51
|
Lloyd NA, Nazaret S, Barkay T. Whole genome sequences to assess the link between antibiotic and metal resistance in three coastal marine bacteria isolated from the mummichog gastrointestinal tract. MARINE POLLUTION BULLETIN 2018; 135:514-520. [PMID: 30301067 DOI: 10.1016/j.marpolbul.2018.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance is a global public health issue and metal exposure can co-select for antibiotic resistance. We examined genome sequences of three multi-drug and metal resistant bacteria: one Shewanella sp., and two Vibrio spp., isolated from the gut of the mummichog fish (Fundulus heteroclitus). Our primary goal was to understand the mechanisms of co-selection. Phenotypically, the strains showed elevated resistance to arsenate, mercury, and various types of β-lactams. The genomes contained genes of public health concern including one carbapenemase (blaOXA-48). Our analyses indicate that the co-selection phenotype is mediated by chromosomal resistance genes and cross-resistance. No evidence of co-resistance was found; most resistance genes were chromosomally located. Moreover, the identification of many efflux pump gene homologs indicates that cross-resistance and/or co-regulation may further contribute to resistance. We suggest that the mummichog gut microbiota may be a source of clinically relevant antibiotic resistance genes.
Collapse
Affiliation(s)
- Nicole A Lloyd
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Sylvie Nazaret
- UMR 5557 Ecologie Microbienne, CNRS, INRA, VetagroSup, UCBL, Université de Lyon, 43 Boulevard du 11 Novembre, F-69622 Villeurbanne, France
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
52
|
Direct Detection of Carbapenem-Resistant Organisms from Environmental Samples Using the GeneXpert Molecular Diagnostic System. mSphere 2018; 3:3/4/e00113-18. [PMID: 30068556 PMCID: PMC6070738 DOI: 10.1128/msphere.00113-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Use of the Carba-R assay for detection of carbapenem-resistant Gram-negative organisms (CROs) can provide data for implementation of a rapid infection control response to minimize the spread of CROs in the health care setting. In this pilot study, traditional culture and PCR methods were compared to the Cepheid GeneXpert IV molecular diagnostic system with the Xpert Carba-R assay (Carba-R assay) for detection of carbapenem resistance genes in primary environmental samples collected during a health care-related outbreak. Overall, traditional culture-dependent PCR and the Carba-R assay demonstrated 75% agreement. The Carba-R assay detected carbapenemase genes in five additional samples and in two samples that had additional genes when compared to culture-dependent PCR. The Carba-R assay could be useful for prioritizing further testing of environmental samples during health care-related outbreaks. IMPORTANCE Use of the Carba-R assay for detection of carbapenem-resistant Gram-negative organisms (CROs) can provide data for implementation of a rapid infection control response to minimize the spread of CROs in the health care setting.
Collapse
|
53
|
Abstract
ABSTRACT
Non-typhoidal
Salmonella
is the most common foodborne bacterial pathogen in most countries. It is widely present in food animal species, and therefore blocking its transmission through the food supply is a prominent focus of food safety activities worldwide. Antibiotic resistance in non-typhoidal
Salmonella
arises in large part because of antibiotic use in animal husbandry. Tracking resistance in
Salmonella
is required to design targeted interventions to contain or diminish resistance and refine use practices in production. Many countries have established systems to monitor antibiotic resistance in
Salmonella
and other bacteria, the earliest ones appearing the Europe and the US. In this chapter, we compare recent
Salmonella
antibiotic susceptibility data from Europe and the US. In addition, we summarize the state of known resistance genes that have been identified in the genus. The advent of routine whole genome sequencing has made it possible to conduct genomic surveillance of resistance based on DNA sequences alone. This points to a new model of surveillance in the future that will provide more definitive information on the sources of resistant
Salmonella
, the specific types of resistance genes involved, and information on how resistance spreads.
Collapse
|
54
|
Active screening and interfacility communication of carbapenem-resistant Enterobacteriaceae (CRE) in a tertiary-care hospital. Infect Control Hosp Epidemiol 2018; 39:1058-1062. [PMID: 30022738 DOI: 10.1017/ice.2018.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hospitals may implement admission screening cultures and may review transfer documentation to identify patients colonized with carbapenem-resistant Enterobacteriaceae (CRE) to implement isolation precautions; however, outcomes and logistical considerations have not been well described. METHODS At an academic hospital in Chicago, we retrospectively studied the implementation and outcomes of CRE admission screening from 2013 to 2016 during 2 periods. During period 1, we implemented active CRE rectal culture screening for all adults patients admitted to intensive care units (ICUs) and for those transferred from outside facilities to general wards. During period 2, screening was restricted only to adults transferred from outside facilities. For a subset of transferred patients who were previously reported to the health department as CRE positive, we reviewed transfer paperwork for appropriate documentation of CRE. RESULTS Overall, 11,757 patients qualified for screening; rectal cultures were performed for 8,569 patients (73%). Rates of CRE screen positivity differed by period, previous facility type (if transferred), and current inpatient location. A higher combined CRE positivity rate was detected in the medical and surgical ICUs among period 2 patients (3.3%) versus all other ward-period comparisons (P<.001). Among 13 transferred patients previously known to be CRE colonized, appropriate CRE transfer documentation was available for only 4 patients (31%). CONCLUSIONS Active screening for CRE is feasible, and screening patients transferred from outside facilities to the medical or surgical ICU resulted in the highest screen positivity rate. Furthermore, CRE carriage was inconsistently documented in transfer paperwork, suggesting that admission screening or enhanced inter-facility communication are needed to improve the identification of CRE-colonized patients.
Collapse
|
55
|
Nithya N, Remitha R, Jayasree PR, Faisal M, Manish Kumar PR. Analysis of beta-lactamases, blaNDM-1phylogeny & plasmid replicons in multidrug-resistant Klebsiella spp. from a tertiary care centre in south India. Indian J Med Res 2018; 146:S38-S45. [PMID: 29205194 PMCID: PMC5735569 DOI: 10.4103/ijmr.ijmr_31_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background & objectives: β-lactamases play a predominant role in drug-resistance amongst Enterobacteriaceae. Presence of genes on transferable plasmids encoding these enzymes favours their dissemination across species and genera within and outside geographical boundaries. This study was aimed to understand the presence of β-lactamases and transferable plasmids in clinical isolates of Klebsiella spp. which can contribute to the spread of resistance determinants. Methods: A total of 41 clinical isolates of Klebsiella spp., collected from a tertiary care centre in Kerala, India, were checked for antibiotic sensitivity and the presence of plasmids. The ability to produce extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) was screened for and confirmed in 29 plasmid-harbouring isolates. blaNDM-1-specific primers were used for polymerase chain reaction amplification with plasmid DNA as template to determine episomal prevalence of this gene and its sequence-based phylogeny employing similar sequences from GenBank. Plasmid replicon typing was also carried out to determine the presence of transferable plasmids. Results: Our results showed a high degree of multidrug-resistant (MDR) pathogens with ESBL production confirmed in 52 per cent, MBL in 31 per cent and co-production of both enzymes in seven per cent of the plasmid-bearing isolates. Plasmid DNA from 14 per cent of the isolates produced blaNDM-1-specific amplicons which showed sequence homology with those from bacteria of different genera and geographical areas. The predominant replicon type was found to be that of conjugative plasmids belonging to the incompatibility group - IncFIIK. Interpretation & conclusions: This study provides insight into the predominance of various β-lactamases and potent gene-disseminating agents in Klebsiella spp. and emphasizes the need for constant surveillance of these pathogens to determine appropriate treatment strategies.
Collapse
Affiliation(s)
- N Nithya
- Department of Biotechnology, University of Calicut, Thenhipalam, India
| | - Rabindran Remitha
- Department of Biotechnology, University of Calicut, Thenhipalam, India
| | - P R Jayasree
- Devision of Molecular Biology, School of Health Sciences, University of Calicut, Thenhipalam, India
| | - M Faisal
- Department of Biotechnology, University of Calicut, Thenhipalam, India
| | - P R Manish Kumar
- Department of Biotechnology, University of Calicut, Thenhipalam, India
| |
Collapse
|
56
|
Fernández J, Guerra B, Rodicio MR. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Vet Sci 2018; 5:E40. [PMID: 29642473 PMCID: PMC6024723 DOI: 10.3390/vetsci5020040] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC (Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.
Collapse
Affiliation(s)
- Javier Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo 33011, Spain.
