (APOE) genotype on this effect remains unknown. This study explores the acute exercise effect on behavioral and neurocognitive function, and its potential moderation by exercise intensity and duration and APOE genetic risk. METHODS Fifty-one cognitively normal adults (~36% APOE ε4 carriers) performed the Stroop task under a rest condition and 3 exercise conditions while electroencephalographic activity was assessed. RESULTS Acute exercise improved cognitive performance assessed through both behavioral and neuroelectrical indices. These benefits were observed regardless of adjustments of intensity and duration at a predetermined exercise volume as well as being evident irrespective of APOE ɛ4 carrier status. CONCLUSIONS Acute exercise could be proposed as a lifestyle intervention to benefit neurocognitive function in populations with and without genetic risk of AD. Future exploration should further the precise exercise prescription and also the mechanisms underlying the beneficial effects of acute exercise for neurocognitive function. CLINICAL TRIALS REGISTRATION NUMBER NCT05591313.
Collapse
Affiliation(s)
- Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
- Social Emotional Education and Development Center, National Taiwan Normal University, Taipei, Taiwan
| | - Jennifer L Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Ruei-Hong Li
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Fei-Fei Ren
- Department of Physical Education, Beijing Language and Culture University, Beijing, China
| | - Jing-Yi Ai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Chien-Heng Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
63
|
Gómez Maldonado L, de Mora-Figueroa R, López-Angarita A, Maravilla-Herrera P, Merino M. Cost of Patients with Alzheimer's Disease in Spain According to Disease Severity. PHARMACOECONOMICS - OPEN 2024; 8:103-114. [PMID: 37966711 PMCID: PMC10781927 DOI: 10.1007/s41669-023-00451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) has been associated with great healthcare and non-healthcare resource consumption. The aim of this study was to estimate the burden of AD in Spain according to disease severity from a societal perspective. METHODS A self-administered questionnaire was designed by the researchers and completed by the informal caregivers of patients with AD, reporting data on themselves as caregivers and on the AD patients for whom they care. The patients' sociodemographic and clinical data, their healthcare and non-healthcare resource consumption in the previous 12 months, and the impact of the disease on labor productivity were compiled. Data collected on informal caregivers included sociodemographic data and the impact of caring for a person with AD on their quality of life and labor productivity. Costs were estimated by multiplying the number of consumed resources by their unit prices. The cost of informal care was assessed using the proxy good method, and labor productivity losses were estimated using the human capital method. Costs were estimated by disease severity and are presented per patient per year in 2021 euros (€). RESULTS The study sample comprised 171 patients with AD aged 79.1 ± 7.4 years; 68.8% were female, time from diagnosis was 5.8 ± 4.1 years, diagnosis delay was 1.8 ± 2.3 years, and the mean Cumulative Illness Rating Scale-Geriatric (CIRS-G) total was score 8.2 ± 6.0. According to disease severity, 14% had mild cognitive impairment or mild AD, 43.9% moderate AD, and 42.1% severe AD. The average annual cost per patient was €42,336.4 in the most conservative scenario. The greatest proportion of this cost was attributed to direct non-healthcare costs (86%, €36,364.8), followed by direct healthcare costs (8.6%, €3647.1), social care costs (4.6%, €1957.1), and labor productivity losses (less than 1%, €367.4). Informal care was the highest cost item, representing 80% of direct non-healthcare costs and 69% of the total cost. The total direct non-healthcare cost and total cost were significantly higher in moderate to severe disease severities, compared to milder disease severity. CONCLUSIONS AD poses a substantial burden on informal caregivers, the national healthcare system, and society at large. Early diagnosis and treatment to prevent disease progression could reduce this economic impact.
Collapse
Affiliation(s)
| | | | | | | | - María Merino
- Vivactis Weber, C/ Moreto, 17-5º dcha, 28014, Madrid, Spain.
| |
Collapse
|
64
|
Bentley JH, Broussard JI. Multimodal Gamma Stimulation Improves Activity but not Memory in Aged Tgf344-AD Rats. Curr Alzheimer Res 2024; 20:769-777. [PMID: 38445702 DOI: 10.2174/0115672050281956240228075849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Multimodal sensory gamma stimulation is a treatment approach for Alzheimers disease that has been shown to improve pathology and memory in transgenic mouse models of Alzheimer's. Because rats are closer to humans in evolution, we tested the hypothesis that the transgenic rat line bearing human APP and PS1, line TgF344-AD, would be a good supplemental candidate to test the efficacy of this treatment. Current therapy approaches under investigation seek to utilize the immune response to minimize or degrade the accumulation of β-amyloid plaque load in mouse models designed to overexpress Aβ. However, many of these models lack some of the hallmarks of Alzheimer's disease, such as hyperphosphorylated tau and neuronal cell loss. The TgF344-AD transgenic rat model is a good candidate to bridge the gap between mouse models and clinical efficacy in humans. OBJECTIVE The objective of this study was to use multimodal gamma stimulation at light and auditory modalities simultaneously to test whether this enhances memory performance as measured by the object location task and the spontaneous alternation task. METHODS In our study, we designed and built a low-cost, easy-to-construct multimodal light and sound gamma stimulator. Our gamma stimulation device was built using an Arduino microcontroller, which drives lights and a speaker at the gamma frequency. We have included in this paper our device's parts, hardware design, and software architecture for easy reproducibility. We then performed an experiment to test the effect of multimodal gamma stimulation on the cognitive performance of fourteen-month-old TgF344-AD rats. Rats were randomly assigned to either an experimental group that received gamma stimulation or a control group that did not. Performance in a Novel Object Location (NOL) task and spontaneous alternation task was evaluated in both groups before and after the treatment. RESULTS Multimodal gamma stimulation did not improve memory compared to unstimulated TgF344-AD rats. However, the gamma-stimulated rats did spend significantly more time exploring objects in the novel location task than the unstimulated rats. In the spontaneous alternation task, gamma-stimulated rats exhibited significantly greater exploratory activity than unstimulated controls. CONCLUSION Multimodal gamma stimulation did not enhance memory performance in the object location task or the spontaneous alternation task. However, in both tasks, the treatment group had improved measures of exploratory activity relative to the untreated group. We conclude that several limitations could have contributed to this mixed effect, including aging complications, different animal models, or light cycle effects.
Collapse
Affiliation(s)
- J H Bentley
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - J I Broussard
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
65
|
Tripathi S, Sharma Y, Rane R, Kumar D. CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer's Disease Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1405-1424. [PMID: 38716549 DOI: 10.2174/0118715273283786240408034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024]
Abstract
In defiance of the vast amount of information regarding Alzheimer's disease (AD) that has been learned over the past thirty years, progress toward developing an effective therapy has been difficult. A neurological ailment that progresses and cannot be reversed is Alzheimer's disease, which shows neurofibrillary tangles, beta-amyloid plaque, and a lack of cognitive processes that is created by tau protein clumps with hyperphosphorylation that finally advances to neuronal damage without a recognized treatment, which has stimulated research into new therapeutic strategies. The protein CAS9 is linked to CRISPR, which is a clustered Regularly Interspaced Short Palindromic Repeat that inactivates or corrects a gene by recognizing a gene sequence that produces a doublestranded break has enchanted a whole amount of interest towards its potency to cure gene sequences in AD. The novel CRISPR-Cas9 applications for developing in vitro and in vivo models to the benefit of AD investigation and therapies are thoroughly analyzed in this work. The discussion will also touch on the creation of delivery methods, which is a significant obstacle to the therapeutic use of CRISPR/Cas9 technology. By concentrating on specific genes, such as those that are significant early- onset AD risk factors and late-onset AD risk factors, like the apolipoprotein E4 (APOE4) gene, this study aims to evaluate the potential application of CRISPR/Cas9 as a possible treatment for AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Yashika Sharma
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Rajesh Rane
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Dileep Kumar
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| |
Collapse
|
66
|
Perneczky R. Alzheimer's Disease Prevention and Treatment Based on Population-Based Approaches. Methods Mol Biol 2024; 2785:15-33. [PMID: 38427185 DOI: 10.1007/978-1-0716-3774-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The development of effective prevention and treatment strategies for Alzheimer's disease (AD) and dementia is hindered by limited knowledge of the underlying biological and environmental causes. While certain genetic factors have been associated with AD, and various lifestyle and environmental factors have been linked to dementia risk, the interactions between genes and the environment are not yet fully understood. To identify new avenues for dementia prevention, coordinated global efforts are needed to utilize existing cohorts and resources effectively and efficiently. This chapter provides an overview of current research on risk and protective factors for AD and dementia and discusses the opportunities and challenges associated with population-based approaches.
