51
|
Extracellular vesicles and PDL1 suppress macrophages inducing therapy resistance in TP53-deficient B-cell malignancies. Blood 2022; 139:3617-3629. [PMID: 35344582 DOI: 10.1182/blood.2021014007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic alterations in the DNA Damage Response (DDR) pathway are a frequent mechanism of resistance to CIT in B-cell malignancies. We have previously shown that the synergy of CIT relies on secretory crosstalk elicited by chemotherapy between the tumour cells and macrophages. Here, we show that loss of multiple different members of the DDR pathway inhibits macrophage phagocytic capacity in vitro and in vivo. Particularly loss of TP53 led to decreased phagocytic capacity ex vivo across multiple B-cell malignancies. We demonstrate via in vivo cyclophosphamide treatment using the Eµ-TCL1 mouse model that loss of macrophage phagocytic capacity in Tp53-deleted leukemia is driven by a significant downregulation of a phagocytic transcriptomic signature using scRNA-Seq. By analysing the tumour B-cell proteome, we identified a TP53 specific upregulation of proteins associated with extracellular vesicles (EV). We abrogated EV biogenesis in tumour B-cells via CRISPR-knockout (KO) of RAB27A and confirmed that the EVs from TP53-deleted lymphoma cells were responsible for the reduced phagocytic capacity and the in vivo CIT resistance. Furthermore, we observed that TP53 loss led to an upregulation of both PD-L1 cell surface expression and secretion of EVs by lymphoma cells. Disruption of EV bound PD-L1 by anti-PD-L1 antibodies or PD-L1 CRISPR-KO improved macrophage phagocytic capacity and in vivo therapy response. Thus, we demonstrate enhanced EV-release and increased PD-L1 expression in TP53-deficient B-cell lymphomas as novel mechanisms of macrophage function alteration in CIT resistance. This study indicates the use of checkpoint inhibition in the combination treatment of B-cell malignancies with TP53 loss.
Collapse
|
52
|
M JR, Ramalingam PS, Mathavan S, B.R.D. Yamajala R, Moparthi NR, Kurappalli RK, Manyam RR. Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC /microRNA regulation. Chem Biol Interact 2022; 357:109876. [DOI: 10.1016/j.cbi.2022.109876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
53
|
Lazarian G, Cymbalista F, Baran-Marszak F. Impact of Low-Burden TP53 Mutations in the Management of CLL. Front Oncol 2022; 12:841630. [PMID: 35211418 PMCID: PMC8861357 DOI: 10.3389/fonc.2022.841630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), TP53 abnormalities are associated with reduced survival and resistance to chemoimmunotherapy (CIT). The recommended threshold to clinically report TP53 mutations is a matter of debate given that next-generation sequencing technologies can detect mutations with a limit of detection of approximately 1% with high confidence. However, the clinical impact of low-burden TP53 mutations with a variant allele frequency (VAF) of less than 10% remains unclear. Longitudinal analysis before and after fludarabine based on NGS sequencing demonstrated that low-burden TP53 mutations were present before the onset of treatment and expanded at relapse to become the predominant clone. Most studies evaluating the prognostic or predictive impact of low-burden TP53 mutations in untreated patients show that low-burden TP53 mutations have the same unfavorable prognostic impact as clonal defects. Moreover, studies designed to assess the predictive impact of low-burden TP53 mutations showed that TP53 mutations, irrespective of mutation burden, have an inferior impact on overall survival for CIT-treated patients. As low-burden and high-burden TP53 mutations have comparable clinical impacts, redefining the VAF threshold may have important implications for the clinical management of CLL.
Collapse
Affiliation(s)
| | | | - Fanny Baran-Marszak
- Service d’Hématologie Biologique, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, Paris, France
| |
Collapse
|
54
|
Allan JN, Shanafelt T, Wiestner A, Moreno C, O’Brien SM, Li J, Krigsfeld G, Dean JP, Ahn IE. Long-term efficacy of first-line ibrutinib treatment for chronic lymphocytic leukaemia in patients with TP53 aberrations: a pooled analysis from four clinical trials. Br J Haematol 2022; 196:947-953. [PMID: 34865212 PMCID: PMC9299890 DOI: 10.1111/bjh.17984] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
TP53 aberrations [del(17p) or TP53 mutation] predict poor survival with chemoimmunotherapy in patients with chronic lymphocytic leukaemia (CLL). We evaluated long-term efficacy and safety of first-line ibrutinib-based therapy in patients with CLL bearing TP53 aberrations in a pooled analysis across four studies: PCYC-1122e, RESONATE-2 (PCYC-1115/16), iLLUMINATE (PCYC-1130) and ECOG-ACRIN E1912. The pooled analysis included 89 patients with TP53 aberrations receiving first-line treatment with single-agent ibrutinib (n = 45) or ibrutinib in combination with an anti-CD20 antibody (n = 44). All 89 patients had del(17p) (53% of 89 patients) and/or TP53 mutation (91% of 58 patients with TP53 sequencing results available). With a median follow-up of 49·8 months (range, 0·1-95·9), median progression-free survival was not reached. Progression-free survival rate and overall survival rate estimates at four years were 79% and 88%, respectively. Overall response rate was 93%, including complete response in 39% of patients. No new safety signals were identified in this analysis. Forty-six percent of patients remained on ibrutinib treatment at last follow-up. With median follow-up of four years (up to eight years), results from this large, pooled, multi-study data set suggest promising long-term outcomes of first-line ibrutinib-based therapy in patients with TP53 aberrations. Registered at ClinicalTrials.gov (NCT01500733, NCT01722487, NCT02264574 and NCT02048813).
Collapse
Affiliation(s)
| | | | | | - Carol Moreno
- Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaSpain
| | - Susan M. O’Brien
- Chao Family Comprehensive Cancer CenterUniversity of California IrvineIrvineCAUSA
| | - Jianling Li
- Pharmacyclics LLC, an AbbVie CompanySunnyvaleCAUSA
| | | | | | - Inhye E. Ahn
- National Heart, Lung, and Blood InstituteBethesdaMDUSA
| |
Collapse
|
55
|
Yavorkovsky LL. Atypical "accelerated" chronic lymphocytic leukemia with abnormal lymphocyte chromatin clumping, bone involvement, and exceptional response to Imbruvica. Cancer Rep (Hoboken) 2022; 5:e1601. [PMID: 35075812 PMCID: PMC9458487 DOI: 10.1002/cnr2.1601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The "accelerated" chronic lymphocytic leukemia (aCLL) is a relatively rare form of CLL progression. The expanded proliferation centers in aCLL have been associated with adverse prognostic features and propensity to more aggressive behavior with shorter survival. CASE An atypical case of aCLL with distinct features is described. A 66-year-old female presented with a marrow replacing process associated with multiple osseous metastases and trivial lymphadenopathy. Bone biopsy revealed an unspecified low-grade B cell lymphoproliferative disorder that demonstrated a suboptimal response to standard chemotherapy. Subsequent lymph node biopsy demonstrated findings consisted with aCLL. The distinguishing features of the case were, in addition to bone involvement, the lagging peripheral lymphocytosis and a striking pattern of the chromatin clumping with a prominent "shattered" appearance reminiscent of Pelger-Huet-like dysplastic anomaly. A targeted next-generation sequencing (NGS) assay detected pathogenic mutations in TP53 and SF3B1. In contrast to chemotherapy, the case demonstrated an excellent response to imbruvica. CONCLUSION The noted peculiarities could potentially distinguish this case as a novel, rare variant of aCLL.