- Instituto de Investigación del Principado de Asturias (ISPA), Oviedo 33011, Spain.
| | | | - M Rosario Rodicio
- Instituto de Investigación del Principado de Asturias (ISPA), Oviedo 33011, Spain.
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo 33006, Spain.
| |
Collapse
|
57
|
Jia X, Dai W, Ma W, Yan J, He J, Li S, Li C, Yang S, Xu X, Sun S, Shi J, Zhang L. Carbapenem-Resistant E. cloacae in Southwest China: Molecular Analysis of Resistance and Risk Factors for Infections Caused by NDM-1-Producers. Front Microbiol 2018; 9:658. [PMID: 29670607 PMCID: PMC5893741 DOI: 10.3389/fmicb.2018.00658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/21/2018] [Indexed: 11/16/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) has been considered a serious global threat, but carbapenem resistance remains relatively uncommon in E. cloacae, especially in China. The aim of this study was to characterize carbapenem-resistant E. cloacae (CR-ECL) isolates from 2012 to 2016 in Southwest China. Our study revealed that 20 (15.2%) of the 132 CR-ECL isolates obtained from patients were identified as NDM-1, with most isolates carrying the IncFIIA plasmids. Notably, we initially observed that the E. cloacae strain co-harbored NDM-1 and IMP-8 carbapenemases simultaneously. Analysis of the genetic environment of these two genes has revealed that the highly conserved regions (blaNDM-1-bleMBL-trpF-tat) are associated with the dissemination of NDM-1, while IS26, intI1, and tniC could be involved in the spread of IMP-8. Molecular epidemiology studies showed the nosocomial outbreak caused by NDM-1-producing E. cloacae ST88. Transferring from another hospital and previous carbapenem exposure were identified as independent risk factors for the acquisition of NDM-1-producing E. cloacae. These findings emphasize the need for intensive surveillance and precautions to monitor the further spread of NDM-1 in China.
Collapse
Affiliation(s)
- Xiaojiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weijia Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinrong Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianchun He
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Congya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangshuang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
58
|
Yoon EJ, Yang JW, Kim JO, Lee H, Lee KJ, Jeong SH. Carbapenemase-producing Enterobacteriaceae in South Korea: a report from the National Laboratory Surveillance System. Future Microbiol 2018; 13:771-783. [PMID: 29478336 DOI: 10.2217/fmb-2018-0022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To assess the epidemiology of carbapenemase-producing Enterobacteriaceae (CPE) in South Korea. MATERIALS & METHODS From 2011 to 2015, 2487 carbapenem-nonsusceptible Enterobacteriaceae were collected through the Korean National Laboratory Surveillance System. Disk-diffusion for antimicrobial susceptibility, PCR/sequencing to detect carbapenemase genes and multilocus sequence typing for molecular epidemiology were carried out. RESULTS The number of carbapenem-nonsusceptible Enterobacteriaceae was increasing approximately 1.5-fold per year and the proportion of CPEs was exponentially confirmed from 2014. KPC was the most dominant, mostly associated with Klebsiella pneumoniae ST11 and ST307, NDM was the second and OXA-48-like was the third dominant carbapenemases. The IMP, VIM and GES-5 CPEs were identified sporadically. CONCLUSION The nation-wide spreads of KPC, NDM and OXA-48-like CPEs were in an alarming epidemiological stage.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine & Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Woo Yang
- Division of Antimicrobial Resistance, National Institute of Health, Centers for Disease Control & Prevention, Cheongju, South Korea
| | - Jung Ok Kim
- Department of Laboratory Medicine & Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine & Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwang Jun Lee
- Division of Antimicrobial Resistance, National Institute of Health, Centers for Disease Control & Prevention, Cheongju, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine & Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
59
|
Ghasemian A, Salimian Rizi K, Rajabi Vardanjani H, Nojoomi F. Prevalence of Clinically Isolated Metallo-beta-lactamase-producing Pseudomonas aeruginosa, Coding Genes, and Possible Risk Factors in Iran. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:1-9. [PMID: 29731790 PMCID: PMC5929383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND & OBJECTIVE The spread of carbapenem-resistant Pseudomonas aeruginosa is a global concern. Metallo-beta-lactamase (MBL) enzymes cause extensive drug resistance among Gram-negative bacteria. The current study aimed at determining the prevalence of MBL-producing P. aeruginosa in Iran. DATA EXTRACTION A total of 43 studies were found out of which 36 were adopted. Data were collected from Google, Google Scholar, Science Direct, PubMed, Scopus, Embase, and Sciverse. The terms "Pseudomonasaeruginosa", "metallo-beta-lactamase", "prevalence", "carbapenems", and "Iran" were searched. Data from the isolates not producing MBLs were excluded from the study. Data were analyzed with Graph Pad Prism 6, meta-analysis section. RESULTS According to the results of the current study, 36 surveys indicated that 55% of the clinically isolated P. aeruginosa in Iran were resistant to imipenem and meropenem, among which 37.72% were the MBL producers. Among genes encoding MBLs, blaVIM and blaIMP were predominant with the prevalence of 12.91%±11.01% and 12.50%±23.56%, respectively. No report of harboring blaNDM1 and blaSPM1 by P. aeruginosa was found, similar to most of the other countries in Asia. The prevalence of blaVIM and blaIMP from burn settings were 11.50%±3.5% and 24.65%±23%, respectively. Furthermore, the prevalence of these genes was not significantly different among burn and non-burn isolates (P=0.942 and P=0.597, respectively). Moreover, no relationship was observed between the MBL production and patients' age range. CONCLUSION Approximately half of P. aeruginosa isolates were carbapenem-resistant in Iran, and approximately half were the MBL producers. The blaVIM and blaIMP were the predominant MBLs among P. aeruginosa strains, while other genes were not found in P. aeruginosa. Moreover, there was no significant difference between blaVIM and blaIMP among burn and non-burn isolates. Due to the multiple drug resistance conferred by MBLs, detection and control of their spread alongside proper therapeutic regimens in hospitals and community settings are essential to prevent infection acquisition.
Collapse
Affiliation(s)
- Abdolmajid Ghasemian
- Microbiology Dept, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran,Dept. of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kobra Salimian Rizi
- Dept. of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Farshad Nojoomi
- Microbiology Dept, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
Qamar MU, Saleem S, Toleman MA, Saqalein M, Waseem M, Nisar MA, Khurshid M, Taj Z, Jahan S. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol 2018; 13:13-26. [DOI: 10.2217/fmb-2017-0119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To determine the therapeutic potential of Manuka honey against New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae ST11 in vitro and in vivo. Materials & methods: Carbapenamases and metallo-β-lactamases-producing K. pneumoniae ST11 isolated from blood culture was confirmed by VITEK-2® system, matrix-assisted laser desorption ionization–time of flight and multilocus sequence typing, followed by determination of minimum inhibitory concentration (μg/ml) using VITEK-2 system. Genetic analysis of bla NDM-1 was done by PCR, pulsed-field gel electrophoresis and DNA hybridization. In vitro and in vivo efficacy of Manuka honey was performed by microbroth dilution assay and BALB/c mice model respectively. Results: K. pneumoniae ST11 displayed resistance to commonly used antibiotics. bla NDM-1 was located on 150 and 270kb plasmids. Minimum inhibitory concentration and minimum bactericidal concentration of Manuka honey was 30% (v/v) and substantial reduction of bacterial mean log value (>1 log) was observed in mice. Histological analysis of mice liver and kidneys demonstrated mild to moderate inflammation. Conclusion: Manuka honey can be used as an alternate therapeutic approach for management of New Delhi metallo-β-lactamase-producing pathogens.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Mark Alexander Toleman
- School of Medicine & Infectious Disease, University Hospital of Wales, Heath Park, Cardiff University, Cardiff, United Kingdom
| | - Muhammad Saqalein
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Waseem
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Zeeshan Taj
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
61
|
Martins AF, Bail L, Ito CAS, da Silva Nogueira K, Dalmolin TV, Martins AS, Rocha JLL, Serio AW, Tuon FF. Antimicrobial activity of plazomicin against Enterobacteriaceae-producing carbapenemases from 50 Brazilian medical centers. Diagn Microbiol Infect Dis 2017; 90:228-232. [PMID: 29223516 DOI: 10.1016/j.diagmicrobio.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023]
Abstract
Plazomicin is a next-generation aminoglycoside with activity against Enterobacteriaceae, including carbapenemase-producing Enterobacteriaceae (CPE). The aim of this study was to evaluate the activity of plazomicin against CPE (Klebsiella spp., Escherichia coli, Serratia spp., Enterobacter spp., Citrobacter spp., Morganella spp., Proteus spp., Providencia spp.) from different Brazilian hospitals. A total of 4000 carbapenem-resistant Enterobacteriaceae isolates were collected from clinical samples in 50 Brazilian hospitals during 2013-2015. Of these, 499 carbapenem-resistant isolates (CLSI criteria) were selected for further evaluation via broth microdilution to assess for the activity of plazomicin, colistin, tigecycline, meropenem, amikacin, and gentamicin. Additionally, the isolates were assessed for the presence of carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like, blaIMP, blaBKC, blaGES, and blaVIM) by polymerase chain reaction (PCR). When PCR was positive to blaOXA-48-like, blaIMP, blaGES, and blaVIM, the carbapenemase genes were sequenced. blaKPC was the most prevalent carbapenemase gene found (n=397), followed by blaNDM (n=81), blaOXA-48 (n=12), and blaIMP-1 (n=3). Other genes were identified in only 1 isolate each: blaBKC-1, blaGES-16, blaGES-1, blaOXA-370, and blaVIM-1. One isolate had 2 carbapenemase genes (blaKPC and blaNDM). Thirty-three percent of the isolates were nonsusceptible to colistin, 24% to tigecycline, 97% to meropenem, 51% to amikacin, and 81% to gentamicin (via EUCAST criteria). The plazomicin MIC50/90 was 0.5/64mg/L, with 85% of MICs ≤2mg/L and 87% of MICs ≤4mg/L. Elevated MICs to plazomicin were not associated with a specific carbapenemase or bacterial species. The MICs of plazomicin against CPE were lower than those of other aminoglycosides. Plazomicin is a promising drug for the treatment of CPE infections.