Collapse
Affiliation(s)
- Robert Perneczky
- Department of Psychiatry and Psychotherapy, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
67
|
Chen Y, Su Y, Wu J, Chen K, Atri A, Caselli RJ, Reiman EM, Wang Y. Combining Blood-Based Biomarkers and Structural MRI Measurements to Distinguish Persons with and without Significant Amyloid Plaques. J Alzheimers Dis 2024; 98:1415-1426. [PMID: 38578889 DOI: 10.3233/jad-231162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Amyloid-β (Aβ) plaques play a pivotal role in Alzheimer's disease. The current positron emission tomography (PET) is expensive and limited in availability. In contrast, blood-based biomarkers (BBBMs) show potential for characterizing Aβ plaques more affordably. We have previously proposed an MRI-based hippocampal morphometry measure to be an indicator of Aβ plaques. Objective To develop and validate an integrated model to predict brain amyloid PET positivity combining MRI feature and plasma Aβ42/40 ratio. Methods We extracted hippocampal multivariate morphometry statistics from MR images and together with plasma Aβ42/40 trained a random forest classifier to perform a binary classification of participant brain amyloid PET positivity. We evaluated the model performance using two distinct cohorts, one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the other from the Banner Alzheimer's Institute (BAI), including prediction accuracy, precision, recall rate, F1 score, and AUC score. Results Results from ADNI (mean age 72.6, Aβ+ rate 49.5%) and BAI (mean age 66.2, Aβ+ rate 36.9%) datasets revealed the integrated multimodal (IMM) model's superior performance over unimodal models. The IMM model achieved prediction accuracies of 0.86 in ADNI and 0.92 in BAI, surpassing unimodal models based solely on structural MRI (0.81 and 0.87) or plasma Aβ42/40 (0.73 and 0.81) predictors. CONCLUSIONS Our IMM model, combining MRI and BBBM data, offers a highly accurate approach to predict brain amyloid PET positivity. This innovative multiplex biomarker strategy presents an accessible and cost-effective avenue for advancing Alzheimer's disease diagnostics, leveraging diverse pathologic features related to Aβ plaques and structural MRI.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Alireza Atri
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, Center for Brain/Mind Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
68
|
Pruntel SM, van Munster BC, de Vries JJ, Vissink A, Visser A. Oral Health as a Risk Factor for Alzheimer Disease. J Prev Alzheimers Dis 2024; 11:249-258. [PMID: 38230738 PMCID: PMC10994994 DOI: 10.14283/jpad.2023.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 01/18/2024]
Abstract
In patients with Alzheimer's disease pathophysiological changes of the brain that initiate the onset of Alzheimer's disease include accumulation of amyloid-β plaques and phosphorylation of tau-tangles. A rather recently considered risk factor for the onset of Alzheimer's disease is poor oral health. The aim of this systematic review of the literature was to assess the potential association(s) of oral health as a risk factor for the onset of Alzheimer's disease. After a systematic search of Pubmed, Embase and Web of Science. A total of 1962 studies were assessed, of which 17 studies demonstrated possible associations between oral health diseases and Alzheimer's disease. 4 theories could be distinguished that describe the possible links between oral health and the development or onset of Alzheimer's disease; 1) role of pathogens, 2) role of inflammatory mediators, 3) role of APOE alleles and 4) role of Aβ peptide. The main common denominator of all the theories is the neuroinflammation due to poor oral health. Yet, there is insufficient evidence to prove a link due to the diversity of the designs used and the quality of the study design of the included studies. Therefore, further research is needed to find causal links between oral health and neuroinflammation that possibly can lead to the onset of Alzheimer's disease with the future intention to prevent cognitive decline by better dental care.
Collapse
Affiliation(s)
- S M Pruntel
- Anita Visser, Department of Gerodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, Groningen, Groningen, 9713 AV, The Netherlands, Tel: 050 361 3840, E-mail:
| | | | | | | | | |
Collapse
|
69
|
Gorham IK, Reid DM, Sun J, Zhou Z, Barber RC, Phillips NR. Blood-Based mtDNA Quantification Indicates Population-Specific Differences Associated with Alzheimer's Disease-Related Risk. J Alzheimers Dis 2024; 97:1407-1419. [PMID: 38250773 PMCID: PMC11315371 DOI: 10.3233/jad-230880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Age is known to be the biggest risk factor for Alzheimer's disease (AD), and Mexican Americans (MAs), who are one of the fastest-aging populations in the United States, are at a uniquely elevated risk. Mitochondrial stress and dysfunction are key players in the progression of AD and are also known to be impacted by lifestyle and environmental exposures/stressors. OBJECTIVE This study aimed to identify population-specific differences in indicators of mitochondrial stress and dysfunction associated with AD risk that are detectable in the blood. METHODS Examining blood from both non-Hispanic white (NHW) and MA participants (N = 527, MA n = 284, NHW n = 243), mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) copy numbers were assessed through quantitative PCR. Data was stratified by population and sample type, and multiple linear regression analyses were performed to identify factors that may influence this phenotype of mitochondrial dysfunction. RESULTS In the MA cohort, there was a significant relationship between cellular mtDNA:nDNA ratio and body mass index, CDR sum of boxes score, the APOEɛ2/ɛ3 genotype, and education. Further, there was a significant relationship between cell-free mtDNA copy number and both education and CDR sum score. In the NHW cohort, there was a significant relationship between cellular mtDNA:nDNA ratio and both age and CDR sum score. Age was associated with cell-free mtDNA in the NHW cohort. CONCLUSIONS This evidence supports the existence of population-based differences in the factors that are predictive of this blood-based phenotype of mitochondrial dysfunction, which may be indicative of cognitive decline and AD risk.
Collapse
Affiliation(s)
- Isabelle K. Gorham
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Danielle Marie Reid
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Jie Sun
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C. Barber
- Department of Family Medicine, Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
- Institute for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R. Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Institute for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
70
|
Telpoukhovskaia MA, Murdy TJ, Marola OJ, Charland K, MacLean M, Luquez T, Lish AM, Neuner S, Dunn A, Onos KD, Wiley J, Archer D, Huentelman MJ, Arnold M, Menon V, Goate A, Van Eldik LJ, Territo PR, Howell GR, Carter GW, O'Connell KMS, Kaczorowski CC. New directions for Alzheimer's disease research from the Jackson Laboratory Center for Alzheimer's and Dementia Research 2022 workshop. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12458. [PMID: 38469553 PMCID: PMC10925728 DOI: 10.1002/trc2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION In September 2022, The Jackson Laboratory Center for Alzheimer's and Dementia Research (JAX CADR) hosted a workshop with leading researchers in the Alzheimer's disease and related dementias (ADRD) field. METHODS During the workshop, the participants brainstormed new directions to overcome current barriers to providing patients with effective ADRD therapeutics. The participants outlined specific areas of focus. Following the workshop, each group used standard literature search methods to provide background for each topic. RESULTS The team of invited experts identified four key areas that can be collectively addressed to make a significant impact in the field: (1) Prioritize the diversification of disease targets, (2) enhance factors promoting resilience, (3) de-risk clinical pipeline, and (4) centralize data management. DISCUSSION In this report, we review these four objectives and propose innovations to expedite ADRD therapeutic pipelines.