Collapse
Affiliation(s)
- Leonid L Yavorkovsky
- Oncology Division, Kaiser Permanente San Jose Medical Center, San Jose, California, USA
| |
Collapse
|
56
|
Tausch E, Malcikova J, Riches JC, Edelmann J. Editorial: Biology and treatment of high-risk CLL. Front Oncol 2022; 12:1109950. [PMID: 36891501 PMCID: PMC9987034 DOI: 10.3389/fonc.2022.1109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 02/22/2023] Open
Affiliation(s)
- Eugen Tausch
- Division of Chronic Lymphocytic Leukemia (CLL), Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Jitka Malcikova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Masaryk University, Brno, Czechia
| | - John C Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Department of Haemato-Oncology, Barts Health NHS Trust, St. Bartholomew's Hospital, London, United Kingdom
| | | |
Collapse
|
57
|
Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma. Leukemia 2022; 36:781-789. [PMID: 34675373 PMCID: PMC8885412 DOI: 10.1038/s41375-021-01444-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols.
Collapse
|
58
|
Lévy V, Delmer A, Cymbalista F. Frontline treatment in CLL: the case for time-limited treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:59-67. [PMID: 34889444 PMCID: PMC8791103 DOI: 10.1182/hematology.2021000233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last decade, the advent of Bruton tyrosine kinase inhibitors (BTKi) has profoundly modified the therapeutic strategy in chronic lymphocytic leukemia (CLL), introducing the concept of treatment until progression. Initially, the bcl-2 inhibitor venetoclax (VEN) was used as a single agent and then was rapidly combined in VEN-based regimens associated with either anti-CD20 or with BTKi. These regimens yielded a high rate of complete remission, leading to their use as a fixed duration treatment. The decision between continuous treatment with BTKi and VEN-based combinations relies mostly on comorbidities, comedications, and patient/physician preferences. Notably, with BTKi, cardiovascular comorbidities, hypertension, and potential pharmacological interactions should be carefully evaluated. On the other hand, the risk of tumor lysis syndrome with VEN should be monitored at treatment initiation. TP53 alteration and IGHV mutational status should also be assessed, as they remain important for therapeutic decisions. Fit patients with a TP53 wild type and IGHV-mutated CLL may still benefit from fludarabine-cyclophosphamide-rituximab chemoimmunotherapy (CIT), as it may result in a very long remission duration. VEN-based treatments are well tolerated, and no additional toxicity has been observed when combined with anti-CD20 or BTKi. The 1-year fixed-duration association of VEN plus obinutuzumab was evaluated in frontline for older adult patients. Nonetheless, considering the favorable outcome, an extension of indication for fit younger patients is expected. The association of VEN and BTKi is promising, even if the follow-up is still short. It is currently being tested against CIT, BTKi continuous treatment, and VEN plus anti-CD20.
Collapse
Affiliation(s)
- Vincent Lévy
- Département de Recherche Clinique, Hôpital Avicenne AP-HP, Université Sorbonne Paris Nord, Bobigny, France, and INSERM CRESS-UMR 1153, Hôpital Saint Louis, Paris, France
| | - Alain Delmer
- Hematology Department, Reims University Hospital and Reims Champagne Ardenne University, Reims, France
| | - Florence Cymbalista
- Hematology Biology, Hôpital Avicenne, AP-HP, Université Sorbonne Paris Nord, Bobigny, France, and INSERM UMR 978, Bobigny, France
| |
Collapse
|
59
|
The more complex, the worse outcome in CLL. Blood 2021; 138:2305-2307. [PMID: 34882215 DOI: 10.1182/blood.2021013285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
|
60
|
Mansouri L, Thorvaldsdottir B, Laidou S, Stamatopoulos K, Rosenquist R. Precision diagnostics in lymphomas - Recent developments and future directions. Semin Cancer Biol 2021; 84:170-183. [PMID: 34699973 DOI: 10.1016/j.semcancer.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
61
|
Immunomolecular evaluation of dihydroartemisinin effects on apoptosis in chronic lymphocytic leukemia cell lines. Leuk Res 2021; 110:106702. [PMID: 34571432 DOI: 10.1016/j.leukres.2021.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has recently shown to induce apoptosis in many types of cancer cells. In this study, we aimed to determine the effects of DHA on apoptosis in human chronic lymphocytic leukemia (CLL) cell lines. METHODS The cells were treated separately and combined by DHA and Fludurabine (FLU) during 24, 48 and 72 hours. The cell viabilities determined by XTT method. Following separate and combined treatment of IC50 concentrations of DHA and FLU to the cells during 24 hours, the cells were analyzed by flow cytometry to determine the effects on apopotis staining with AnnexinV FITC and PI. mRNA and protein expression levels of TCTP, Mcl-1, Bcl-2, Bax and Caspase-3 were analyzed to find out the molecular mechanisms of apoptosis by using quantitative real-time PCR and flow cytometric methods. RESULTS Treatment with DHA alone or in combination with FLU induced apoptosis in a dose dependent manner in CLL cells. DHA alone was more effective than FLU alone or combined treatment with DHA and FLU. Our results suggest that Bcl-2 protein family member Bax was active in the apoptotic response of CLL cells after DHA treatment. Moreover, the apoptotic response induced by DHA was independent from the p53 mutation status of the CLL cells. CONCLUSION DHA might be a potential anti-cancer therapeutic for CLL.
Collapse
|
62
|
Jajosky AN, Havens NP, Sadri N, Oduro KA, Moore EM, Beck RC, Meyerson HJ. Clinical Utility of Targeted Next-Generation Sequencing in the Evaluation of Low-Grade Lymphoproliferative Disorders. Am J Clin Pathol 2021; 156:433-444. [PMID: 33712839 DOI: 10.1093/ajcp/aqaa255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES We investigated the usefulness of a custom-designed 31-gene next-generation sequencing (NGS) panel implemented on a routine basis for the evaluation of low-grade lymphoproliferative disorders (LPDs). METHODS In total, 147 blood, bone marrow, and tissue specimens were sequenced, including 81% B-cell, 15% T-cell, and 3% natural killer (NK)-cell neoplasms. RESULTS Of the cases, 92 (63%) of 147 displayed at least one pathogenic variant while 41 (28%) of 147 had two or more. Low mutation rates were noted in monoclonal B-cell lymphocytoses and samples with small T- and NK-cell clones of uncertain significance. Pathogenic molecular variants were described in specific disorders and classified according to their diagnostic, prognostic, and potential therapeutic value. Diagnostically, in addition to confirming the diagnosis of 15 of 15 lymphoplasmacytic lymphomas, 10 of 12 T large granular lymphocytic leukemias, and 2 of 2 hairy cell leukemias (HCLs), the panel helped resolve the diagnosis of 10 (62.5%) of 16 challenging cases lacking a specified diagnosis based on standard morphology, phenotype, and genetic analysis. CONCLUSIONS Overall, implementation of this targeted lymphoid NGS panel as part of regular hematopathology practice was found to be a beneficial adjunct in the evaluation of low-grade LPDs.
Collapse
Affiliation(s)
- Audrey N Jajosky
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nathaniel P Havens
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Navid Sadri
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kwadwo A Oduro
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erika M Moore
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rose C Beck
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Howard J Meyerson
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
63
|
Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HAR, Lütge A, Hüllein J, Wagner L, Giacopelli B, Nadeu F, Delgado J, Campo E, Mangolini M, Ringshausen I, Böttcher M, Mougiakakos D, Jacobs A, Bodenmiller B, Dietrich S, Oakes CC, Zenz T, Huber W. Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. NATURE CANCER 2021; 2:853-864. [PMID: 34423310 PMCID: PMC7611543 DOI: 10.1038/s43018-021-00216-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
Abstract
Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.