Collapse
Affiliation(s)
| | - Larissa Bail
- Division of Microbiology, Universidade Estadual de Ponta Grossa
| | | | - Keite da Silva Nogueira
- Hospital de Clínicas, Universidade Federal do Paraná; Basic Pathology Department, Universidade Federal do Paraná
| | | | | | | | | | - Felipe Francisco Tuon
- Infectious Diseases, School of Medicine, Pontificia Universidade Catolica do Parana; Hospital de Clínicas, Universidade Federal do Paraná.
| |
Collapse
|
62
|
Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult Sci 2017; 96:687-702. [PMID: 27665007 DOI: 10.3382/ps/pew342] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/16/2016] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. is the most predominant bacterial cause of foodborne gastroenteritis in humans. Due to the risk of human infection associated with poultry products and the prevalence of antimicrobial resistance, Salmonella also poses a significant challenge to commercial poultry production. During the last decade (2002 to 2012), the 12 most prevalent poultry-associated Salmonella serotypes (MPPSTs) were frequently and consistently isolated from poultry products in the United States. These MPPSTs and their percent prevalence in poultry products include Kentucky (4%), Enteritidis (2%) Heidelberg (2%), Typhimurium (2%), S. I 4,[5],12:i:- (0.31%), Montevideo (0.20%), Infantis (0.16%) Schwarzengrund (0.15%), Hadar (0.15%), Mbandaka (0.13%), Thompson (0.12%), and Senftenberg (0.04%). All MPPSTs except Kentucky are among the top 30 clinically significant serotypes that cause human illnesses in the United States. However with the exception of a few widely studied serotypes such as S. Enteritidis and Typhimurium, the ecology and epidemiology of the majority of MPPSTs still remain poorly investigated. Published data from the United States suggests that MPPSTs such as Heidelberg, Typhimurium, Kentucky, and Sentfenberg are more likely to be multi-drug resistant (MDR, ≥3 antimicobial classes) whereas Enteritidis, Montevideo, Schwarzengrund, Hadar, Infantis, Thompson, and Mbandaka are generally pan-susceptible or display resistance to fewer antimicobials. In contrast, the majority of MPPSTs isolated globally have been reported to display MDR phenotype. There also appears to be an international spread of a few MDR serotypes including Kentucky, Schwarzengrund, Hadar, Thomson, Sentfenberg, and Enteritidis, which may pose significant challenges to the public health. The current knowledge gaps on the ecology, epidemiology, and antimicrobial resistance of MPPSTs are discussed.
Collapse
Affiliation(s)
| | | | - Willium C Sischo
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 99164-7040
| | - Rocio Crespo
- Department of Veterinary Microbiology and Pathology
| | - Jean Guard
- Egg Quality and Safety Research Unit, United States Department of Agriculture, Atlanta, GA 30605, USA
| |
Collapse
|
63
|
Savov E, Politi L, Spanakis N, Trifonova A, Kioseva E, Tsakris A. NDM-1 Hazard in the Balkan States: Evidence of the First Outbreak of NDM-1-Producing Klebsiella pneumoniae in Bulgaria. Microb Drug Resist 2017; 24:253-259. [PMID: 28876169 DOI: 10.1089/mdr.2017.0230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
New Delhi MBL (NDM) carbapenemase-producing Klebsiella pneumoniae has become one of the most concerning multidrug-resistant pathogens. The Balkan counties are considered a reservoir for the spread of such strains based on several reports documenting NDM infections after hospitalization in this region. Nevertheless, NDM-producing K. pneumoniae have been only occasionally documented from Balkans. The current study documents the first polyclonal outbreak caused by NDM-1-producing K. pneumoniae in Bulgaria. From July 2015 to April 2016, all 25 single-patient carbapenem-nonsusceptible K. pneumoniae isolates were collected. Phenotypic and molecular screening revealed that 17 produced NDM-1 carbapenemase. All NDM-1 producers harbored blaCTX-M-15, blaCMY-4, blaTEM-1, and blaOXA-2; five also harbored blaOXA-1. In all cases, blaNDM-1 was flanked upstream by ISAba125 element and downstream by bleMBL. Pulsed-field gel electrophoresis (PFGE) clustered NDM-1-positive isolates into four distinct clonal types, A to D. MLST assigned isolates of the dominant clonal type A (n = 14) to sequence type (ST) 11, while isolates of clonal types B, C, and D to ST16, ST15, and ST391, respectively. Of interest, ST11 isolates belonged to the same PFGE type as those of the recently described NDM-1 ST11 clonal outbreak in Greece. Traveling abroad or overseas hospitalization was not reported in any case, suggesting most likely intra- and interhospital dissemination. The study presents the first polyclonal outbreak of NDM-producing K. pneumoniae in the Balkans and underlines the need for larger epidemiological studies in the region to illustrate commonalities in the transmission of NDM clones and possible sources in the community.
Collapse
Affiliation(s)
- Encho Savov
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Lida Politi
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| | - Nicholas Spanakis
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| | - Angelina Trifonova
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Elena Kioseva
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Athanasios Tsakris
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| |
Collapse
|
64
|
New Delhi metallo-β-lactamase-1 (NDM-1) Escherichia coli isolated from household vacuum cleaner-Oregon, 2013. IDCases 2017; 9:56-58. [PMID: 28660132 PMCID: PMC5484987 DOI: 10.1016/j.idcr.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 11/29/2022] Open
Abstract
The first Oregon case of New Delhi metallo-β-lactamase-1 (NDM-1)-producing Escherichia coli was reported during November 2013. Epidemiologic investigation revealed only local outpatient medical care and no travel outside Oregon for both the patient and his household contact. Environmental sampling discovered a matching isolate from the patient’s household vacuum cleaner, suggesting environmental persistence.
Collapse
|
65
|
Al-Jassim N, Mantilla-Calderon D, Wang T, Hong PY. Inactivation and Gene Expression of a Virulent Wastewater Escherichia coli Strain and the Nonvirulent Commensal Escherichia coli DSM1103 Strain upon Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3649-3659. [PMID: 28263596 DOI: 10.1021/acs.est.6b05377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.
Collapse
Affiliation(s)
- Nada Al-Jassim
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - David Mantilla-Calderon
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
66
|
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as a major threat. Commonly used antibiotics are generally inactive against CRE. Therefore, timely detection of CRE is of paramount importance. Among CRE, those producing carbapenem-hydrolyzing β-lactamase enzymes (carbapenemase-producing Enterobacteriaceae) are particularly of concern because they tend to spread, and treatment is difficult. The carbapenemase groups most commonly encountered include KPC, NDM, and OXA-48. Treatment options are limited and include combinations of polymyxins, tigecycline, aminoglycosides, or carbapenems; newer agents with activity against CRE and better safety profiles are becoming available and will likely emerge as the preferred therapy.