Collapse
Affiliation(s)
| | - Thomas J. Murdy
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | | | - Kevin Charland
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Michael MacLean
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Tain Luquez
- Center for Translational and Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alexandra M. Lish
- Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sarah Neuner
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Amy Dunn
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Kristen D. Onos
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | | | - Derek Archer
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Matthew J. Huentelman
- Neurogenomics DivisionTranslational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Matthias Arnold
- Institute of Computational BiologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Vilas Menon
- Center for Translational and Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alison Goate
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Paul R. Territo
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gareth R. Howell
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaineUSA
- Neuroscience Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
- Genetics Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
| | - Gregory W. Carter
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaineUSA
- Neuroscience Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
- Genetics Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
| | - Kristen M. S. O'Connell
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaineUSA
- Neuroscience Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
- Genetics Program, Graduate School of Biomedical ScienceTufts University School of MedicineBostonMassachusettsUSA
| | - Catherine C. Kaczorowski
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
71
|
Memon A, Moore JA, Kang C, Ismail Z, Forkert ND. Visual Functions Are Associated with Biomarker Changes in Alzheimer's Disease. J Alzheimers Dis 2024; 99:623-637. [PMID: 38669529 DOI: 10.3233/jad-231084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background While various biomarkers of Alzheimer's disease (AD) have been associated with general cognitive function, their association to visual-perceptive function across the AD spectrum warrant more attention due to its significant impact on quality of life. Thus, this study explores how AD biomarkers are associated with decline in this cognitive domain. Objective To explore associations between various fluid and imaging biomarkers and visual-based cognitive assessments in participants across the AD spectrum. Methods Data from participants (N = 1,460) in the Alzheimer's Disease Neuroimaging Initiative were analyzed, including fluid and imaging biomarkers. Along with the Mini-Mental State Examination (MMSE), three specific visual-based cognitive tests were investigated: Trail Making Test (TMT) A and TMT B, and the Boston Naming Test (BNT). Locally estimated scatterplot smoothing curves and Pearson correlation coefficients were used to examine associations. Results MMSE showed the strongest correlations with most biomarkers, followed by TMT-B. The p-tau181/Aβ1-42 ratio, along with the volume of the hippocampus and entorhinal cortex, had the strongest associations among the biomarkers. Conclusions Several biomarkers are associated with visual processing across the disease spectrum, emphasizing their potential in assessing disease severity and contributing to progression models of visual function and cognition.
Collapse
Affiliation(s)
- Ashar Memon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jasmine A Moore
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada
| | - Chris Kang
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Departments of Clinical Neurosciences, Psychiatry, Community Health Sciences, and Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
72
|
Kaur U, Reddy J, Tiwari A, Chakrabarti S, Chakrabarti SS. Lecanemab: More Questions Than Answers! Clin Drug Investig 2024; 44:1-10. [PMID: 38095822 DOI: 10.1007/s40261-023-01331-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
The approval of lecanemab by the US Food and Drug Administration has been touted as a defining moment in the treatment of Alzheimer's disease. Lecanemab, an anti-amyloid beta monoclonal antibody, is the first Alzheimer's disease drug targeting amyloid beta that has shown statistically significant cognitive benefits in phase III trials. However, there have been many questions raised over the clinical relevance of the otherwise minimal cognitive improvements. Furthermore, its rapid approval has been mired in controversy, in addition to the reports of adverse events such as amyloid-related imaging abnormalities and several deaths of participants in the lecanemab trials. Here, we analyze the evidence supporting lecanemab as an amyloid beta therapy and also discuss the concerns raised about its efficacy and safety.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jaideep Reddy
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashutosh Tiwari
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
73
|
Avelar-Pereira B, Phillips CM, Hosseini SMH. Convergence of Accelerated Brain Volume Decline in Normal Aging and Alzheimer's Disease Pathology. J Alzheimers Dis 2024; 101:249-258. [PMID: 39177595 DOI: 10.3233/jad-231458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background Age represents the largest risk factor for Alzheimer's disease (AD) but is typically treated as a covariate. Still, there are similarities between brain regions affected in AD and those showing accelerated decline in normal aging, suggesting that the distinction between the two might fall on a spectrum. Objective Our goal was to identify regions showing accelerated atrophy across the brain and investigate whether these overlapped with regions involved in AD or where related to amyloid. Methods We used a longitudinal sample of 137 healthy older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI), who underwent magnetic resonance imaging (MRI). In addition, a total of 79 participants also had longitudinal positron emission tomography (PET) data. We computed linear-mixed effects models for brain regions declining faster than the average to investigate variability in the rate of change. Results 23 regions displayed a 0.5 standard deviation (SD) above average decline over 2 years. Of these, 52% overlapped with regions showing similar decline in a matched AD sample. Beyond this, the left precuneus, right superior frontal, transverse temporal, and superior temporal sulcus showed accelerated decline. Lastly, atrophy in the precuneus was associated with increased amyloid load. Conclusions Accelerated decline in normal aging might contribute to the detection of early signs of AD among healthy individuals.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Curran Michael Phillips
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
74
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
75
|
Bayazid AB, Jeong YH, Jeong SA, Lim BO. Sodium butyrate alleviates potential Alzheimer’s disease in vitro by suppressing Aβ and tau activation and ameliorates Aβ-induced toxicity. FOOD AGR IMMUNOL 2023; 34. [DOI: 10.1080/09540105.2023.2234100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/04/2023] [Indexed: 08/06/2024] Open
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, Korea
| | - Yeong Hwan Jeong
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, Korea
| | - Soo Ah Jeong
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, Korea
- Human Bioscience Corporate R&D Center, Chungju, Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, Korea
- Human Bioscience Corporate R&D Center, Chungju, Korea
| |
Collapse
|
76
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
77
|
Andrade VHBD, M Rodrigues EY, Dias NAF, Ferreira GFC, Carvalho DBD, das Neves AR, Coronel PMV, Yonekawa MKA, Parisotto EB, Santos EAD, Souza AS, Paredes-Gamero EJ, de Sousa KS, Souza LLD, Resstel LBM, Baroni ACM, Lagatta DC. Neuroprotective Profile of Triazole Grandisin Analogue against Amyloid-Beta Oligomer-Induced Cognitive Impairment. ACS Chem Neurosci 2023; 14:4298-4310. [PMID: 38048522 DOI: 10.1021/acschemneuro.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by accumulation of amyloid-β oligomers (AβO) in the brain, neuroinflammation, oxidative stress, and cognitive decline. Grandisin, a tetrahydrofuran neolignan, exhibits relevant anti-inflammatory and antioxidant properties. Interestingly, grandisin-based compounds were shown to prevent AβO-induced neuronal death in vitro. However, no study has assessed the effect of these compounds on the AD animal model. This study focuses on a triazole grandisin analogue (TGA) synthesized using simplification and bioisosteric drug design, which resulted in improved potency and solubility compared with the parent compound. This study aimed to investigate the possible in vivo effects of TGA against AβO-induced AD. Male C57/Bl6 mice underwent stereotaxic intracerebroventricular AβO (90 μM) or vehicle injections. 24 h after surgery, animals received intraperitoneal treatment with TGA (1 mg/kg) or vehicle, administered on a 14 day schedule. One day after treatment completion, a novel object recognition task (NORT) was performed. Memantine (10 mg/kg) was administered as a positive control. NORT retention sessions were performed on days 8 and 16 after AβO injection. Immediately after retention sessions, animals were euthanized for cortex and hippocampus collection. Specimens were subjected to oxidative stress and cytokine analyses. TGA reduced the level of cortex/hippocampus lipoperoxidation and prevented cognitive impairment in AβO-injected mice. Additionally, TGA reduced tumor necrosis factor (TNF) and interferon-γ (IFN-γ) levels in the hippocampus. By contrast, memantine failed to prevent cortex/hippocampus lipid peroxidation, recognition memory decline, and AβO-induced increases in TNF and IFN-γ levels in the hippocampus. Thus, memantine was unable to avoid the AβO-induced persistent cognitive impairment. The results showed that TGA may prevent memory impairment by exerting antioxidant and anti-inflammatory effects in AβO-injected mice. Moreover, TGA exhibited a persistent neuroprotective effect compared to memantine, reflecting an innovative profile of this promising agent against neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Victor H B de Andrade
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Erick Y M Rodrigues