Collapse
Affiliation(s)
- Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Ester Cannizzaro
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Sebastian Scheinost
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Peter-Martin Bruch
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Holly AR Giles
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Almut Lütge
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jennifer Hüllein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Lena Wagner
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Jacobs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Sascha Dietrich
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
- Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
64
|
Lopez-Santillan M, Lopez-Lopez E, Alvarez-Gonzalez P, Martinez G, Arzuaga-Mendez J, Ruiz-Diaz I, Guerra-Merino I, Gutierrez-Camino A, Martin-Guerrero I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit Rev Oncol Hematol 2021; 165:103430. [PMID: 34339834 DOI: 10.1016/j.critrevonc.2021.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/05/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), is a highly heterogeneous and aggressive disease. Regardless of this heterogeneity, all patients receive the same first-line therapy, which fails in 30-40 % of patients, who are either refractory or relapse after remission. With the aim of stratifying patients to improve treatment outcome, different clinical and genetic biomarkers have been studied. The present systematic review aimed to identify somatic mutations that could serve as prognosis biomarkers or as therapeutic target mutations in DLBCL. Regarding their role as prognostic markers, mutations in CD58 and TP53 seem the most promising predictors of poor outcome although the combination of different alterations and other prognostic factors could be a more powerful strategy. On the other hand, different approaches regarding targeted therapy have been proposed. Therefore, mutational analysis could help guide treatment choice in DLBCL yet further studies and clinical trials are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Medical Oncology Service, Basurto University Hospital, Avenida De Montevideo, 18, 48013, Bilbao, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain
| | - Paula Alvarez-Gonzalez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Garazi Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Hematologic Neoplasm Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, Barakaldo, Spain
| | - Irune Ruiz-Diaz
- Pathology Department, Donostia University Hospital, Paseo Doctor Begiristain, 109, 20014, San Sebastián, Spain
| | - Isabel Guerra-Merino
- Pathology Department, Araba University Hospital, Calle Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Division of Hematology-Oncology, CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Canada
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain.
| |
Collapse
|
65
|
Bomben R, Rossi FM, Vit F, Bittolo T, D'Agaro T, Zucchetto A, Tissino E, Pozzo F, Vendramini E, Degan M, Zaina E, Cattarossi I, Varaschin P, Nanni P, Berton M, Braida A, Polesel J, Cohen JA, Santinelli E, Biagi A, Gentile M, Morabito F, Fronza G, Pozzato G, D'Arena G, Olivieri J, Bulian P, Pepper C, Hockaday A, Schuh A, Hillmen P, Rossi D, Chiarenza A, Zaja F, Di Raimondo F, Del Poeta G, Gattei V. TP53 Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. Clin Cancer Res 2021; 27:5566-5575. [PMID: 34285062 DOI: 10.1158/1078-0432.ccr-21-0701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic lymphocytic leukemia (CLL), TP53 mutations are associated with reduced survival and resistance to standard chemoimmunotherapy (CIT). Nevertheless, the clinical impact of subclonal TP53 mutations below 10% to 15% variant allele frequency (VAF) remains unclear. EXPERIMENTAL DESIGN Using a training/validation approach, we retrospectively analyzed the clinical and biological features of TP53 mutations above (high-VAF) or below (low-VAF) the previously reported 10.0% VAF threshold, as determined by deep next-generation sequencing. Clinical impact of low-VAF TP53 mutations was also confirmed in a cohort (n = 251) of CLL treated with fludarabine-cyclophosphamide-rituximab (FCR) or FCR-like regimens from two UK trials. RESULTS In the training cohort, 97 of 684 patients bore 152 TP53 mutations, while in the validation cohort, 71 of 536 patients had 109 TP53 mutations. In both cohorts, patients with the TP53 mutation experienced significantly shorter overall survival (OS) than TP53 wild-type patients, regardless of the TP53 mutation VAF. By combining TP53 mutation and 17p13.1 deletion (del17p) data in the total cohort (n = 1,220), 113 cases were TP53 mutated only (73/113 with low-VAF mutations), 55 del17p/TP53 mutated (3/55 with low-VAF mutations), 20 del17p only, and 1,032 (84.6%) TP53 wild-type. A model including low-VAF cases outperformed the canonical model, which considered only high-VAF cases (c-indices 0.643 vs. 0.603, P < 0.0001), and improved the prognostic risk stratification of CLL International Prognostic Index. Clinical results were confirmed in CIT-treated cases (n = 552) from the retrospective cohort, and the UK trials cohort. CONCLUSIONS TP53 mutations affected OS regardless of VAF. This finding can be used to update the definition of TP53 mutated CLL for clinical purposes.
Collapse
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy.
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Tiziana D'Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Massimo Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Eva Zaina
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Ilaria Cattarossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Paola Varaschin
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Paola Nanni
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Michele Berton
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Alessandra Braida
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Jared A Cohen
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | | | - Annalisa Biagi
- Division of Haematology, University of Tor Vergata, Rome, Italy
| | | | - Fortunato Morabito
- Biothecnology Research Unit, AO of Cosenza, Cosenza, Italy
- Haematology and Bone Marrow Transplant Unit, Haemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Giovanni D'Arena
- Haematology Unit, Presidio Ospedaliero S. Luca, ASL Salerno, Italy
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Chris Pepper
- University of Sussex, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Anna Hockaday
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, United Kingdom
| | - Davide Rossi
- Haematology, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | | | | | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy.
| |
Collapse
|
66
|
Alrawashdh N, Sweasy J, Erstad B, McBride A, Persky DO, Abraham I. Survival trends in chronic lymphocytic leukemia across treatment eras: US SEER database analysis (1985-2017). Ann Hematol 2021; 100:2501-2512. [PMID: 34279676 DOI: 10.1007/s00277-021-04600-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/04/2021] [Indexed: 11/27/2022]
Abstract
In this population-based study, we used the SEER database (1985-2015) to examine survival outcomes in chronic lymphocytic leukemia (CLL) patients followed up to the era of advanced treatments including targeted therapies. Data were extracted for patients 15 years or older with a primary diagnosis of CLL. A period analysis was performed to estimate 5- and 10-year relative survival rates for patients diagnosed during different calendar periods from 1985 to 2015. A mixture cure model was used to examine long-term survivors' proportions among patients diagnosed in 1985-2015 and for two cohorts diagnosed in 2000-2003, followed up to 2012 and 2004-2007, and followed up to 2015. Cox proportional hazard modeling was used for the two cohorts to estimate hazard ratios (HRs) of death adjusted for gender and age. The 5-year and 10-year age-adjusted relative survival rate ranged between 73.7 and 89.4% and from 51.6% to "not reached," respectively, for calendar periods of 1985-1989 to 2010-2014. The long-term survivor proportions varied by age and gender from 0 to 59%. The HRs (95%CI) for the 2004-2007 cohort in comparison to the 2000-2003 cohort were 0.58 (0.43-0.78), 0.58 (0.48-0.70), 0.57 (0.49-0.0.67), 0.68 (0.54-0.85), and 0.83 (0.68-1.02) for the age categories of 45-54, 55-64, 65-74, 75-84, and ≥ 85 years, respectively. Overall, relative survival improved significantly for CLL patients diagnosed between 1985 and 2015. These improvements were markedly better following the introduction of targeted therapies.