Collapse
Affiliation(s)
- Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Falk Medical Building, Suite 3A, 3601 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, S829 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
67
|
Sully EK, Geller BL, Li L, Moody CM, Bailey SM, Moore AL, Wong M, Nordmann P, Daly SM, Sturge CR, Greenberg DE. Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J Antimicrob Chemother 2017; 72:782-790. [PMID: 27999041 PMCID: PMC5890718 DOI: 10.1093/jac/dkw476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Objectives The objective of this study was to test the efficacy of an inhibitor of the New Delhi metallo-β- lactamase (NDM-1). Inhibiting expression of this type of antibiotic-resistance gene has the potential to restore antibiotic susceptibility in all bacteria carrying the gene. Methods We have constructed a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that selectively inhibits the expression of NDM-1 and examined its ability to restore susceptibility to meropenem in vitro and in vivo . Results In vitro , the PPMO reduced the MIC of meropenem for three different genera of pathogens that express NDM-1. In a murine model of lethal E. coli sepsis, the PPMO improved survival (92%) and reduced systemic bacterial burden when given concomitantly with meropenem. Conclusions These data show that a PPMO can restore antibiotic susceptibility in vitro and in vivo and that the combination of PPMO and meropenem may have therapeutic potential against certain class B carbapenem-resistant infections in multiple genera of Gram-negative pathogens.
Collapse
Affiliation(s)
- Erin K. Sully
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Bruce L. Geller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Lixin Li
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | | | | | - Michael Wong
- Sarepta Therapeutics, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Seth M. Daly
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolyn R. Sturge
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E. Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
68
|
Xie L, Dou Y, Zhou K, Chen Y, Han L, Guo X, Sun J. Coexistence of blaOXA-48 and Truncated blaNDM-1 on Different Plasmids in a Klebsiella pneumoniae Isolate in China. Front Microbiol 2017; 8:133. [PMID: 28210248 PMCID: PMC5288367 DOI: 10.3389/fmicb.2017.00133] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022] Open
Abstract
Objectives: To describe the genetic environment, transferability, and antibiotic susceptibility of one clinical Klebsiella pneumoniae isolate harboring both blaOXA-48 and blaNDM-1 on different plasmids from a Chinese hospital. Methods: The isolate was subjected to antimicrobial susceptibility testing and multilocus sequence typing using Etest and PCR. The plasmids harboring blaOXA-48 and blaNDM-1 were analyzed through conjugation experiments, S1-nuclease pulsed-field gel electrophoresis, and hybridization with specific probes. Plasmid DNA was sequenced using Pacbio RS II and annotated using RAST. Results:K. pneumoniae RJ119, carrying both blaOXA-48 and blaNDM-1, was resistant to almost all carbapenems, cephalosporins, fluoroquinolone, and aminoglycosides and belonged to ST307. blaOXA-48 was located on a 61,748-bp IncL/M conjugative plasmid, which displayed overall nucleotide identity (99%) to pKPN-E1-Nr.7. blaNDM-1 was located on a 335,317-bp conjugative plasmid, which was a fusion of a blaNDM-1-harboring InA/C plasmid pNDM-US (140,825 bp, 99% identity) and an IncFIB plasmid pKPN-c22 (178,563 bp, 99% identity). The transconjugant RJ119-1 harboring blaNDM-1 was susceptible to carbapenem, and there was an insertion of IS10 into the blaNDM-1 gene. Conclusion: This is the first report of the coexistence of blaOXA-48 and blaNDM-1 in one K. pneumoniae clinical isolate in China. OXA-48 in RJ119 contributed to the majority to its high resistance to carbapenems, whereas NDM-1 remained unexpressed, most likely due to the insertion of IS10. Our results provide new insight for the relationship between genetic diagnosis and clinical treatment. They also indicate that increased surveillance of blaOXA-48 is urgently needed in China.
Collapse
Affiliation(s)
- Lianyan Xie
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Yi Dou
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Kaixin Zhou
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Yue Chen
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Lizhong Han
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Xiaokui Guo
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Jingyong Sun
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| |
Collapse
|
69
|
Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 2017; 23:826-833. [PMID: 28143782 DOI: 10.1016/j.cmi.2017.01.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/18/2016] [Accepted: 01/19/2017] [Indexed: 11/24/2022]
Abstract
There has been a great and long-term concern that extended-spectrum β-lactamase (ESBL)/AmpC- and carbapenemase-producing Enterobacteriaceae occurring in animals may constitute a public-health issue. A large number of factors with complex interrelations contribute to the spread of those bacteria among animals and humans. ESBL/AmpC- or carbapenemase-encoding genes are most often located on mobile genetic elements favouring their dissemination. Some shared reservoirs of ESBL/AmpC or carbapenemase genes, plasmids or clones have been identified and suggest cross-transmissions. Even though exposure to animals is regarded as a risk factor, evidence for a direct transfer of ESBL/AmpC-producing bacteria from animals to humans through close contacts is limited. Nonetheless, the size of the commensal ESBL/AmpC reservoir in non-human sources is dramatically rising. This may constitute an indirect risk to public health by increasing the gene pool from which pathogenic bacteria can pick up ESBL/AmpC/carbapenemase genes. The extent to which food contributes to potential transmission of ESBL/AmpC producers to humans is also not well established. Overall, events leading to the occurrence of ESBL/AmpC- and carbapenemase-encoding genes in animals seem very much multifactorial. The impact of animal reservoirs on human health still remains debatable and unclear; nonetheless, there are some examples of direct links that have been identified.
Collapse
|
70
|
Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2017; 30:1-22. [PMID: 27795305 PMCID: PMC5217790 DOI: 10.1128/cmr.masthead.30-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.
Collapse
Affiliation(s)
- Li-Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tan Tock Seng Hospital, Singapore
| | | | - Erum Khan
- Aga Khan University, Karachi, Pakistan
| | - Nuntra Suwantarat
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | | |
Collapse
|
71
|
Iraz M, Özad Düzgün A, Sandallı C, Doymaz MZ, Akkoyunlu Y, Saral A, Peleg AY, Özgümüş OB, Beriş FŞ, Karaoğlu H, Çopur Çiçek A. Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in Turkey. Ann Lab Med 2016; 35:595-601. [PMID: 26354347 PMCID: PMC4579103 DOI: 10.3343/alm.2015.35.6.595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/24/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022] Open
Abstract
Background The emergence of carbapenem-resistant Klebsiella pneumoniae poses a serious problem to antibiotic management. We investigated the β-lactamases in a group of carbapenem-resistant K. pneumoniae clinical isolates from Turkey. Methods Thirty-seven strains of K. pneumoniae isolated from various clinical specimens were analyzed by antimicrobial susceptibility testing, PCR for the detection of β-lactamase genes, DNA sequencing, and repetitive extragenic palindronic (REP)-PCR analysis. Results All 37 isolates were resistant to ampicillin, ampicillin/sulbactam, piperacillin, piperacillin/tazobactam, ceftazidime, cefoperazone/sulbactam, cefepime, imipenem, and meropenem. The lowest resistance rates were observed for colistin (2.7%), tigecycline (11%), and amikacin (19%). According to PCR and sequencing results, 98% (36/37) of strains carried at least one carbapenemase gene, with 32 (86%) carrying OXA-48 and 7 (19%) carrying NDM-1. No other carbapenemase genes were identified. All strains carried a CTX-M-2-like β-lactamase, and some carried SHV- (97%), TEM- (9%), and CTX-M-1-like (62%) β-lactamases. Sequence analysis of blaTEM genes identified a blaTEM-166 with an amino acid change at position 53 (Arg53Gly) from blaTEM-1b, the first report of a mutation in this region. REP-PCR analysis revealed that there were seven different clonal groups, and temporo-spatial links were identified within these groups. Conclusions Combinations of β-lactamases were found in all strains, with the most common being OXA-48, SHV, TEM, and CTX-M-type (76% of strains). We have reported, for the first time, a high prevalence of the NDM-1 (19%) carbapenemase in carbapenem-resistant K. pneumoniae from Turkey. These enzymes often co-exist with other β-lactamases, such as TEM, SHV, and CTX-M β-lactamases.