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Nayara A F Dias
- School of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Gabriela F C Ferreira
- School of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Diego B de Carvalho
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Amarith R das Neves
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Paola M V Coronel
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Murilo K A Yonekawa
- Institute of Biosciences, Federal University of Mato Grosso do Sul (INBIO-UFMS), Campo Grande 79051-470, Brazil
| | - Eduardo B Parisotto
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Edson A Dos Santos
- Institute of Biosciences, Federal University of Mato Grosso do Sul (INBIO-UFMS), Campo Grande 79051-470, Brazil
| | - Albert S Souza
- Institute of Biosciences, Federal University of Mato Grosso do Sul (INBIO-UFMS), Campo Grande 79051-470, Brazil
| | - Edgar J Paredes-Gamero
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Kamylla S de Sousa
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Letícia L de Souza
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Leonardo B M Resstel
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Adriano C M Baroni
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| | - Davi C Lagatta
- Pharmaceutical Sciences, Food and Nutrition School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79051-470, Brazil
| |
Collapse
|
78
|
Lu Z, Fu J, Wu G, Yang Z, Wu X, Wang D, You Z, Nie Z, Sheng Q. Neuroprotection and Mechanism of Gas-miR36-5p from Gastrodia elata in an Alzheimer's Disease Model by Regulating Glycogen Synthase Kinase-3β. Int J Mol Sci 2023; 24:17295. [PMID: 38139125 PMCID: PMC10744203 DOI: 10.3390/ijms242417295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3β. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3β. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
79
|
Alghamdi A, Bijlsma MJ, de Vos S, Schuiling-Veninga CC, Bos JHJ, Hak E. Association between Incidence of Prescriptions for Alzheimer's Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis. Pharmaceuticals (Basel) 2023; 16:1694. [PMID: 38139820 PMCID: PMC10748070 DOI: 10.3390/ph16121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia, with a growing number of patients worldwide. The association between AD and treatment with drugs targeting the beta-adrenergic receptor is controversial. The aim of this study is to assess the association between the initiation of AD medication and beta-adrenoceptor antagonists (beta-blockers) in adults. MATERIALS AND METHODS We conducted a prescription sequence symmetry analysis using the University of Groningen IADB.nl prescription database. We determined the order of the first prescription for treating AD and the first prescription for beta-blockers, with the dispensing date of the first prescription for AD defined as the index date. Participants were adults over 45 years old starting any AD medication and beta-blockers within two years. We calculated adjusted sequence ratios with corresponding 95% confidence intervals. RESULTS We identified 510 users of both AD and beta-blockers, and 145 participants were eligible. The results were compatible with either a significant decrease in the incidence of AD after using beta-blockers (adjusted sequence ratio (aSR) = 0.52; 95% CI: 0.35-0.72) or, conversely, an increase in beta-blockers after AD medication (aSR = 1.96; 95% CI: 1.61-2.30). CONCLUSIONS There is a relationship between the use of beta-blockers and AD medications. Further research is needed with larger populations to determine whether drug therapy for AD increases the risk of hypertension or whether beta-blockers have potential protective properties against AD development.
Collapse
Affiliation(s)
- Ali Alghamdi
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Maarten J. Bijlsma
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
- Laboratory of Population Health, Max Planck Institute for Demographic Research, 18057 Rostock, Germany
| | - Stijn de Vos
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Catharina C.M. Schuiling-Veninga
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Jens H. J. Bos
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Eelko Hak
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
80
|
Waziry R, Williams OA. Alzheimer Disease: A Life-Limiting Disease With a Burden of a Terminal Illness. Neurol Clin Pract 2023; 13:e200208. [PMID: 37854176 PMCID: PMC10581074 DOI: 10.1212/cpj.0000000000200208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Purpose of Review An estimated 6.5 million Americans live with Alzheimer dementia. Better understanding of advanced stages of Alzheimer disease (AD) and timely monitoring of its preventable complications would translate to improved survival and quality of life in this population. Recent Findings In this perspective review, we proposed shifting the narrative to recognizing AD as a chronic life-limiting illness instead of a terminal disease. In support of this view, we discussed the following: (1) the biochemical, cellular (preclinical), and clinical phases of AD; (2) survival after AD; (3) AD therapeutics and potential implications for the population with AD in the advanced stages. Summary On the bases of the prolonged preclinical phase in AD, promising advances in AD therapeutics and the varying survival after AD, we proposed a new classification for AD and more broadly neurodegenerative disorders to be recognized as chronic life-limiting illnesses rather than terminal diseases with important implications for patients with AD in the advanced stages given the challenges that are specific to this population.
Collapse
Affiliation(s)
- Reem Waziry
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, NY
| | - Olajide A Williams
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, NY
| |
Collapse
|
81
|
Lomoio S, Pandey RS, Rouleau N, Menicacci B, Kim W, Cantley WL, Haydon PG, Bennett DA, Young-Pearse TL, Carter GW, Kaplan DL, Tesco G. 3D bioengineered neural tissue generated from patient-derived iPSCs mimics time-dependent phenotypes and transcriptional features of Alzheimer's disease. Mol Psychiatry 2023; 28:5390-5401. [PMID: 37365240 PMCID: PMC11164539 DOI: 10.1038/s41380-023-02147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Several iPSC-derived three-dimensional (3D) cultures have been generated to model Alzheimer's disease (AD). While some AD-related phenotypes have been identified across these cultures, none of them could recapitulate multiple AD-related hallmarks in one model. To date, the transcriptomic features of these 3D models have not been compared with those of human AD brains. However, these data are crucial to understanding the pertinency of these models for studying AD-related pathomechanisms over time. We developed a 3D bioengineered model of iPSC-derived neural tissue that combines a porous scaffold composed of silk fibroin protein with an intercalated collagen hydrogel to support the growth of neurons and glial cells into complex and functional networks for an extended time, a fundamental requisite for aging studies. Cultures were generated from iPSC lines obtained from two subjects carrying the familial AD (FAD) APP London mutation, two well-studied control lines, and an isogenic control. Cultures were analyzed at 2 and 4.5 months. At both time points, an elevated Aβ42/40 ratio was detected in conditioned media from FAD cultures. However, extracellular Aβ42 deposition and enhanced neuronal excitability were observed in FAD culture only at 4.5 months, suggesting that extracellular Aβ deposition may trigger enhanced network activity. Remarkably, neuronal hyperexcitability has been described in AD patients early in the disease. Transcriptomic analysis revealed the deregulation of multiple gene sets in FAD samples. Such alterations were strikingly similar to those observed in human AD brains. These data provide evidence that our patient-derived FAD model develops time-dependent AD-related phenotypes and establishes a temporal relation among them. Furthermore, FAD iPSC-derived cultures recapitulate transcriptomic features of AD patients. Thus, our bioengineered neural tissue represents a unique tool to model AD in vitro over time.
Collapse
Affiliation(s)
- Selene Lomoio
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Ravi S Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Canada
| | - Beatrice Menicacci
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - WonHee Kim
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - William L Cantley
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory W Carter
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Giuseppina Tesco
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
82
|
Shinozaki Y, Ikarashi N, Tabata K, Miyazawa A, Kon R, Sakai H, Hosoe T. Expression analysis of genes important for maintaining skin function in a senescence-accelerated mouse prone model. Geriatr Gerontol Int 2023; 23:951-957. [PMID: 37908183 DOI: 10.1111/ggi.14718] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
AIM Senescence-accelerated mouse prone (SAMP) mice can reproduce the same conditions as normal aging mice in a short period. Although SAMP mice have been widely used in aging research, research on skin function in SAMP mice is lacking. In this study, to investigate the skin function of SAMP mice, we analyzed the expression of genes important for maintaining skin function. METHODS Eight-month-old SAMP mice and senescence-accelerated mouse resistant (SAMR) mice with normal aging were used. The expression levels of various functional genes in the skin were analyzed. RESULTS The dermal water content of SAMP mice was significantly lower than that of SAMR mice, indicating dry skin. The mRNA expression levels of elastin (Ela), filaggrin (Flg), loricrin (Lor), collagen type I alpha 1 chain (Col1a1) and Col1a2 in the skin of SAMP mice were all significantly decreased compared with those of SAMR mice. Hyaluronan-degrading enzyme (Hyal1) expression levels in SAMP mice were similar to those in SAMR mice, but hyaluronan synthase (Has2) levels were significantly decreased. In addition, the expression level of aquaporin-3 in the skin of SAMP mice was significantly decreased at both the mRNA and protein levels. CONCLUSIONS In the skin of SAMP mice, the expression levels of various skin function-regulating genes were decreased, and this phenomenon might cause skin dryness. The SAMP mouse could be a tool for analyzing skin aging. Geriatr Gerontol Int 2023; 23: 951-957.