Collapse
Affiliation(s)
- Neda Alrawashdh
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85721, USA.,Department of Clinical Translational Sciences, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Joann Sweasy
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Brian Erstad
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Ali McBride
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Daniel O Persky
- University of Arizona Cancer Center, Tucson, AZ, USA.,Banner University Medical Center, Tucson, AZ, USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85721, USA. .,Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
67
|
Smolej L, Vodárek P, Écsiová D, Šimkovič M. Chemoimmunotherapy in the First-Line Treatment of Chronic Lymphocytic Leukaemia: Dead Yet, or Alive and Kicking? Cancers (Basel) 2021; 13:3134. [PMID: 34201565 PMCID: PMC8267736 DOI: 10.3390/cancers13133134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022] Open
Abstract
The paradigm of first-line treatment of chronic lymphocytic leukaemia (CLL) is currently undergoing a radical change. On the basis of several randomised phase III trials showing prolongation of progression-free survival, chemoimmunotherapy is being replaced by treatment based on novel, orally available targeted inhibitors such as Bruton tyrosine kinase inhibitors ibrutinib and acalabrutinib or bcl-2 inhibitor venetoclax. However, the use of these agents may be associated with other disadvantages. First, with the exception of one trial in younger/fit patients, no studies have so far demonstrated benefit regarding the ultimate endpoint of overall survival. Second, oral inhibitors are extremely expensive and thus currently unavailable due to the absence of reimbursement in some countries. Third, treatment with ibrutinib and acalabrutinib necessitates long-term administration until progression; this may be associated with accumulation of late side effects, problems with patient compliance, and selection of resistant clones. Therefore, the identification of a subset of patients who could benefit from chemoimmunotherapy would be ideal. Current data suggest that patients with the mutated variable region of the immunoglobulin heavy chain (IGHV) achieve fairly durable remissions, especially when treated with fludarabine, cyclophosphamide, and rituximab (FCR) regimen. This review discusses current options for treatment-naïve patients with CLL.
Collapse
Affiliation(s)
- Lukáš Smolej
- 4th Department of Internal Medicine–Hematology, Faculty of Medicine, University Hospital, Charles University, 50005 Hradec Králové, Czech Republic; (P.V.); (D.É.); (M.Š.)
| | | | | | | |
Collapse
|
68
|
Bomben R, Zucchetto A, Gentile M, Gattei V. TP53 Disruption in Chronic Lymphocytic Leukemia Under Ibrutinib: More is Worse? Clin Cancer Res 2021; 27:4462-4464. [PMID: 34127506 DOI: 10.1158/1078-0432.ccr-21-1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Patients with chronic lymphocytic leukemia carrying a single TP53 hit (chromosome 17p deletion or single TP53 mutation) demonstrate excellent progression-free survival and overall survival on ibrutinib compared with cases harboring multiple TP53 hits. Testing TP53 deletion/mutation combining FISH and deep next-generation sequencing should be performed for a correct patient evaluation.See related article by Brieghel et al., p. 4531.
Collapse
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Pordenone, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Pordenone, Italy
| | | | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Pordenone, Italy.
| |
Collapse
|
69
|
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by extreme genomic heterogeneity. Numerous recurrent genetic abnormalities are associated with dismal clinical outcome in patients treated with chemo(immuno)therapy, with aberrations of the TP53 gene being the main genomic abnormalities that dictate treatment choice. In the era of novel agents the predictive significance of the genomic aberrations is highly challenged as the results of the clinical trials performed thus far question the previously established unfavorable impact of genomic aberrations, even that of the TP53 gene. The prognostic and predictive value of the most common genomic abnormalities is discussed in the present review.
Collapse
|
70
|
Wurzer H, Filali L, Hoffmann C, Krecke M, Biolato AM, Mastio J, De Wilde S, François JH, Largeot A, Berchem G, Paggetti J, Moussay E, Thomas C. Intrinsic Resistance of Chronic Lymphocytic Leukemia Cells to NK Cell-Mediated Lysis Can Be Overcome In Vitro by Pharmacological Inhibition of Cdc42-Induced Actin Cytoskeleton Remodeling. Front Immunol 2021; 12:619069. [PMID: 34108958 PMCID: PMC8181408 DOI: 10.3389/fimmu.2021.619069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are innate effector lymphocytes with strong antitumor effects against hematologic malignancies such as chronic lymphocytic leukemia (CLL). However, NK cells fail to control CLL progression on the long term. For effective lysis of their targets, NK cells use a specific cell-cell interface, known as the immunological synapse (IS), whose assembly and effector function critically rely on dynamic cytoskeletal changes in NK cells. Here we explored the role of CLL cell actin cytoskeleton during NK cell attack. We found that CLL cells can undergo fast actin cytoskeleton remodeling which is characterized by a NK cell contact-induced accumulation of actin filaments at the IS. Such polarization of the actin cytoskeleton was strongly associated with resistance against NK cell-mediated cytotoxicity and reduced amounts of the cell-death inducing molecule granzyme B in target CLL cells. Selective pharmacological targeting of the key actin regulator Cdc42 abrogated the capacity of CLL cells to reorganize their actin cytoskeleton during NK cell attack, increased levels of transferred granzyme B and restored CLL cell susceptibility to NK cell cytotoxicity. This resistance mechanism was confirmed in primary CLL cells from patients. In addition, pharmacological inhibition of actin dynamics in combination with blocking antibodies increased conjugation frequency and improved CLL cell elimination by NK cells. Together our results highlight the critical role of CLL cell actin cytoskeleton in driving resistance against NK cell cytotoxicity and provide new potential therapeutic point of intervention to target CLL immune escape.
Collapse
Affiliation(s)
- Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Mastio
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Sigrid De Wilde
- Department of Hemato-Oncology, Central Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Jean Hugues François
- Laboratory of Hematology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Guy Berchem
- Department of Hemato-Oncology, Central Hospitalier du Luxembourg, Luxembourg City, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
71
|
Brieghel C, Aarup K, Torp MH, Andersen MA, Yde CW, Tian X, Wiestner A, Ahn IE, Niemann CU. Clinical Outcomes in Patients with Multi-Hit TP53 Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4531-4538. [PMID: 33963002 DOI: 10.1158/1078-0432.ccr-20-4890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE TP53 aberration (TP53 mutation and/or 17p deletion) is the most important predictive marker in chronic lymphocytic leukemia (CLL). Although each TP53 aberration is considered an equal prognosticator, the prognostic value of carrying isolated (single-hit) or multiple (multi-hit) TP53 aberrations remains unclear, particularly in the context of targeted agents. PATIENTS AND METHODS We performed deep sequencing of TP53 using baseline samples collected from 51 TP53 aberrant patients treated with ibrutinib in a phase II study (NCT01500733). RESULTS We identified TP53 mutations in 43 patients (84%) and del(17p) in 47 (92%); 9 and 42 patients carried single-hit and multi-hit TP53, respectively. The multi-hit TP53 subgroup was enriched with younger patients who had prior treatments and unmutated immunoglobulin heavy-chain variable region gene status. We observed significantly shorter overall survival, progression-free survival (PFS), and time-to-progression (TTP) in patients with multi-hit TP53 compared with those with single-hit TP53. Clinical outcomes were similar in patient subgroups stratified by 2 or >2 TP53 aberrations. In multivariable analyses, multi-hit TP53 CLL was independently associated with inferior PFS and TTP. In sensitivity analyses, excluding mutations below 1% VAF demonstrated similar outcome. Results were validated in an independent population-based cohort of 112 patients with CLL treated with ibrutinib. CONCLUSIONS In this study, single-hit TP53 defines a distinct subgroup of patients with an excellent long-term response to single-agent ibrutinib, whereas multi-hit TP53 is independently associated with shorter PFS. These results warrant further investigations on prognostication and management of multi-hit TP53 CLL.See related commentary by Bomben et al., p. 4462.