Collapse
Affiliation(s)
- Meryem Iraz
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Azer Özad Düzgün
- Department of Genetic and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gumushane, Turkey
| | - Cemal Sandallı
- Department of Biology, Faculty of Arts & Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mehmet Ziya Doymaz
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yasemin Akkoyunlu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayşegül Saral
- Department of Biology, Faculty of Arts & Sciences, ArtvinCoruh University, Artvin, Turkey
| | - Anton Y Peleg
- Department of Microbiology, Monash University, Melbourne, Australia.,Department of Infectious Diseases, The Alfred Hospital, Melbourne, Australia
| | - Osman Birol Özgümüş
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Fatih Şaban Beriş
- Department of Biology, Faculty of Arts & Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Hakan Karaoğlu
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ayşegül Çopur Çiçek
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey.
| |
Collapse
|
72
|
Molecular Epidemiology and Genome Dynamics of New Delhi Metallo-β-Lactamase-Producing Extraintestinal Pathogenic Escherichia coli Strains from India. Antimicrob Agents Chemother 2016; 60:6795-6805. [PMID: 27600040 DOI: 10.1128/aac.01345-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/25/2016] [Indexed: 01/11/2023] Open
Abstract
The global dissemination and increasing incidence of carbapenem-resistant, Gram-negative organisms have resulted in acute public health concerns. Here, we present a retrospective multicenter study on molecular characterization of metallo-β-lactamase (MBL)-producing clinical Escherichia coli isolates recovered from extraintestinal infections in two hospitals in Pune, India. We screened a large sample size of 510 E. coli isolates for MBL production wherein we profiled their molecular determinants, antimicrobial resistance phenotypes, functional virulence properties, genomic features, and transmission dynamics. Approximately 8% of these isolates were MBL producers, the majority of which were of the NDM-1 (69%) type, followed by NDM-5 (19%), NDM-4 (5.5%), and NDM-7 (5.5%). MBL producers were resistant to all antibiotics tested except for colistin, fosfomycin, and chloramphenicol, which were effective to various extents. Plasmids were found to be an effective means of dissemination of NDM genes and other resistance traits. All MBL producers adhered to and invaded bladder epithelial (T24) cells and demonstrated significant serum resistance. Genomic analysis of MBL-producing E. coli isolates revealed higher resistance but a moderate virulence gene repertoire. A subset of NDM-1-positive E. coli isolates was identified as dominant sequence type 101 (ST101) while two strains belonging to ST167 and ST405 harbored NDM-5. A majority of MBL-producing E. coli strains revealed unique genotypes, suggesting that they were clonally unrelated. Overall, the coexistence of virulence and carbapenem resistance in clinical E. coli isolates is of serious concern. Moreover, the emergence of NDM-1 among the globally dominant E. coli ST101 isolates warrants stringent surveillance and control measures.
Collapse
|
73
|
Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2016. [PMID: 27795305 DOI: 10.1128/cmr.00042-16] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.
Collapse
|
74
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are an important and increasing threat to global health. Both clonal spread and plasmid-mediated transmission contribute to the ongoing rise in incidence of these bacteria. Among the 4 classes of β-lactamases defined by the Ambler classification system, the carbapenemases that confer carbapenem resistance in Enterobacteriaceae belong to 3 of them: Class A (K. pneumoniae carbapenemases, KPC), Class B (metallo-β-lactamases, MBL including New Delhi metallo-β-lactamases, NDM) and Class D (OXA-48-like carbapenemases). KPC-producing CPE are the most commonly occurring CPE in the United States. MBL-producing CPE have been most commonly associated with the Indian Subcontinent as well as with specific countries in Europe, including Romania, Denmark, Spain, and Hungary. The epicenter of OXA-48-like-producing is in Turkey and surrounding countries. Detailed knowledge of the epidemiology and molecular characteristics of CPE is essential to stem the spread of these pathogens.
Collapse
Affiliation(s)
- David van Duin
- a Division of Infectious Diseases , University of North Carolina , Chapel Hill , NC , USA
| | - Yohei Doi
- b Division of Infectious Diseases , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
75
|
Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods. Clin Microbiol Rev 2016; 29:1-27. [PMID: 26511484 DOI: 10.1128/cmr.00108-14] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Carbapenemases have become a significant mechanism for broad-spectrum β-lactam resistance in Enterobacteriaceae and other Gram-negative bacteria such as Pseudomonas and Acinetobacter spp. Intestinal carriage of carbapenemase-producing organisms (CPOs) is an important source of transmission. Isolation of carriers is one strategy that can be used to limit the spread of these bacteria. In this review, we critically examine the clinical performance, advantages, and disadvantages of methods available for the detection of intestinal carriage of CPOs. Culture-based methods (Centers for Disease Control and Prevention [CDC] protocols, chromogenic media, specialized agars, and double-disk synergy tests) for detecting carriage of CPOs are convenient due to their ready availability and low cost, but their limited sensitivity and long turnaround time may not always be optimal for infection control practices. Contemporary nucleic acid amplification techniques (NAATs) such as real-time PCR, hybridization assays, loop-mediated isothermal amplification (LAMP), or a combined culture and NAAT approach may provide fast results and/or added sensitivity and specificity compared with culture-based methods. Infection control practitioners and clinical microbiologists should be aware of the strengths and limitations of available methods to determine the most suitable approach for their medical facility to fit their infection control needs.
Collapse
|
76
|
Skurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines 2016; 15:1041-53. [PMID: 26918288 PMCID: PMC4985264 DOI: 10.1586/14760584.2016.1159135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 11/08/2022]
Abstract
A challenging component of vaccine development is the large serologic diversity of protective antigens. Remarkably, there is a conserved surface/capsular polysaccharide, one of the most effective vaccine targets, expressed by a large number of bacterial, fungal and eukaryotic pathogens: poly-N-acetyl glucosamine (PNAG). Natural antibodies to PNAG are poorly effective at mediating in vitro microbial killing or in vivo protection. Removing most of the acetate substituents to produce a deacetylated glycoform, or using synthetic oligosaccharides of poly-β-1-6-linked glucosamine conjugated to carrier proteins, results in vaccines that elicit high levels of broad-based immunity. A fully human monoclonal antibody is highly active in laboratory and preclinical studies and has been successfully tested in a phase-I setting. Both the synthetic oligosaccharide conjugate vaccine and MAb will be further tested in humans starting in 2016; but, even if effective against only a fraction of the PNAG-producing pathogens, a major advance in vaccine-preventable diseases will occur.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| |
Collapse
|
77
|
Miller S, Humphries RM. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producingEnterobacteriaceae. Expert Rev Anti Infect Ther 2016; 14:705-17. [DOI: 10.1080/14787210.2016.1206815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
78
|
Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids. Antimicrob Agents Chemother 2016; 60:4082-8. [PMID: 27114281 DOI: 10.1128/aac.00368-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family.
Collapse
|
79
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
80
|
Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China. J Clin Microbiol 2016; 54:2014-22. [PMID: 27225410 DOI: 10.1128/jcm.00052-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments, or contaminated food. The recent emergence of multidrug-resistant isolates has raised public health concerns. In this study, comparative genomics and phenotypic analysis were used to characterize 14 Salmonella Senftenberg clinical isolates recovered from multiple outbreaks in Shenzhen and Shanghai, China, between 2002 and 2011. Single-nucleotide polymorphism analyses identified two phylogenetically distinct clades of S Senftenberg, designated SC1 and SC2, harboring variations in Salmonella pathogenicity island 1 (SPI-1) and SPI-2 and exhibiting distinct biochemical and phenotypic signatures. Although the two variants shared the same serotype, the SC2 isolates of sequence type 14 (ST14) harbored intact SPI-1 and -2 and hence were characterized by possessing efficient invasion capabilities. In contrast, the SC1 isolates had structural deletion patterns in both SPI-1 and -2 that correlated with an impaired capacity to invade cultured human cells and also the year of their isolation. These atypical SC1 isolates also lacked the capacity to produce hydrogen sulfide. These findings highlight the emergence of atypical Salmonella Senftenberg variants in China and provide genetic validation that variants lacking SPI-1 and regions of SPI-2, which leads to impaired invasion capacity, can still cause clinical disease. These data have identified an emerging public health concern and highlight the need to strengthen surveillance to detect the prevalence and transmission of nontyphoidal Salmonella species.