Collapse
Affiliation(s)
- Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Ayuka Miyazawa
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan
| |
Collapse
|
83
|
Yaqub A, Khan SR, Vernooij MW, van Hagen PM, Peeters RP, Ikram MA, Chaker L, Dalm VASH. Serum immunoglobulins and biomarkers of dementia: a population-based study. Alzheimers Res Ther 2023; 15:194. [PMID: 37936180 PMCID: PMC10629143 DOI: 10.1186/s13195-023-01333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inflammation plays a key role in the development of dementia, but its link to early biomarkers, particularly those in plasma or neuroimaging, remains elusive. This study aimed to investigate the association between serum immunoglobulins and biomarkers of dementia. METHODS Between 1997 and 2009, serum immunoglobulins (IgA, IgG and IgM) were measured in dementia-free participants of the population-based Rotterdam Study. A random subset of participants had assessment of biomarkers in plasma (total tau (t-tau), neurofilament light chain (NfL), amyloid-β40 (Aβ-40), amyloid-β42 (Aβ-42), while another subset of participants underwent neuroimaging to quantify brain volume, white matter structural integrity and markers of cerebral small vessel disease. Linear regression models were constructed to determine cross-sectional associations between IgA, IgG, IgM and biomarkers of dementia, with adjustment for potential confounders. Multiple testing correction was applied using the false discovery rate. As a sensitivity analysis, we re-ran the models for participants within the reference range of immunoglobulins, excluding those using immunomodulating drugs, and conducted a stratified analysis by APOE-ε4 carriership and sex. RESULTS Of 8,768 participants with serum immunoglobulins, 3,455 participants (65.8 years [interquartile range (IQR): 61.5-72.0], 57.2% female) had plasma biomarkers available and 3,139 participants (57.4 years [IQR: 52.7-60.7], 54.4% female) had neuroimaging data. Overall, no associations between serum immunoglobulins and biomarkers of dementia remained significant after correction for multiple testing. However, several suggestive associations were noted: higher serum IgA levels concurred with lower plasma levels of Aβ-42 (standardized adjusted mean difference: -0.015 [95% confidence interval (CI): -0.029--0.002], p = 2.8 × 10-2), and a lower total brain volume, mainly driven by less gray matter (-0.027 [-0.046--0.008], p = 6.0 × 10-3) and more white matter hyperintensities (0.047 [0.016 - 0.077], p = 3.0 × 10-3). In sensitivity analyses, higher IgM was linked to lower t-tau, Aβ-40, and Aβ-42, but also a loss of white matter microstructural integrity. Stratified analyses indicate that these associations potentially differ between carriers and non-carriers of the APOE-ε4 allele and men and women. CONCLUSIONS While associations between serum immunoglobulins and early markers of dementia could not be established in this population-based sample, it may be valuable to consider factors such as APOE-ε4 allele carriership and sex in future investigations.
Collapse
Affiliation(s)
- Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Samer R Khan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
84
|
Geravand S, Karami M, Sahraei H, Rahimi F. Protective effects of L-arginine on Alzheimer's disease: Modulating hippocampal nitric oxide levels and memory deficits in aluminum chloride-induced rat model. Eur J Pharmacol 2023; 958:176030. [PMID: 37660966 DOI: 10.1016/j.ejphar.2023.176030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
There is evidence that high daily intake of aluminum (Al) is associated with an increased risk of dementia or cognitive decline. We injected L-arginine into the dorsal hippocampus (DH) of an AlCl3-induced Alzheimer's model and studied memory deficit, β-amyloid (βA) accumulation, neurodegeneration, and molecular changes. Male Wistar rats were cannulated unilaterally in the DH under a stereotaxic apparatus and a dose of AlCl3 (1-200 μg/rat) was injected into the CA1. After recovery, L-arginine and L-NAME (0.05-25 μg/rat) were injected into CA1 and animals were tested in novelty seeking task. One group received βA (2 μg/rat, intra CA1) as a reference group. Control groups received saline (1 μL/rat, intra-CA1) and galantamine (25 μg/rat, intra-CA1), respectively. Finally, rats were anesthetized and hippocampal tissues were isolated on ice. Levels of neuronal NO synthase (nNOS), β-secretase and soluble guanylyl cyclase (sGC) were measured by western blotting. βA formation and the number of CA1 neurons were assessed by Congo red and Nissl staining. NOS activation by NADPH-diaphorase (NADPH-d) was investigated. All data were analyzed using analysis of variance (ANOVA) at α = 0.05 level. Like βA, AlCl3 (25 μg/rat) caused accumulation of βA in the DH and increased stopping of the animal on the novel side (indicating a recall deficit). CA1 neurons decreased, and nNOS and β-secretase, but not sGC, showed a change consistent with Alzheimer's. However, prophylactic intervention of L-arginine at 3-9 μg/rat was protective, probably by nNOS stimulation in DH, as shown by NADPH-d assay. L-arginine may protect against Alzheimer's by increasing hippocampal NO levels.
Collapse
Affiliation(s)
- Samira Geravand
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Manizheh Karami
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Hedayat Sahraei
- Department of Physiology, School of Medicine, Baghiyatallah University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
85
|
Lanctôt KL, Chen C, Mah E, Kiss A, Li A, Shade D, Scherer RW, Vieira D, Coulibaly H, Rosenberg PB, Lerner AJ, Padala PR, Brawman-Mintzer O, van Dyck CH, Porsteinsson AP, Craft S, Levey A, Burke WJ, Mintzer J, Herrmann N. Cost consequence analysis of Apathy in Dementia Methylphenidate Trial 2 (ADMET 2). Int Psychogeriatr 2023; 35:664-672. [PMID: 37066690 PMCID: PMC10579450 DOI: 10.1017/s1041610223000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND This paper used data from the Apathy in Dementia Methylphenidate Trial 2 (NCT02346201) to conduct a planned cost consequence analysis to investigate whether treatment of apathy with methylphenidate is economically attractive. METHODS A total of 167 patients with clinically significant apathy randomized to either methylphenidate or placebo were included. The Resource Utilization in Dementia Lite instrument assessed resource utilization for the past 30 days and the EuroQol five dimension five level questionnaire assessed health utility at baseline, 3 months, and 6 months. Resources were converted to costs using standard sources and reported in 2021 USD. A repeated measures analysis of variance compared change in costs and utility over time between the treatment and placebo groups. A binary logistic regression was used to assess cost predictors. RESULTS Costs were not significantly different between groups whether the cost of methylphenidate was excluded (F(2,330) = 0.626, ηp2 = 0.004, p = 0.535) or included (F(2,330) = 0.629, ηp2 = 0.004, p = 0.534). Utility improved with methylphenidate treatment as there was a group by time interaction (F(2,330) = 7.525, ηp2 = 0.044, p < 0.001). DISCUSSION Results from this study indicated that there was no evidence for a difference in resource utilization costs between methylphenidate and placebo treatment. However, utility improved significantly over the 6-month follow-up period. These results can aid in decision-making to improve quality of life in patients with Alzheimer's disease while considering the burden on the healthcare system.