Collapse
Affiliation(s)
- Christian Brieghel
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kathrine Aarup
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mathias H Torp
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael A Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina W Yde
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
72
|
James E, Trautman H, Thompson S, Ribalov R, Choudhry A. Budgetary Impact of Bendamustine Ready-to-Dilute Products in Chronic Lymphocytic Leukemia and Non-Hodgkin Lymphoma to a United States Infusion Facility. CLINICOECONOMICS AND OUTCOMES RESEARCH 2021; 13:201-211. [PMID: 33790596 PMCID: PMC7997603 DOI: 10.2147/ceor.s297284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Background Bendamustine hydrochloride (BND HCl) is indicated for first-line treatment of chronic lymphocytic leukemia (CLL) and rituximab-refractory indolent non-Hodgkin lymphoma (iNHL). There are two ready-to-dilute (RTD) formulations of BND HCl on the US market: a large-volume, long-duration infusion (BND-L) and a small-volume, short-duration infusion (BND-S). It is estimated that the shorter duration infusion could result in cost savings to infusion facilities. Objective Estimate the one-year budget impact between BND-S and BND-L for use in the treatment of CLL and iNHL when all current BND-L utilization is replaced with BND-S, from the US infusion facility perspective. Methods An illustrative budget impact model estimated the change in costs associated with a projected increase from 50% to 100% market share for BND-S. The model included CLL and iNHL patient populations. Budgetary costs reflected facility expenditures on drug acquisition and administration based on recommended dosing for BND-S and BND-L. The base-case model assumptions and inputs were derived from scientific literature and publicly available resources. The total budget impact was calculated annually, along with the differences in per patient cost; one-way sensitivity analyses were conducted. Results Per-patient savings with BND-S use after the utilization shift were estimated at $2812.24 for CLL and $4769.01 for iNHL. Across both indications, the total annual incremental savings after the utilization shift were estimated at $452,209 for 250 CLL and iNHL patients in a 10,000-patient infusion facility, resulting in cost savings of $150.74 per BND HCI patient per month and $1808.84 per BND HCI patient per year. The model was sensitive to changes in proportion of patients receiving BND HCI infusions for CLL and iNHL, patient body surface area, and BND-S wholesale acquisition cost. Conclusion This analysis estimated over $450,000 in annual savings for a 10,000-patient chemotherapy infusion facility following a utilization shift from 50% use of each RTD product to 100% use of BND-S in CLL and iNHL patients, driven by lower acquisition costs for BND-S and lower administration labor costs associated with rapid infusion.
Collapse
Affiliation(s)
| | | | - Stephen Thompson
- Global Health Economics and Outcomes Research, Teva Branded Pharmaceutical Products R&D, Inc, Parsippany, NJ, USA
| | - Rinat Ribalov
- Global Health Economics and Outcomes Research, Teva Pharmaceutical Industries Ltd, Petah Tikva, Israel
| | - Azhar Choudhry
- Medical Affairs, Teva Branded Pharmaceutical Products R&D, Inc, Parsippany, NJ, USA
| |
Collapse
|
73
|
Stilgenbauer S, Bosch F, Ilhan O, Kisro J, Mahé B, Mikuskova E, Osmanov D, Reda G, Robinson S, Tausch E, Turgut M, Wójtowicz M, Böttcher S, Perretti T, Trask P, Van Hoef M, Leblond V, Foà R. Safety and efficacy of obinutuzumab alone or with chemotherapy in previously untreated or relapsed/refractory chronic lymphocytic leukaemia patients: Final analysis of the Phase IIIb GREEN study. Br J Haematol 2021; 193:325-338. [PMID: 33605445 DOI: 10.1111/bjh.17326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
The manageable toxicity profile of obinutuzumab (GA101; G) alone or with chemotherapy in first-line (1L; fit and non-fit) and relapsed/refractory (R/R) patients with chronic lymphocytic leukaemia (CLL) was established in the primary analysis of the Phase IIIb GREEN trial (Clinicaltrials.gov: NCT01905943). The final analysis (cut-off, 31 January 2019) is reported here. Patients received G (1000 mg) alone (G-mono; fit and non-fit patients) or with chemotherapy [fludarabine and cyclophosphamide (FC; fit patients); chlorambucil (non-fit patients); bendamustine (any patient)]. Study endpoints were safety (primary) and efficacy (secondary). Subgroup analyses were performed on prognostic biomarkers in 1L CLL. Overall, 630 patients received 1L and 341 received R/R CLL treatment. At the final analysis, no new safety signals were observed [Grade ≥ 3 adverse events (AEs): 1L 82·7%, R/R 84·5%; serious AEs: 1L 58·1%, R/R 62·5%]. Neutropenia (1L 50·5%, R/R 53·4%) and thrombocytopenia (1L 14·6%, R/R 19·1%) were the most common Grade 3-5 AEs. G-mono-, G-bendamustine and G-FC-treated patients with unmutated immunoglobulin heavy chain trended towards shorter progression-free survival. Achievement of minimal residual disease negativity was greatest in 1L patients treated with G-FC. In this final analysis of the GREEN trial, the safety profile of G was consistent with current risk management strategies. Biomarker analyses supported efficacy in the specific subgroups.
Collapse
Affiliation(s)
- Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm and Innere Medizin I, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Francesc Bosch
- Department of Hematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Osman Ilhan
- Internal Medical Sciences Departments, Ankara University School of Medicine, Ankara, Turkey
| | - Jens Kisro
- Onkologische Schwerpunktpraxis Lübeck, Lübeck, Germany
| | - Béatrice Mahé
- Clinical Hematology, CHU Nantes Hôtel-Dieu, Nantes, France
| | - Eva Mikuskova
- Department of Hemato-oncology II, National Cancer Institute, Bratislava, Slovakia Blokhin
| | - Dzhelil Osmanov
- Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Gianluigi Reda
- UOC Ematologia - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Sue Robinson
- QEII Health Sciences Centre, Halifax, NS, Canada
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Mehmet Turgut
- Department of Internal Medical Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Marcin Wójtowicz
- Clinical Department of Hematology, Hematological Oncology and Internal Diseases, Szpital Wojewodski, Opole, Poland
| | - Sebastian Böttcher
- Department III of Internal Medicine, Rostock University Medical Center, Rostock (current affiliation) and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Perretti
- PDB Biostatistics -Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Peter Trask
- Patient Centered Outcomes Research, Genentech Inc, South San Francisco, CA, USA
| | - Marlies Van Hoef
- Global Product Development - Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Véronique Leblond
- Clinical Hematology, Sorbonne Université, AP-HP Hôpital Pitié Salpêtrière, Paris, France
| | - Robin Foà
- Division of Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
74
|
Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells Int 2021; 2021:6633386. [PMID: 33679988 PMCID: PMC7906808 DOI: 10.1155/2021/6633386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hematologic cancer encompasses the heterogeneous group of neoplasms that affect different stages of blood cell linages. Despite the significant improvements made in the new modalities of anticancer therapy, many forms of blood cancer remain untreatable, putting the afflicted patients at high risk of death. Therefore, there has been an urgent need for novel therapy to improve the clinical outcomes of patients with blood cancer. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been reported to possess an anticancer activity. This review discusses (i) the therapeutic potential of MSC-EVs against blood cancer, (ii) the possibility of using EVs from sources other than MSCs as a mean for blood cancer vaccination and drug delivery, and (iii) areas to be optimized for MSC-EV-based clinical application on blood malignancies.