Collapse
|
81
|
Chea N, Bulens SN, Kongphet-Tran T, Lynfield R, Shaw KM, Vagnone PS, Kainer MA, Muleta DB, Wilson L, Vaeth E, Dumyati G, Concannon C, Phipps EC, Culbreath K, Janelle SJ, Bamberg WM, Guh AY, Limbago B, Kallen AJ. Improved Phenotype-Based Definition for Identifying Carbapenemase Producers among Carbapenem-Resistant Enterobacteriaceae. Emerg Infect Dis 2016; 21:1611-6. [PMID: 26290955 PMCID: PMC4550143 DOI: 10.3201/eid2109.150198] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A new, less restrictive definition increases detection of Klebsiella pneumoniae carbapenemase producers. Preventing transmission of carbapenemase-producing, carbapenem-resistant Enterobacteriaceae (CP-CRE) is a public health priority. A phenotype-based definition that reliably identifies CP-CRE while minimizing misclassification of non–CP-CRE could help prevention efforts. To assess possible definitions, we evaluated enterobacterial isolates that had been tested and deemed nonsusceptible to >1 carbapenem at US Emerging Infections Program sites. We determined the number of non-CP isolates that met (false positives) and CP isolates that did not meet (false negatives) the Centers for Disease Control and Prevention CRE definition in use during our study: 30% (94/312) of CRE had carbapenemase genes, and 21% (14/67) of Klebsiella pneumoniae carbapenemase–producing Klebsiella isolates had been misclassified as non-CP. A new definition requiring resistance to 1 carbapenem rarely missed CP strains, but 55% of results were false positive; adding the modified Hodge test to the definition decreased false positives to 12%. This definition should be considered for use in carbapenemase-producing CRE surveillance and prevention.
Collapse
|
82
|
Huang LF, Lee CT, Su LH, Chang CL. A Snapshot of Co-Resistance to Carbapenems and Tigecycline in Clinical Isolates of Enterobacter cloacae. Microb Drug Resist 2016; 23:1-7. [PMID: 27136494 DOI: 10.1089/mdr.2015.0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Enterobacter cloacae is one of the most common carbapenem-resistant Enterobacteriaceae (CRE) global wide. Resistance to tigecycline, one of the few therapeutic options for CRE infections, in carbapenem-resistant E. cloacae is of clinical significance. Fourteen E. cloacae clinical isolates (EC1-EC14) co-resistant to tigecycline and carbapenems were studied. Two tigecycline-susceptible/carbapenem-resistant isolates (TS1-TS2) were used for comparison. Genotyping by pulsed-field gel electrophoresis and multilocus sequence typing identified seven pulsotypes and three sequence types (STs). All three STs belonged to the published international clones. Polymerase chain reaction (PCR) and sequence analysis revealed the coexistence of blaSHV-12 and blaIMP-8 in 11 EC isolates from five pulsotypes/two STs. Reverse transcription PCR demonstrated overexpression of the chromosomal AmpC-like β-lactamase in seven EC isolates (four pulsotypes/two STs) and TS1 (pulsotype F/ST78). Reduced expression of outer membrane protein C (OmpC) was found in three EC isolates (all pulsotype C/ST204), whereas reduced expression of OmpF was found in nine EC isolates (three pulsotypes/two STs) and TS2 (pulsotype G/ST114). Overexpression of the efflux pump AcrB was found in all EC isolates although three showed borderline significance. Multiple mechanisms jointly contributed to the observed co-resistance to tigecycline and carbapenems. Some international clones have infiltrated into Taiwan and acquired various resistance traits independently.
Collapse
Affiliation(s)
- Ling-Fu Huang
- 1 Department of Nephrology, Tainan Municipal Hospital , Tainan, Taiwan .,2 Department of Internal Medicine, Tainan Municipal Hospital , Tainan, Taiwan
| | - Chao-Tai Lee
- 3 Department of Clinical Laboratory, Tainan Municipal Hospital , Tainan, Taiwan
| | - Lin-Hui Su
- 4 Department of Laboratory Medicine, Chang Gung Memorial Hospital, Chang Gung University , College of Medicine, Taoyuan, Taiwan
| | - Chin-Lu Chang
- 2 Department of Internal Medicine, Tainan Municipal Hospital , Tainan, Taiwan .,5 Department of Infectious Diseases, Tainan Municipal Hospital , Tainan, Taiwan
| |
Collapse
|
83
|
Laboratory Detection of Carbapenemases in Gram-Negative Bacteria. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.32816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
84
|
O’Donnell JN, Miglis CM, Lee JY, Tuvell M, Lertharakul T, Scheetz MH. Carbapenem susceptibility breakpoints, clinical implications with the moving target. Expert Rev Anti Infect Ther 2016; 14:389-401. [DOI: 10.1586/14787210.2016.1159131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
85
|
Perez F, El Chakhtoura NG, Papp-Wallace K, Wilson BM, Bonomo RA. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply "precision medicine" to antimicrobial chemotherapy? Expert Opin Pharmacother 2016; 17:761-81. [PMID: 26799840 PMCID: PMC4970584 DOI: 10.1517/14656566.2016.1145658] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION For the past three decades, carbapenems played a central role in our antibiotic armamentarium, trusted to effectively treat infections caused by drug-resistant bacteria. The utility of this class of antibiotics has been compromised by the emergence of resistance especially among Enterobacteriaceae. AREAS COVERED We review the current mainstays of pharmacotherapy against infections caused by carbapenem-resistant Enterobacteriaceae (CRE) including tigecycline, aminoglycosides, and rediscovered 'old' antibiotics such as fosfomycin and polymyxins, and discuss their efficacy and potential toxicity. We also summarize the contemporary clinical experience treating CRE infections with antibiotic combination therapy. Finally, we discuss ceftazidime/avibactam and imipenem/relebactam, containing a new generation of beta-lactamase inhibitors, which may offer alternatives to treat CRE infections. We critically evaluate the published literature, identify relevant clinical trials and review documents submitted to the United States Food and Drug Administration. EXPERT OPINION Defining the molecular mechanisms of resistance and applying insights about pharmacodynamic and pharmacokinetic properties of antibiotics, in order to maximize the impact of old and new therapeutic approaches should be the new paradigm in treating infections caused by CRE. A concerted effort is needed to carry out high-quality clinical trials that: i) establish the superiority of combination therapy vs. monotherapy; ii) confirm the role of novel beta-lactam/beta-lactamase inhibitor combinations as therapy against KPC- and OXA-48 producing Enterobacteriaceae; and, iii) evaluate new antibiotics active against CRE as they are introduced into the clinic.