Collapse
Affiliation(s)
| | - Clara Chen
- Faculty of Health Sciences, Western University, London, ON, Canada
| | - Ethan Mah
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alex Kiss
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Abby Li
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Dave Shade
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Roberta W. Scherer
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Hamadou Coulibaly
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Alan J. Lerner
- University Hospital – Case Western Reserve University, Cleveland, OH, USA
| | - Prasad R. Padala
- University of Arkansas for Medical Science, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Olga Brawman-Mintzer
- Medical University of South Carolina and Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | | | | | - Suzanne Craft
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Jacobo Mintzer
- Medical University of South Carolina and Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | | |
Collapse
|
86
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. Neurobiol Aging 2023; 131:182-195. [PMID: 37677864 PMCID: PMC10538380 DOI: 10.1016/j.neurobiolaging.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina L Duarte
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayra J Laverde-Paz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaina A Simon
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda T Miyares
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; JJ Vance Memorial Summer Internship in Biological and Computational Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Larry D Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina M Carney
- Mental Health & Behavioral Science Service, Bruce W. Carter VA Medical Center, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
87
|
Wang D, Ling Y, Harris K, Schulz PE, Jiang X, Kim Y. Characterizing Treatment Non-responders vs. Responders in Completed Alzheimer's Disease Clinical Trials. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.27.23297685. [PMID: 37961216 PMCID: PMC10635230 DOI: 10.1101/2023.10.27.23297685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) patients have varying responses to AD drugs and there may be no single treatment for all AD patients. Trial after trial shows that identifying non-responsive and responsive subgroups and their corresponding moderators will provide better insights into subject selection and interpretation in future clinical trials. We aim to extensively investigate pre-treatment features that moderate treatment effect of Galantamine, Bapineuzumab, and Semagacestat from completed trial data. We obtained individual-level patient data from ten randomized clinical trials. Six Galantamine trials and two Bapineuzumab trials were from Yale University Open Data Access Project and two Semagacestat trials were from the Center for Global Clinical Research Data. We included a total of 10,948 subjects. The trials were conducted worldwide from 2001 to 2012. We estimated treatment effect using causal forest modeling on each trial. Finally, we identified important pre-treatment features that determine treatment efficacy and identified responsive or nonresponsive subgroups. As a result, patient's pre-treatment conditions that determined the treatment efficacy of Galantamine differed by dementia stages, but we consistently observed that non-responders in Galantamine trials had lower BMI (25 vs 28, P < .001) and increased ages (74 vs 68, P < .001). Responders in Bapineuzumab and Semagacestat trials had lower Aβ42 levels (6.41 vs 6.53 pg/ml, P < .001) and smaller whole brain volumes (983.13 vs 1052.78 ml, P < .001). 6 'positive' treatment trials had subsets of patients who had, in fact, not responded. 4 "negative" treatment trials had subsets of patients who had, in fact, responded. This study suggests that analyzing heterogeneity in treatment effects in "positive" or "negative" trials may be a very powerful tool for identifying distinct subgroups that are responsive to treatments, which may significantly benefit future clinical trial design and interpretation.
Collapse
Affiliation(s)
- Dulin Wang
- McWilliams School of Biomedical Informatics, The University of Texas Health Center at Houston, Houston, TX, U.S
| | - Yaobin Ling
- McWilliams School of Biomedical Informatics, The University of Texas Health Center at Houston, Houston, TX, U.S
| | - Kristofer Harris
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoqian Jiang
- McWilliams School of Biomedical Informatics, The University of Texas Health Center at Houston, Houston, TX, U.S
| | - Yejin Kim
- McWilliams School of Biomedical Informatics, The University of Texas Health Center at Houston, Houston, TX, U.S
| |
Collapse
|
88
|
Haidar H, Majzoub RE, Hajeer S, Abbas LA. Arterial spin labeling (ASL-MRI) versus fluorodeoxyglucose-PET (FDG-PET) in diagnosing dementia: a systematic review and meta-analysis. BMC Neurol 2023; 23:385. [PMID: 37875879 PMCID: PMC10594722 DOI: 10.1186/s12883-023-03432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Dementia is generally caused by neurodegenerative diseases affecting the brain, which leads to a progressive neurocognitive decline characterized by inability to perform major higher functioning tasks. Fluorodeoxyglucose-positron emission tomography (FDG-PET) scan is one of the main imaging tests performed for diagnostic purposes. However, with FDG-PET being quite expensive and not widely available, an attempt to find an alternative is set. Arterial-spin-labelling magnetic resonance imaging (ASL-MRI) is an increasingly investigated substitute to FDG-PET for the diagnosis of dementia. Thereby, the main purpose of this systematic review and meta-analysis is to compare the diagnostic ability of FDG-PET and ASL-MRI in detecting dementia. METHODS PRISMA checklist for diagnostic test accuracy was employed in outlining this paper. A literature search was done using several search engines including PubMed, Core, and Cochrane. Two researchers (HH and SH) extracted the essential information from all included articles. Risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies tool, version 2 (QUADAS-2). A qualitative analysis and summary of studies' results were provided. In addition, a meta-analysis was executed based on the studies which involved sensitivity and specificity measures of diagnostic accuracy. RESULTS Fourteen total studies were included in the given review. Qualitative analysis of the articles showed that nine studies demonstrated an overlap between metabolic and perfused brain maps as derived by FDG-PET and ASL-MRI respectively, while the remaining five studies registered significant differences across both modalities, with superiority to FDG-PET. As for the meta-analysis implemented, summary ROC-curve analysis revealed that FDG-PET performed better than ASL-MRI, with pooled sensitivity being significantly higher for FDG-PET. CONCLUSIONS Comparing the diagnostic value of FDG-PET and ASL-MRI, the results of this systematic review and meta-analysis indicate that FDG-PET still has an advantage over ASL-MRI. Such implication could be related to the technical differences relating to both modalities, with ASL-MRI having lower temporal resolution. It's worth mentioning that specificity was rather quite similar among both modalities and some studies found an overridden metabolic and perfused images. These findings call for future research to focus their scope of investigation while exploring the diagnostic value of ASL-MRI.
Collapse
Affiliation(s)
- Hiba Haidar
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Rania El Majzoub
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Shorouk Hajeer
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Linda Abou Abbas
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
89
|
Sri S, Greenstein A, Granata A, Collcutt A, Jochems ACC, McColl BW, Castro BD, Webber C, Reyes CA, Hall C, Lawrence CB, Hawkes C, Pegasiou-Davies CM, Gibson C, Crawford CL, Smith C, Vivien D, McLean FH, Wiseman F, Brezzo G, Lalli G, Pritchard HAT, Markus HS, Bravo-Ferrer I, Taylor J, Leiper J, Berwick J, Gan J, Gallacher J, Moss J, Goense J, McMullan L, Work L, Evans L, Stringer MS, Ashford MLJ, Abulfadl M, Conlon N, Malhotra P, Bath P, Canter R, Brown R, Ince S, Anderle S, Young S, Quick S, Szymkowiak S, Hill S, Allan S, Wang T, Quinn T, Procter T, Farr TD, Zhao X, Yang Z, Hainsworth AH, Wardlaw JM. A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100189. [PMID: 37941765 PMCID: PMC10628644 DOI: 10.1016/j.cccb.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.
Collapse
Affiliation(s)
- Sarmi Sri
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alex Collcutt
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Blanca Díaz Castro
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Catherine Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Claire Gibson
- School of Psychology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Colin L Crawford
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM UMR-S U1237, , GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of clinical research, Caen-Normandie University Hospital, Caen, France
| | - Fiona H McLean
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Gaia Brezzo
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Giovanna Lalli
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hugh S Markus
- Stroke Research Group, Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Isabel Bravo-Ferrer
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jade Taylor
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jian Gan
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Jonathan Moss
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Jozien Goense
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Lorraine Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow; Glasgow; UK
| | - Lowri Evans
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - MLJ Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mohamed Abulfadl
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Nina Conlon
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca Canter
- Dementia Discovery Fund, SV Health Managers LLP, London, UK
| | - Rosalind Brown
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Selvi Ince
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Simon Young
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Sophie Quick
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steve Hill
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Terry Quinn
- College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Tessa Procter
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
90
|
Bouziane A, Lattaf S, Abdallaoui Maan L. Effect of Periodontal Disease on Alzheimer's Disease: A Systematic Review. Cureus 2023; 15:e46311. [PMID: 37916259 PMCID: PMC10616904 DOI: 10.7759/cureus.46311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
The aim of this review was to evaluate the relationship between periodontal disease (PD) and the onset and progression of Alzheimer's disease (AD) and to determine whether patients with PD would be at greater risk of developing AD compared to periodontally healthy subjects. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An electronic search for cross-sectional, cohort, or case-control studies was conducted on five databases (PubMed, ScienceDirect, EBSCO, Web of Science, and Scopus). No restrictions were applied to the language and year of publication. Exposure was PD, and the outcome of interest was the onset and/or progression of AD. The risk of bias of the included studies was assessed using the Newcastle-Ottawa Scale (NOS) designed for non-randomized studies. Six studies fulfilling the selection criteria were included in this systematic review. Four of the studies were of cohort design and two were of case-control design. All except one showed a significant association between PD and the risk of AD onset and progression. According to the NOS bias risk assessment, three studies were found to be of good quality, and three other cohort studies were of low quality. Data from this systematic review indicate that patients with PD present a significantly higher risk of AD compared to individuals with healthy periodontium. However, results should be interpreted with caution given the methodological limitations found. For future research, powerful and comparable epidemiological studies are needed to evaluate the relationship between PD and AD.