Collapse
|
75
|
Stefaniuk P, Onyszczuk J, Szymczyk A, Podhorecka M. Therapeutic Options for Patients with TP53 Deficient Chronic Lymphocytic Leukemia: Narrative Review. Cancer Manag Res 2021; 13:1459-1476. [PMID: 33603488 PMCID: PMC7886107 DOI: 10.2147/cmar.s283903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), which is the most common type of leukemia in western countries in adults, is characterized by heterogeneity in clinical course, prognosis and response to the treatment. Although, in recent years a number of factors with probable prognostic value in CLL have been identified (eg NOTCH1, SF3B1 and BIRC-3 mutations, or evaluation of microRNA expression), TP53 aberrations are still the most important single factors of poor prognosis. It was found that approximately 30% of all TP53 defects are mutations lacking 17p13 deletion, whereas sole 17p13 deletion with the absence of TP53 mutation consists of 10% of all TP53 defects. The detection of del(17)(p13) and/or TP53 mutation is not a criterion itself for starting antileukemic therapy, but it is associated with an aggressive course of the disease and poor response to the standard chemoimmunotherapy. Treatment of patients with CLL harbouring TP53-deficiency requires drugs that promote cell death independently of TP53. Novel and smarter therapies revolutionize the treatment of del(17p) and/or aberrant TP53 CLL, but development of alternative therapeutic approaches still remains an issue of critical importance.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Julia Onyszczuk
- Students Scientific Association, Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
76
|
Quijada‐Álamo M, Pérez‐Carretero C, Hernández‐Sánchez M, Rodríguez‐Vicente A, Herrero A, Hernández‐Sánchez J, Martín‐Izquierdo M, Santos‐Mínguez S, del Rey M, González T, Rubio‐Martínez A, García de Coca A, Dávila‐Valls J, Hernández‐Rivas J, Parker H, Strefford JC, Benito R, Ordóñez J, Hernández‐Rivas J. Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia. Clin Transl Med 2021; 11:e304. [PMID: 33634999 PMCID: PMC7862176 DOI: 10.1002/ctm2.304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several genetic alterations have been identified as driver events in chronic lymphocytic leukemia (CLL) pathogenesis and oncogenic evolution. Concurrent driver alterations usually coexist within the same tumoral clone, but how the cooperation of multiple genomic abnormalities contributes to disease progression remains poorly understood. Specifically, the biological and clinical consequences of concurrent high-risk alterations such as del(11q)/ATM-mutations and del(17p)/TP53-mutations have not been established. METHODS We integrated next-generation sequencing (NGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 techniques to characterize the in vitro and in vivo effects of concurrent monoallelic or biallelic ATM and/or TP53 alterations in CLL prognosis, clonal evolution, and therapy response. RESULTS Targeted sequencing analysis of the co-occurrence of high-risk alterations in 271 CLLs revealed that biallelic inactivation of both ATM and TP53 was mutually exclusive, whereas monoallelic del(11q) and TP53 alterations significantly co-occurred in a subset of CLL patients with a highly adverse clinical outcome. We determined the biological effects of combined del(11q), ATM and/or TP53 mutations in CRISPR/Cas9-edited CLL cell lines. Our results showed that the combination of monoallelic del(11q) and TP53 mutations in CLL cells led to a clonal advantage in vitro and in in vivo clonal competition experiments, whereas CLL cells harboring biallelic ATM and TP53 loss failed to compete in in vivo xenotransplants. Furthermore, we demonstrated that CLL cell lines harboring del(11q) and TP53 mutations show only partial responses to B cell receptor signaling inhibitors, but may potentially benefit from ATR inhibition. CONCLUSIONS Our work highlights that combined monoallelic del(11q) and TP53 alterations coordinately contribute to clonal advantage and shorter overall survival in CLL.
Collapse
Affiliation(s)
- Miguel Quijada‐Álamo
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Claudia Pérez‐Carretero
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - María Hernández‐Sánchez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Ana‐Eugenia Rodríguez‐Vicente
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Ana‐Belén Herrero
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Jesús‐María Hernández‐Sánchez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Marta Martín‐Izquierdo
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Sandra Santos‐Mínguez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Mónica del Rey
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Teresa González
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | | | | | | | | | - Helen Parker
- School of Cancer SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUK
| | | | - Rocío Benito
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - José‐Luis Ordóñez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Jesús‐María Hernández‐Rivas
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma (MCL) is a heterogenous disease with a variety of morphologic and genetic features, some of which are associated with high risk disease. Here we critically analyze the current state of the understanding of MCL's biology and its implications in therapy, with a focus on chemotherapy-free and targeted therapy regimens. RECENT FINDINGS Mantle cell lymphoma (MCL) is a rare subtype of non-Hodgkin's lymphoma, defined by a hallmark chromosomal translocation t(11;14) which leads to constitutive expression of cyclin D1. Recent discoveries in the biology of MCL have identified a number of factors, including TP53 mutations and complex karyotype, that lead to unresponsiveness to traditional chemoimmunotherapy and poor outcomes. Bruton tyrosine kinase inhibitors, BH3-mimetics and other novel agents thwart survival of the neoplastic B-cells in a manner independent of high-risk mutations and have shown promising activity in relapsed/refractory MCL. These therapies are being investigated in the frontline setting, while optimal responses to chemotherapy-free regimens, particularly in high-risk disease, might require combination approaches. High-risk MCL does not respond well to chemoimmunotherapy. Targeted agents are highly active in the relapsed refractory setting and show promise in high-risk disease. Novel approaches may soon replace the current standard of care in both relapsed and frontline settings.
Collapse
|
78
|
Nabergoj S, Markovič T, Avsec D, Gobec M, Podgornik H, Jakopin Ž, Mlinarič-Raščan I. EP4 receptor agonist L-902688 augments cytotoxic activities of ibrutinib, idelalisib, and venetoclax against chronic lymphocytic leukemia cells. Biochem Pharmacol 2020; 183:114352. [PMID: 33278351 DOI: 10.1016/j.bcp.2020.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Treatment of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) has significantly improved more recently with the approval of several new agents, including ibrutinib, idelalisib, and venetoclax. Despite the outstanding efficacies observed with these agents, these treatments are sometimes discontinued due to toxicity, unresponsiveness, transformation of the disease and/or resistance. Constitutive NF-κB activation that protects CLL cells from apoptotic stimuli represents one of molecular mechanisms that underlie the emergence of drug resistance. As prostaglandin E (EP)4 receptor agonists have been shown to successfully inhibit the NF-κB pathway in B-cell lymphoma cells, we investigated the potential of the highly specific EP4 receptor agonist L-902688 for the potential treatment of patients with CLL. We show here that low micromolar concentrations of L-902688 can indeed induce selective cytotoxicity towards several B-cell malignancies, including CLL. Moreover, L-902688-mediated activation of the EP4 receptor in patient derived CLL cells resulted in inhibition of the NF-κB pathway, cell proliferation, and induction of apoptosis. Most importantly, we show for the first time that in combination with ibrutinib, idelalisib, or venetoclax, L-902688 induces synergistic cytotoxic activity against patient derived CLL cells. To conclude, the modulation of NF-κB activity by EP4 receptor agonists represents an innovative approach to improve the treatment of patients with CLL. In particular, EP4 receptor agonists appear to represent promising adjuncts to the already existing therapies for patients with CLL due to these promising synergistic activities.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adult
- Antineoplastic Agents/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Apoptosis/physiology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Piperidines/administration & dosage
- Purines/administration & dosage
- Pyrrolidinones/administration & dosage
- Quinazolinones/administration & dosage
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sulfonamides/administration & dosage
- Tetrazoles/administration & dosage
- U937 Cells
Collapse
Affiliation(s)
- Sanja Nabergoj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tijana Markovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Department of Haematology, Ljubljana, Slovenia
| | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
79
|
Noel Z, Hoeller S, Bihl M, Muller L. TP53 and PTEN as driver mutations in Zenker's carcinoma-a clinical presentation. Clin Case Rep 2020; 8:2791-2797. [PMID: 33363824 PMCID: PMC7752333 DOI: 10.1002/ccr3.3169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Zenker carcinoma is still being treated empirically because of the lack of evidence- based guidelines. We report for the first time about the genetic examination of this rare entity. The revealed mutations show genetic similarities with HPV(-)HNSCC which suggests that well-known therapeutic strategies may be applicable for this disease.