Collapse
Affiliation(s)
- Federico Perez
- Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
| | | | - Krisztina Papp-Wallace
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Robert A. Bonomo
- Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- VISN-10 Geriatrics Research, Cleveland, Ohio
| |
Collapse
|
86
|
Skurnik D, Roux D, Pons S, Guillard T, Lu X, Cywes-Bentley C, Pier GB. Extended-spectrum antibodies protective against carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2016; 71:927-35. [PMID: 26747103 DOI: 10.1093/jac/dkv448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) are responsible for worldwide outbreaks and antibiotic treatments are problematic. The polysaccharide poly-(β-1,6)-N-acetyl glucosamine (PNAG) is a vaccine target detected on the surface of numerous pathogenic bacteria, including Escherichia coli. Genes encoding PNAG biosynthetic proteins have been identified in two other main pathogenic Enterobacteriaceae, Enterobacter cloacae and Klebsiella pneumoniae. We hypothesized that antibodies to PNAG might be a new therapeutic option for the different pan-resistant pathogenic species of CRE. METHODS PNAG production was detected by confocal microscopy and its role in the formation of the biofilm (for E. cloacae) and as a virulence factor (for K. pneumoniae) was analysed. The in vitro (opsonophagocytosis killing assay) and in vivo (mouse models of peritonitis) activity of antibodies to PNAG were studied using antibiotic-susceptible and -resistant E. coli, E. cloacae and K. pneumoniae. A PNAG-producing strain of Pseudomonas aeruginosa, an organism that does not naturally produce this antigen, was constructed by adding the pga locus to a strain with inactive alg genes responsible for the production of P. aeruginosa alginate. Antibodies to PNAG were tested in vitro and in vivo as above. RESULTS PNAG is a major component of the E. cloacae biofilm and a virulence factor for K. pneumoniae. Antibodies to PNAG mediated in vitro killing (>50%) and significantly protected mice against the New Delhi metallo-β-lactamase-producing E. coli (P = 0.02), E. cloacae (P = 0.0196) and K. pneumoniae (P = 0.006), against K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae (P = 0.02) and against PNAG-producing P. aeruginosa (P = 0.0013). Thus, regardless of the Gram-negative bacterial species, PNAG expression is the sole determinant of the protective efficacy of antibodies to this antigen. CONCLUSIONS Our findings suggest antibodies to PNAG may provide extended-spectrum antibacterial protective activity.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Pons
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xi Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
87
|
Cheng V, Chen J, Wong S, Ho P, Yuen K. Gastrointestinal colonization with multiple New Delhi metallo-β-lactamase-producing Enterobacteriaceae isolates in the same patient: a potential challenge in outbreak investigation. J Hosp Infect 2016; 92:108-9. [DOI: 10.1016/j.jhin.2015.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
|
88
|
Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, Wilson LE, Vaeth E, Lynfield R, Shaw KM, Vagnone PMS, Bamberg WM, Janelle SJ, Dumyati G, Concannon C, Beldavs Z, Cunningham M, Cassidy PM, Phipps EC, Kenslow N, Travis T, Lonsway D, Rasheed JK, Limbago BM, Kallen AJ. Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013. JAMA 2015; 314:1479-87. [PMID: 26436831 PMCID: PMC6492240 DOI: 10.1001/jama.2015.12480] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE Carbapenem-resistant Enterobacteriaceae (CRE) are increasingly reported worldwide as a cause of infections with high-mortality rates. Assessment of the US epidemiology of CRE is needed to inform national prevention efforts. OBJECTIVE To determine the population-based CRE incidence and describe the characteristics and resistance mechanism associated with isolates from 7 US geographical areas. DESIGN, SETTING, AND PARTICIPANTS Population- and laboratory-based active surveillance of CRE conducted among individuals living in 1 of 7 US metropolitan areas in Colorado, Georgia, Maryland, Minnesota, New Mexico, New York, and Oregon. Cases of CRE were defined as carbapenem-nonsusceptible (excluding ertapenem) and extended-spectrum cephalosporin-resistant Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae complex, Klebsiella pneumoniae, or Klebsiella oxytoca that were recovered from sterile-site or urine cultures during 2012-2013. Case records were reviewed and molecular typing for common carbapenemases was performed. EXPOSURES Demographics, comorbidities, health care exposures, and culture source and location. MAIN OUTCOMES AND MEASURES Population-based CRE incidence, site-specific standardized incidence ratios (adjusted for age and race), and clinical and microbiological characteristics. RESULTS Among 599 CRE cases in 481 individuals, 520 (86.8%; 95% CI, 84.1%-89.5%) were isolated from urine and 68 (11.4%; 95% CI, 8.8%-13.9%) from blood. The median age was 66 years (95% CI, 62.1-65.4 years) and 284 (59.0%; 95% CI, 54.6%-63.5%) were female. The overall annual CRE incidence rate per 100<000 population was 2.93 (95% CI, 2.65-3.23). The CRE standardized incidence ratio was significantly higher than predicted for the sites in Georgia (1.65 [95% CI, 1.20-2.25]; P < .001), Maryland (1.44 [95% CI, 1.06-1.96]; P = .001), and New York (1.42 [95% CI, 1.05-1.92]; P = .048), and significantly lower than predicted for the sites in Colorado (0.53 [95% CI, 0.39-0.71]; P < .001), New Mexico (0.41 [95% CI, 0.30-0.55]; P = .01), and Oregon (0.28 [95% CI, 0.21-0.38]; P < .001). Most cases occurred in individuals with prior hospitalizations (399/531 [75.1%; 95% CI, 71.4%-78.8%]) or indwelling devices (382/525 [72.8%; 95% CI, 68.9%-76.6%]); 180 of 322 (55.9%; 95% CI, 50.0%-60.8%) admitted cases resulted in a discharge to a long-term care setting. Death occurred in 51 (9.0%; 95% CI, 6.6%-11.4%) cases, including in 25 of 91 cases (27.5%; 95% CI, 18.1%-36.8%) with CRE isolated from normally sterile sites. Of 188 isolates tested, 90 (47.9%; 95% CI, 40.6%-55.1%) produced a carbapenemase. CONCLUSIONS AND RELEVANCE In this population- and laboratory-based active surveillance system in 7 states, the incidence of CRE was 2.93 per 100<000 population. Most CRE cases were isolated from a urine source, and were associated with high prevalence of prior hospitalizations or indwelling devices, and discharge to long-term care settings.
Collapse
Affiliation(s)
- Alice Y Guh
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sandra N Bulens
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yi Mu
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jesse T Jacob
- Emory University School of Medicine, Atlanta, Georgia3Georgia Emerging Infections Program, Decatur
| | - Jessica Reno
- Georgia Emerging Infections Program, Decatur4Atlanta Research and Education Foundation, Decatur, Georgia5Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Janine Scott
- Georgia Emerging Infections Program, Decatur4Atlanta Research and Education Foundation, Decatur, Georgia5Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Lucy E Wilson
- Maryland Department of Health and Mental Hygiene, Baltimore
| | | | | | | | | | - Wendy M Bamberg
- Colorado Department of Public Health and Environment, Denver
| | - Sarah J Janelle
- Colorado Department of Public Health and Environment, Denver
| | - Ghinwa Dumyati
- New York Emerging Infections Program and University of Rochester Medical Center, Rochester
| | - Cathleen Concannon
- New York Emerging Infections Program and University of Rochester Medical Center, Rochester
| | | | | | | | | | | | - Tatiana Travis
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - David Lonsway
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brandi M Limbago
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexander J Kallen
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
89
|
Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin Microbiol Rev 2015; 28:901-37. [PMID: 26180063 PMCID: PMC4503790 DOI: 10.1128/cmr.00002-15] [Citation(s) in RCA: 664] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015.
Collapse
Affiliation(s)
- John A Crump
- Centre for International Health, University of Otago, Dunedin, Otago, New Zealand Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Sjölund-Karlsson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melita A Gordon
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christopher M Parry
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
90
|
Osei Sekyere J, Govinden U, Essack SY. Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J Appl Microbiol 2015; 119:1219-33. [DOI: 10.1111/jam.12918] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023]
Affiliation(s)
- J. Osei Sekyere
- Antimicrobial Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban South Africa
| | - U. Govinden
- Antimicrobial Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban South Africa
| | - S. Y. Essack
- Antimicrobial Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban South Africa
| |
Collapse
|
91
|
Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother 2015; 59:5873-84. [PMID: 26169401 DOI: 10.1128/aac.01019-15] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The management of infections due to Klebsiella pneumoniae has been complicated by the emergence of antimicrobial resistance, especially to carbapenems. Resistance to carbapenems in K. pneumoniae involves multiple mechanisms, including the production of carbapenemases (e.g., KPC, NDM, VIM, OXA-48-like), as well as alterations in outer membrane permeability mediated by the loss of porins and the upregulation of efflux systems. The latter two mechanisms are often combined with high levels of other types of β-lactamases (e.g., AmpC). K. pneumoniae sequence type 258 (ST258) emerged during the early to mid-2000s as an important human pathogen and has spread extensively throughout the world. ST258 comprises two distinct lineages, namely, clades I and II, and it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Incompatibility group F plasmids with blaKPC have contributed significantly to the success of ST258. The optimal treatment of infections due to carbapenemase-producing K. pneumoniae remains unknown. Some newer agents show promise for treating infections due to KPC producers; however, effective options for the treatment of NDM producers remain elusive.
Collapse
|
92
|
Fazeli H, Norouzi-Barough M, Ahadi AM, Shokri D, Solgi H. Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) in carbapenem- resistant Klebsiella pneumoniae isolated from a university hospital in Iran. Hippokratia 2015; 19:205-209. [PMID: 27418777 PMCID: PMC4938465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND New Delhi metallo-beta-lactamase-1(NDM-1) is a novel type of metallo-beta-lactamase (MBL) which inactivates all β-lactam antibiotics except aztreonam. Enterobacteriaceae expressing NDM-1 have been identified worldwide. The aim of this study was to detect MBLs in carbapenem-resistant K. pneumoniae isolates obtained from patients hospitalized in one of the university hospitals in Isfahan, Iran. METHODS Of the 112 isolates obtained from various clinical samples, 49 were selected for carbapenemase detection based on their reduced susceptibility to imipenem or meropenem according to the disc diffusion method. These isolates were screened for carbapenemase and MBL production using the Modified Hodge Test (MHT) and Epsilometer test (E-test) MBL strips. Polymerase chain reaction was performed on all 49 isolates using specific primers to detect genes encoding IMP (active on imipenem), VIM (Verona integron-encoded metallo-β-lactamase), SPM-1 (Sao Paulo metallo-β-lactamase) and NDM-1. RESULTS Among 49 carbapenem-resistant isolates, 32 (65.3 %) were positive for MHT and 6 (12.2 %) were found positive for blaNDM-1. Other MBL genes were not detected. CONCLUSION This is the second report on the detection of blaNDM-1 in Iran since it was first reported by Shahcheraghi and colleagues in 2012. This study indicated that resistance to carbapenems and isolation of bacteria producing NDM-1 is increasing. Therefore, the rapid detection of isolates expressing NDM-1 is essential to control their spread. Hippokratia 2015; 19 (3): 205-209.