Collapse
Affiliation(s)
- Amal Bouziane
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, MAR
- Laboratory of Biostatistics, Epidemiology, and Clinical Research, Mohammed V University in Rabat, Rabat, MAR
| | - Sara Lattaf
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, MAR
| | - Lamiaa Abdallaoui Maan
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, MAR
| |
Collapse
|
91
|
Chen X, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen Y, Qiao R, Xie P. Multi-Omics Analysis Reveals Age-Related Microbial and Metabolite Alterations in Non-Human Primates. Microorganisms 2023; 11:2406. [PMID: 37894064 PMCID: PMC10609416 DOI: 10.3390/microorganisms11102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a systemic physiological degenerative process, with alterations in gut microbiota and host metabolism. However, due to the interference of multiple confounding factors, aging-associated molecular characteristics have not been elucidated completely. Therefore, based on 16S ribosomal RNA (rRNA) gene sequencing and non-targeted metabolomic detection, our study systematically analyzed the composition and function of the gut microbiome, serum, and fecal metabolome of 36 male rhesus monkeys spanning from 3 to 26 years old, which completely covers juvenile, adult, and old stages. We observed significant correlations between 41 gut genera and age. Moreover, 86 fecal and 49 serum metabolites exhibited significant age-related correlations, primarily categorized into lipids and lipid-like molecules, organic oxygen compounds, organic acids and derivatives, and organoheterocyclic compounds. Further results suggested that aging is associated with significant downregulation of various amino acids constituting proteins, elevation of lipids, particularly saturated fatty acids, and steroids. Additionally, age-dependent changes were observed in multiple immune-regulatory molecules, antioxidant stress metabolites, and neurotransmitters. Notably, multiple age-dependent genera showed strong correlations in these changes. Together, our results provided new evidence for changing characteristics of gut microbes and host metabolism during aging. However, more research is needed in the future to verify our findings.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siwen Gui
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
92
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
93
|
Sanadgol N, Amini J, Beyer C, Zendedel A. Presenilin-1-Derived Circular RNAs: Neglected Epigenetic Regulators with Various Functions in Alzheimer's Disease. Biomolecules 2023; 13:1401. [PMID: 37759801 PMCID: PMC10527059 DOI: 10.3390/biom13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The presenilin-1 (PSEN1) gene is crucial in developing Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common cause of dementia. Circular RNAs (circRNAs) are non-coding RNA generated through back-splicing, resulting in a covalently closed circular molecule. This study aimed to investigate PSEN1-gene-derived circular RNAs (circPSEN1s) and their potential functions in AD. Our in silico analysis indicated that circPSEN1s (hsa_circ_0008521 and chr14:73614502-73614802) act as sponge molecules for eight specific microRNAs. Surprisingly, two of these miRNAs (has-mir-4668-5p and has-mir-5584-5p) exclusively interact with circPSEN1s rather than mRNA-PSEN1. Furthermore, the analysis of pathways revealed that these two miRNAs predominantly target mRNAs associated with the PI3K-Akt signaling pathway. With sponging these microRNAs, circPSEN1s were found to protect mRNAs commonly targeted by these miRNAs, including QSER1, BACE2, RNF157, PTMA, and GJD3. Furthermore, the miRNAs sequestered by circPSEN1s have a notable preference for targeting the TGF-β and Hippo signaling pathways. We also demonstrated that circPSEN1s potentially interact with FOXA1, ESR1, HNF1B, BRD4, GATA4, EP300, CBX3, PRDM9, and PPARG proteins. These proteins have a prominent preference for targeting the TGF-β and Notch signaling pathways, where EP300 and FOXA1 have the highest number of protein interactions. Molecular docking analysis also confirms the interaction of these hub proteins and Aβ42 with circPSEN1s. Interestingly, circPSEN1s-targeted molecules (miRNAs and proteins) impacted TGF-β, which served as a shared signaling pathway. Finally, the analysis of microarray data unveiled distinct expression patterns of genes influenced by circPSEN1s (WTIP, TGIF, SMAD4, PPP1CB, and BMPR1A) in the brains of AD patients. In summary, our findings suggested that the interaction of circPSEN1s with microRNAs and proteins could affect the fate of specific mRNAs, interrupt the function of unique proteins, and influence cell signaling pathways, generally TGF-β. Further research is necessary to validate these findings and gain a deeper understanding of the precise mechanisms and significance of circPSEN1s in the context of AD.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Department of Biomedicine, Institut of Anatomy, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
94
|
Kim SE, Shin C, Yim J, Seo K, Ryu H, Choi H, Park J, Min BK. Resting-state electroencephalographic characteristics related to mild cognitive impairments. Front Psychiatry 2023; 14:1231861. [PMID: 37779609 PMCID: PMC10539934 DOI: 10.3389/fpsyt.2023.1231861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) causes a rapid deterioration in cognitive and physical functions, including problem-solving, memory, language, and daily activities. Mild cognitive impairment (MCI) is considered a risk factor for AD, and early diagnosis and treatment of MCI may help slow the progression of AD. Electroencephalography (EEG) analysis has become an increasingly popular tool for developing biomarkers for MCI and AD diagnosis. Compared with healthy elderly, patients with AD showed very clear differences in EEG patterns, but it is inconclusive for MCI. This study aimed to investigate the resting-state EEG features of individuals with MCI (n = 12) and cognitively healthy controls (HC) (n = 13) with their eyes closed. EEG data were analyzed using spectral power, complexity, functional connectivity, and graph analysis. The results revealed no significant difference in EEG spectral power between the HC and MCI groups. However, we observed significant changes in brain complexity and networks in individuals with MCI compared with HC. Patients with MCI exhibited lower complexity in the middle temporal lobe, lower global efficiency in theta and alpha bands, higher local efficiency in the beta band, lower nodal efficiency in the frontal theta band, and less small-world network topology compared to the HC group. These observed differences may be related to underlying neuropathological alterations associated with MCI progression. The findings highlight the potential of network analysis as a promising tool for the diagnosis of MCI.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Chanwoo Shin
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Junyeop Yim
- Department of Applied Mathematics, Kongju National University, Gongju-si, Republic of Korea
| | - Kyoungwon Seo
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Hokyoung Ryu
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
95
|
Tekade AR, Suryavanshi MR, Shewale AB, Patil VS. Design and development of donepezil hydrochloride loaded nanostructured lipid carriers for efficient management of Alzheimer's disease. Drug Dev Ind Pharm 2023; 49:590-600. [PMID: 37733474 DOI: 10.1080/03639045.2023.2262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE The primary objective of this study was to develop nanostructured lipid carriers of donepezil hydrochloride (DNZ HCl) for effective management of Alzheimer's disease (AD). SIGNIFICANCE Intranasal administration of DNZ NLC containing Nigella sativa (NS) oil as a liquid lipid may significantly improve nasal penetration and deliver the drug directly to the brain avoiding blood brain barrier (BBB). METHOD High pressure homogenization was used to prepare nanostructured lipid carriers (NLCs), followed by ultrasonication. Glyceryl monostearate (GMS), Tween 80, and Poloxamer 407 were used as solid lipid, surfactant and co-surfactant respectively, whereas, Nigella sativa oil was used as a liquid lipid. RESULT The particle size, polydispersity index and zeta potential were found to be 107.4 ± 2.64 nm, 0.25 ± 0.04 and -41.7 mV. The entrapment efficiency and drug content were found to be 70.20% and 89.05% respectively. After intranasal administration of Donepezil hydrochloride (DNZ HCl) loaded NLC's, the maximum concentrations (Cmax) of 4.597 µg/mL in brain and 2.2583 µg/mL in blood was achieved after 1 h (Tmax). CONCLUSION The formulated DNZ HCl loaded NLCs significantly improved nasal penetration and enhanced drug distribution in brain resulting in a potentially effective intranasal drug delivery system for the effective management of Alzheimer's disease.