Collapse
Affiliation(s)
- Zsanett Noel
- Department of SurgeryUniversity Hospitals BaselBaselSwitzerland
| | - Sylvia Hoeller
- Department of PathologyUniversity Hospitals BaselBaselSwitzerland
| | - Michel Bihl
- Department of PathologyUniversity Hospitals BaselBaselSwitzerland
| | - Laurent Muller
- Department of Otorhinolaryngology and BiomedicineUniversity Hospitals BaselBaselSwitzerland
| |
Collapse
|
80
|
Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen B. Molecular Genetics of Relapsed Diffuse Large B-Cell Lymphoma: Insight into Mechanisms of Therapy Resistance. Cancers (Basel) 2020; 12:E3553. [PMID: 33260693 PMCID: PMC7760867 DOI: 10.3390/cancers12123553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with diffuse large B-cell lymphoma (DLBCL) can be treated successfully with a combination of chemotherapy and the monoclonal anti-CD20 antibody rituximab. Nonetheless, approximately one-third of the patients with DLBCL still experience relapse or refractory (R/R) disease after first-line immunochemotherapy. Whole-exome sequencing on large cohorts of primary DLBCL has revealed the mutational landscape of DLBCL, which has provided a framework to define novel prognostic subtypes in DLBCL. Several studies have investigated the genetic alterations specifically associated with R/R DLBCL, thereby uncovering molecular pathways linked to therapy resistance. Here, we summarize the current state of knowledge regarding the genetic alterations that are enriched in R/R DLBCL, and the corresponding pathways affected by these gene mutations. Furthermore, we elaborate on their potential role in mediating therapy resistance, also in connection with findings in other B-cell malignancies, and discuss alternative treatment options. Hence, this review provides a comprehensive overview on the gene lesions and molecular mechanisms underlying R/R DLBCL, which are considered valuable parameters to guide treatment.
Collapse
Affiliation(s)
- Madeleine R. Berendsen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Pathology-DNA, Rijnstate Hospital, 6815AD Arnhem, The Netherlands
| | - J. Han van Krieken
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
81
|
Wang C, Sun D, Huang X, Wan C, Li Z, Han Y, Qin Q, Fan J, Qiu X, Xie Y, Meyer CA, Brown M, Tang M, Long H, Liu T, Liu XS. Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol 2020; 21:198. [PMID: 32767996 PMCID: PMC7412809 DOI: 10.1186/s13059-020-02116-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
We present Model-based AnalysEs of Transcriptome and RegulOme (MAESTRO), a comprehensive open-source computational workflow ( http://github.com/liulab-dfci/MAESTRO ) for the integrative analyses of single-cell RNA-seq (scRNA-seq) and ATAC-seq (scATAC-seq) data from multiple platforms. MAESTRO provides functions for pre-processing, alignment, quality control, expression and chromatin accessibility quantification, clustering, differential analysis, and annotation. By modeling gene regulatory potential from chromatin accessibilities at the single-cell level, MAESTRO outperforms the existing methods for integrating the cell clusters between scRNA-seq and scATAC-seq. Furthermore, MAESTRO supports automatic cell-type annotation using predefined cell type marker genes and identifies driver regulators from differential scRNA-seq genes and scATAC-seq peaks.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Dongqing Sun
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Xin Huang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Changxin Wan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Ya Han
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Qian Qin
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Jingyu Fan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Clifford A Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
82
|
Morabito F, Gentile M, Monti P, Recchia AG, Menichini P, Skafi M, Atrash M, De Luca G, Bossio S, Al-Janazreh H, Galimberti S, Salah Z, Morabito L, Mujahed A, Hindiyeh M, Dono M, Fais F, Cutrona G, Neri A, Tripepi G, Fronza G, Ferrarini M. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors. Expert Opin Investig Drugs 2020; 29:869-880. [PMID: 32551999 DOI: 10.1080/13543784.2020.1783239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Patients with TP53 dysfunction, assessed by del(17p) or TP53 mutations, respond poorly to chemo-immunotherapy and fare better with the new therapies (BCR and BCL-2 inhibitors); however, it is unclear whether their response is similar to that of patients without anomalies or whether there is currently an adequate determination of TP53 dysfunction. AREA COVERED A literature search was undertaken on clinical trials and real-world experience data on patients with TP53 dysfunction treated with different protocols. Moreover, data on the TP53 biological function and on the tests currently employed for its assessment were reviewed. EXPERT OPINION Although TP53 dysfunction has less negative influence on the new biological therapies, patients with these alterations, particularly those with biallelic inactivation of TP53, have a worst outcome with these therapies than those without alterations. At present, a determination of TP53, particularly with next generation sequencing (NGS) methodologies, may be sufficient for the identifications of the patients unsuitable for chemo-immunotherapy, although integration with del(17p) would be advisable. For the future, more extensive determinations of the TP53 status, including functional assays, may become part of the current armamentarium for a better patient stratification and treatment with newer protocols.
Collapse
Affiliation(s)
- Fortunato Morabito
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel.,Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy
| | - Massimo Gentile
- Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy.,Hematology Unit, Hematology and Oncology Department , Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | | | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Mamdouh Skafi
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Moien Atrash
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Sabrina Bossio
- Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy
| | - Hamdi Al-Janazreh
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | | | - Zaidoun Salah
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School , Jerusalem, Israel
| | - Lucio Morabito
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Alham Mujahed
- Laboratory Department, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Musa Hindiyeh
- Laboratory Department, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino , Genova, Italy.,Department of Experimental Medicine, University of Genoa , Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino , Genova, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan , Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan, Italy
| | | | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa , Genoa, Italy
| |
Collapse
|
83
|
Chauffaille MDLLF, Zalcberg I, Barreto WG, Bendit I. Detection of somatic TP53 mutations and 17p deletions in patients with chronic lymphocytic leukemia: a review of the current methods. Hematol Transfus Cell Ther 2020; 42:261-268. [PMID: 32660851 PMCID: PMC7417461 DOI: 10.1016/j.htct.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic lymphocytic leukemia is the most common hematologic malignancy among adults in Western countries. Several studies show that somatic mutations in the TP53 gene are present in up to 50% of patients with relapsed or refractory chronic lymphocytic leukemia. This study aims to review and compare the methods used to detect somatic TP53 mutations and/or 17p deletions and analyze their importance in the chronic lymphocytic leukemia diagnosis and follow-up. In chronic lymphocytic leukemia patients with refractory or recurrent disease, the probability of clonal expansion of cells with the TP53 mutation and/or 17p deletion is very high. The studies assessed showed several methodologies able to detect these changes. For the 17p deletion, the chromosome G-banding (karyotype) and interphase fluorescence in situ hybridization are the most sensitive. For somatic mutations involving the TP53 gene, moderate or high-coverage read next-generation sequencing and Sanger sequencing are the most recommended ones. The TP53 gene mutations represent a strong adverse prognostic factor for patient survival and treatment resistance in chronic lymphocytic leukemia. Patients carrying low-proportion TP53 mutation (less than 20–25% of all alleles) remain a challenge to these tests. Thus, for any of the methods employed, it is essential that the laboratory conduct its analytical validation, documenting its accuracy, precision and sensitivity/limit of detection.