Collapse
Affiliation(s)
- H Fazeli
- Department of Pathobiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Norouzi-Barough
- Department of Biochemistry & Genetics, Faculty of Science, Qazvin University of Medical Sciences, Qazvin, Iran
| | - A M Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - D Shokri
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Solgi
- Department of Bacteriology and Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
93
|
An in vitro combined antibiotic-antibody treatment eliminates toxicity from Shiga toxin-producing Escherichia coli. Antimicrob Agents Chemother 2015; 59:5435-44. [PMID: 26100707 DOI: 10.1128/aac.00763-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Treating Shiga toxin-producing Escherichia coli (STEC) gastrointestinal infections is difficult. The utility of antibiotics for STEC treatment is controversial, since antibiotic resistance among STEC isolates is widespread and certain antibiotics dramatically increase the expression of Shiga toxins (Stxs), which are some of the most important virulence factors in STEC. Stxs contribute to life-threatening hemolytic uremic syndrome (HUS), which develops in considerable proportions of patients with STEC infections. Understanding the antibiotic resistance profiles of STEC isolates and the Stx induction potential of promising antibiotics is essential for evaluating any antibiotic treatment of STEC. In this study, 42 O157:H7 or non-O157 STEC isolates (including the "big six" serotypes) were evaluated for their resistance against 22 antibiotics by using an antibiotic array. Tigecycline inhibited the growth of all of the tested STEC isolates and also inhibited the production of Stxs (Stx2 in particular). In combination with neutralizing antibodies to Stx1 and Stx2, the tigecycline-antibody treatment fully protected Vero cells from Stx toxicity, even when the STEC bacteria and the Vero cells were cultured together. The combination of an antibiotic such as tigecycline with neutralizing antibodies presents a promising strategy for future STEC treatments.
Collapse
|
94
|
Sun F, Yin Z, Feng J, Qiu Y, Zhang D, Luo W, Yang H, Yang W, Wang J, Chen W, Xia P, Zhou D. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China. Front Microbiol 2015; 6:458. [PMID: 26052314 PMCID: PMC4439573 DOI: 10.3389/fmicb.2015.00458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of bla NDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY bla NDM-1-carrying plasmid pKOX_NDM1. The bla NDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of bla NDM-1 gene contexts.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China ; Laboratory Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China ; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
95
|
Draft Genome Sequences of Four NDM-1-Producing Klebsiella pneumoniae Strains from a Health Care Facility in Northern California. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00421-15. [PMID: 25977423 PMCID: PMC4432329 DOI: 10.1128/genomea.00421-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the draft genome sequences of Klebsiella pneumoniae strains from four patients at a northern California health care facility. All strains contained the New Delhi metallo-β-lactamase (NDM1) carbapenemase with extended antibiotic resistance, including resistance to expanded-spectrum cephalosporins, imipenem, ertapenem, and meropenem. NDM gene alignments revealed that the resistance was plasmid encoded.
Collapse
|
96
|
Chen Z, Li H, Feng J, Li Y, Chen X, Guo X, Chen W, Wang L, Lin L, Yang H, Yang W, Wang J, Zhou D, Liu C, Yin Z. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes. Front Microbiol 2015; 6:294. [PMID: 25926823 PMCID: PMC4396501 DOI: 10.3389/fmicb.2015.00294] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.
Collapse
Affiliation(s)
- Zhenhong Chen
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Hongxia Li
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuxue Li
- The First Hospital of Shijiazhuang City Shijiazhuang, China
| | - Xin Chen
- Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Xuemin Guo
- Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Li Wang
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Lei Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
97
|
War wound treatment complications due to transfer of an IncN plasmid harboring bla(OXA-181) from Morganella morganii to CTX-M-27-producing sequence type 131 Escherichia coli. Antimicrob Agents Chemother 2015; 59:3556-62. [PMID: 25870058 DOI: 10.1128/aac.04442-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
A 22-year-old male developed a recurrent sacral abscess associated with embedded shrapnel following a blast injury. Cultures grew extended-spectrum β-lactamase (ESBL)-producing, carbapenem-susceptible Escherichia coli. Ertapenem was administered, but the infection recurred after each course of antibiotics. Initial surgical interventions were unsuccessful, and subsequent cultures yielded E. coli and Morganella morganii, both nonsusceptible to carbapenems. The isolates were Carba NP test negative, gave ambiguous results with the modified Hodge test, and amplified the bla(OXA48)-like gene by real-time PCR. All E. coli isolates were sequence type 131 (ST131), carried nine resistance genes (including bla(CTX-M-27)) on an IncF plasmid, and were identical by genome sequencing, except for 150 kb of plasmid DNA in carbapenem-nonsusceptible isolates only. Sixty kilobases of this was shared by M. morganii and represented an IncN plasmid harboring bla(OXA-181). In M. morganii, the gene was flanked by IS3000 and ISKpn19, but in all but one of the E. coli isolates containing bla(OXA-181), a second copy of ISKpn19 had inserted adjacent to IS3000. To the best of our knowledge, this is the first report of bla(OXA-181) in the virulent ST131 clonal group and carried by the promiscuous IncN family of plasmids. The tendency of M. morganii to have high MICs of imipenem, a bla(OXA-181) substrate profile that includes penicillins but not extended-spectrum cephalosporins, and weak carbapenemase activity almost resulted in the presence of bla(OXA-181) being overlooked. We highlight the importance of surveillance for carbapenem resistance in all species, even those with intrinsic resistances, and the value of advanced molecular techniques in detecting subtle genetic changes.
Collapse
|
98
|
Day MR, Meunier D, Doumith M, de Pinna E, Woodford N, Hopkins KL. Carbapenemase-producing Salmonella enterica isolates in the UK. J Antimicrob Chemother 2015; 70:2165-7. [PMID: 25795771 DOI: 10.1093/jac/dkv075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Martin R Day
- Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Elizabeth de Pinna
- Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
99
|
Fu Y, Liu L, Li X, Chen Y, Jiang Y, Wang Y, Yu Y, Xie X. Spread of a common blaNDM-1-carrying plasmid among diverse Acinetobacter species. INFECTION GENETICS AND EVOLUTION 2015; 32:30-3. [PMID: 25726900 DOI: 10.1016/j.meegid.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Ying Fu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lilin Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyou Xie
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
100
|
Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother 2015; 70:1420-8. [PMID: 25634992 DOI: 10.1093/jac/dku568] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The spread of NDM-1 amongst Enterobacteriaceae has highlighted a significant threat to the clinical management of serious infections. The combination of aztreonam and avibactam, a non-β-lactam β-lactamase inhibitor, may provide a much-needed therapeutic alternative. This combination was potent against most NDM-containing Enterobacteriaceae, although activity was diminished against many Escherichia coli isolates. These E. coli isolates were characterized to elucidate the mechanism of decreased susceptibility to aztreonam/avibactam. METHODS MIC determinations were performed using broth microdilution, and whole-genome sequencing was performed to enable sequence-based analyses. RESULTS The decreased susceptibility was not due to avibactam being unable to inhibit the serine β-lactamases found in the E. coli isolates. Rather, it was manifested by a four-amino-acid insertion in PBP3. This same insertion was also found in non-NDM-containing E. coli that had reduced susceptibility to aztreonam/avibactam. Construction of an isogenic mutant confirmed that this insertion resulted in decreased susceptibility to aztreonam and several cephalosporins, but had no impact on carbapenem potency. Structural analysis suggests that this insertion will impact the accessibility of the β-lactam drugs to the transpeptidase pocket of PBP3. CONCLUSIONS The acquisition of β-lactamases is the predominant mechanism of β-lactam resistance in Enterobacteriaceae. We have demonstrated that small PBP3 changes will affect the susceptibility to a broad range of β-lactams. These changes were identified in multiple MLST lineages of E. coli, and were enriched in NDM-containing isolates. However, they were not present in other key species of Enterobacteriaceae despite significant conservation among the PBP3 proteins.
Collapse
Affiliation(s)
- Richard A Alm
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| | - Michele R Johnstone
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| | - Sushmita D Lahiri
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| |
Collapse
|