Collapse
Affiliation(s)
- Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Mayuri R Suryavanshi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Ashutosh B Shewale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Vilas S Patil
- Department of Pharmacology, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| |
Collapse
|
96
|
Ekblad LL, Tuisku J, Koivumäki M, Helin S, Rinne JO, Snellman A. Insulin resistance and body mass index are associated with TSPO PET in cognitively unimpaired elderly. J Cereb Blood Flow Metab 2023; 43:1588-1600. [PMID: 37113066 PMCID: PMC10414007 DOI: 10.1177/0271678x231172519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Metabolic risk factors are associated with peripheral low-grade inflammation and an increased risk for dementia. We evaluated if metabolic risk factors i.e. insulin resistance, body mass index (BMI), serum cholesterol values, or high sensitivity C-reactive protein associate with central inflammation or beta-amyloid (Aβ) accumulation in the brain, and if these associations are modulated by APOE4 gene dose. Altogether 60 cognitively unimpaired individuals (mean age 67.7 years (SD 4.7); 63% women; 21 APOE3/3, 20 APOE3/4 and 19 APOE4/4) underwent positron emission tomography with [11C]PK11195 targeting TSPO (18 kDa translocator protein) and [11C]PIB targeting fibrillar Aβ. [11C]PK11195 distribution value ratios and [11C]PIB standardized uptake values were calculated in a cortical composite region of interest typical for Aβ accumulation in Alzheimer's disease. Associations between metabolic risk factors, [11C]PK11195, and [11C]PIB uptake were evaluated with linear models adjusted for age and sex. Higher logarithmic HOMA-IR (standardized beta 0.40, p = 0.002) and BMI (standardized beta 0.27, p = 0.048) were associated with higher TSPO availability. Voxel-wise analyses indicated that this association was mainly seen in the parietal cortex. Higher logarithmic HOMA-IR was associated with higher [11C]PIB (standardized beta 0.44, p = 0.02), but only in APOE4/4 homozygotes. BMI and HOMA-IR seem to influence TSPO availability in the brain.
Collapse
Affiliation(s)
- Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- InFLAMES Reseach Flagship Center, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
97
|
Ramadan M. Temporal patterns of the burden of Alzheimer's disease and their association with Sociodemographic Index in countries with varying rates of aging 1990-2019. Aging Med (Milton) 2023; 6:281-289. [PMID: 37711254 PMCID: PMC10498825 DOI: 10.1002/agm2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 09/16/2023] Open
Abstract
Objective To we examine the temporal patterns of the burden of Alzheimer's disease and their association with Sociodemographic Index in countries with varying rates of aging. Method Data were obtained from Global Burden of Diseases studies (GBD) 2019 and were used to compare countries with different rates of change in aging population from 1990 to 2019. We collected the data of the age-standardized rates per 100,000 of disability-adjusted life years (DALYs), incidence, prevalence of Alzheimer's disease and other dementias, and the age-specific population rates per 100,000. Results Countries with high rates of change in their aging populations had an increase in DALYs, incidence, and prevalence of Alzheimer's disease and other dementias over the last 30 years. Countries with a high rate of change in aging population had a significantly positive association among DALYs, incidence, and prevalence of Alzheimer's disease and other dementias. In contrast, countries with a medium and low rate of change in aging population had negative associations between DALYs and incidence of Alzheimer's disease and other dementias. Conclusion This study highlights the significant impact of demographic changes on the burden, prevalence, and incidence of Alzheimer's disease and other dementia. The study also found that robust health care and social systems, as reflected by a higher Sociodemographic Index, can contribute to reducing the burden of Alzheimer's disease and other dementias in medium to low rates of aging populations. The findings underscore the importance of investing in health care and social systems to address the growing burden of these conditions, especially in countries with a high rate of change in the aging population.
Collapse
Affiliation(s)
- Majed Ramadan
- King Abdullah International Medical Research Center (KAIMRC), Population Health Research SectionKing Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard – Health AffairsJeddahSaudi Arabia
| |
Collapse
|
98
|
Jeong JH, Hong GL, Jeong YG, Lee NS, Kim DK, Park JY, Park M, Kim HM, Kim YE, Yoo YC, Han SY. Mixed Medicinal Mushroom Mycelia Attenuates Alzheimer's Disease Pathologies In Vitro and In Vivo. Curr Issues Mol Biol 2023; 45:6775-6789. [PMID: 37623247 PMCID: PMC10453438 DOI: 10.3390/cimb45080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairment and existence of amyloid-β (Aβ) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed medicinal mushroom mycelia (MMMM)-Phellinus linteus, Ganoderma lucidum, and Inonotus obliquus-cultivated on a barley medium was assessed for its anti-AD effects. Neuron-like PC12 cells, which were subjected to Zn2+, an Aβ aggregator, were employed as an in vitro AD model. The cells pretreated with or without MMMM were assayed for Aβ immunofluorescence, cell viability, reactive oxygen species (ROS), apoptosis, and antioxidant enzyme activity. Then, 5XFAD mice were administered with 30 mg/kg/day MMMM for 8 weeks and underwent memory function tests and histologic analyses. In vitro results demonstrated that the cells pretreated with MMMM exhibited attenuation in Aβ immunofluorescence, ROS accumulation, and apoptosis, and incrementation in cell viability and antioxidant enzyme activity. In vivo results revealed that 5XFAD mice administered with MMMM showed attenuation in memory impairment and histologic deterioration such as Aβ plaque accumulation and neuroinflammation. MMMM might mitigate AD-associated memory impairment and cerebral pathologies, including Aβ plaque accumulation and neuroinflammation, by impeding Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Armed Forces Medical Research Institute (AFMRI), Daejeon 34059, Republic of Korea;
| | - Geum-Lan Hong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Young Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Nam Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Jong Yea Park
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Mina Park
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Hyun Min Kim
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Ya El Kim
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Yung Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea;
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| |
Collapse
|
99
|
Valverde-Salazar V, Ruiz-Gabarre D, García-Escudero V. Alzheimer's Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:1460. [PMID: 37507998 PMCID: PMC10376369 DOI: 10.3390/antiox12071460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterised by a marked decline of both memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (Aβ) accumulation, tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it can result in protein, lipid and nucleic acid damage and exacerbate Aβ and tau pathology. To date, there is a lack of successful pharmacological approaches to cure or even ameliorate the terrible impact of this disease. Due to this, dietary compounds with antioxidative and anti-inflammatory properties acquire special relevance as potential therapeutic agents. In this context, green tea, and its main bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the non-amyloidogenic route of APP processing, thus preventing the formation of Aβ and its subsequent accumulation. Taken together, these results suggest that EGCG may be a suitable candidate in the search for potential therapeutic compounds for neurodegenerative disorders involving inflammation and oxidative stress, including Alzheimer's disease.
Collapse
Affiliation(s)
- Víctor Valverde-Salazar
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Vega García-Escudero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, 28031 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
100
|
Wen T, Zhang Z. Cellular mechanisms of fibrin (ogen): insight from neurodegenerative diseases. Front Neurosci 2023; 17:1197094. [PMID: 37529232 PMCID: PMC10390316 DOI: 10.3389/fnins.2023.1197094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Neurodegenerative diseases are prevalent and currently incurable conditions that progressively impair cognitive, behavioral, and psychiatric functions of the central or peripheral nervous system. Fibrinogen, a macromolecular glycoprotein, plays a crucial role in the inflammatory response and tissue repair in the human body and interacts with various nervous system cells due to its unique molecular structure. Accumulating evidence suggests that fibrinogen deposits in the brains of patients with neurodegenerative diseases. By regulating pathophysiological mechanisms and signaling pathways, fibrinogen can exacerbate the neuro-pathological features of neurodegenerative diseases, while depletion of fibrinogen contributes to the amelioration of cognitive function impairment in patients. This review comprehensively summarizes the molecular mechanisms and biological functions of fibrinogen in central nervous system cells and neurodegenerative diseases, including Alzheimer's disease, Multiple Sclerosis, Parkinson's disease, Vascular dementia, Huntington's disease, and Amyotrophic Lateral Sclerosis. Additionally, we discuss the potential of fibrinogen-related treatments in the management of neurodegenerative disorders.
Collapse
|