Collapse
Affiliation(s)
| | - Ilana Zalcberg
- Centro de Transplante de Medula Óssea, Instituto Nacional do Cancer (CEMO-INCA), Rio de Janeiro, RJ, Brazil; GeneOne, DASA, São Paulo, SP, Brazil
| | | | - Israel Bendit
- Laboratório de Biologia do Tumor do Serviço de Hematologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
84
|
Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:149-177. [PMID: 31977296 DOI: 10.1146/annurev-pathmechdis-012419-032810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10-15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; ,
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
85
|
Egan PA, Elder PT, Deighan WI, O'Connor SJM, Alexander HD. Multiple myeloma with central nervous system relapse. Haematologica 2020; 105:1780-1790. [PMID: 32414852 PMCID: PMC7327654 DOI: 10.3324/haematol.2020.248518] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/14/2020] [Indexed: 01/30/2023] Open
Abstract
Central nervous system involvement in multiple myeloma is a rare complication but carries a very poor prognosis. We provide a review of current literature, including presentation, treatment and survival data, and describe our experience in a regional hematologic malignancy diagnosis center where, over a 15-year period, ten cases were identified. Although the median age of onset, frequently between 50-60 years, is comparatively young, those diagnosed usually have a preceding diagnosis of multiple myeloma and often have had several lines of treatment. We discuss putative underlying factors such as prior treatment and associations including possible risk factors and features suggestive of a distinct biology. Central nervous system involvement may be challenging to diagnose in myeloma, displaying heterogeneous symptoms that can be confounded by neurological symptoms caused by the typical features of myeloma or treatment side-effects. We discuss the clinical features, imaging and laboratory methods used in diagnosis, and highlight the importance of considering this rare complication when neurological symptoms occur at presentation or, more commonly, during the disease pathway. In the absence of clinical trial data to inform an evidence-based approach to treatment, we discuss current and novel treatment options. Finally, we propose the establishment of an International Registry of such cases as the best way to collect and subsequently disseminate presentation, diagnostic and treatment outcome data on this rare complication of multiple myeloma.
Collapse
Affiliation(s)
- Philip A Egan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Derry/Londonderry, Northern Ireland
| | - Patrick T Elder
- Department of Haematology, North West Cancer Centre, Altnagelvin Area Hospital, Derry/Londonderry, Northern Ireland
| | - W Ian Deighan
- Department of Clinical Chemistry, Altnagelvin Area Hospital, Derry/Londonderry, Northern Ireland
| | - Sheila J M O'Connor
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, England, UK
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Ulster University, Derry/Londonderry, Northern Ireland
| |
Collapse
|
86
|
Abstract
Lymphoma is a hematological malignancy and its incidence is growing. The use of CD20 monoclonal antibody improves the therapeutic efficacy in CD20-positive B-cell lymphoma. Despite remarkable progress in lymphoma treatment over the past decades, chemotherapy resistance and disease relapse become the main obstacles to further improve the prognosis of the patients. Therefore, the development of new treatment methods and drugs is urgently needed to improve the treatment of lymphoma. In tumors, autophagy functions to protect tumor cells from hypoxia, radiotherapy, and apoptosis. The ability to improve the prognosis of patients with lymphoma through the active regulation of autophagy represents a new approach to clinical treatment.
Collapse
|
87
|
Carrà G, Nicoli P, Lingua MF, Maffeo B, Cartellà A, Circosta P, Brancaccio M, Parvis G, Gaidano V, Guerrasio A, Saglio G, Taulli R, Morotti A. Inhibition of bromodomain and extra-terminal proteins increases sensitivity to venetoclax in chronic lymphocytic leukaemia. J Cell Mol Med 2019; 24:1650-1657. [PMID: 31821686 PMCID: PMC6991693 DOI: 10.1111/jcmm.14857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/03/2023] Open
Abstract
The development of drugs able to target BTK, PI3k‐delta and BCL2 has dramatically improved chronic lymphocytic leukaemia (CLL) therapies. However, drug resistance to these therapies has already been reported due to non‐recurrent changes in oncogenic pathways and genes expression signatures. In this study, we investigated the cooperative role of the BCL2 inhibitor venetoclax and the BRD4 inhibitor JQ1. In particular, we found that JQ1 shows additional activity with venetoclax, in CLL cell lines and in ex vivo isolated primary CD19+ lymphocytes, arguing in favour of combination strategies. Lastly, JQ1 is also effective in venetoclax‐resistant CLL cell lines. Together, our findings indicated that the BET inhibitor JQ1 could be a promising therapy in CLL, both as first‐line therapy in combination with venetoclax and as second‐line therapy, after the emergence of venetoclax‐resistant clones.
Collapse
Affiliation(s)
- Giovanna Carrà
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Paolo Nicoli
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | - Beatrice Maffeo
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Antonio Cartellà
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Paola Circosta
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Mara Brancaccio
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Guido Parvis
- Division of Hematology, Ospedale Mauriziano, Torino, Italy
| | | | - Angelo Guerrasio
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Giuseppe Saglio
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.,Division of Hematology, Ospedale Mauriziano, Torino, Italy
| | | | - Alessandro Morotti
- Dept. of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
88
|
Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, Papajik T, Kriegova E. Standardization of Sequencing Coverage Depth in NGS: Recommendation for Detection of Clonal and Subclonal Mutations in Cancer Diagnostics. Front Oncol 2019; 9:851. [PMID: 31552176 PMCID: PMC6738196 DOI: 10.3389/fonc.2019.00851] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
The insufficient standardization of diagnostic next-generation sequencing (NGS) still limits its implementation in clinical practice, with the correct detection of mutations at low variant allele frequencies (VAF) facing particular challenges. We address here the standardization of sequencing coverage depth in order to minimize the probability of false positive and false negative results, the latter being underestimated in clinical NGS. There is currently no consensus on the minimum coverage depth, and so each laboratory has to set its own parameters. To assist laboratories with the determination of the minimum coverage parameters, we provide here a user-friendly coverage calculator. Using the sequencing error only, we recommend a minimum depth of coverage of 1,650 together with a threshold of at least 30 mutated reads for a targeted NGS mutation analysis of ≥3% VAF, based on the binomial probability distribution. Moreover, our calculator also allows adding assay-specific errors occurring during DNA processing and library preparation, thus calculating with an overall error of a specific NGS assay. The estimation of correct coverage depth is recommended as a starting point when assessing thresholds of NGS assay. Our study also points to the need for guidance regarding the minimum technical requirements, which based on our experience should include the limit of detection (LOD), overall NGS assay error, input, source and quality of DNA, coverage depth, number of variant supporting reads, and total number of target reads covering variant region. Further studies are needed to define the minimum technical requirements and its reporting in diagnostic NGS.
Collapse
Affiliation(s)
- Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Michal Vasinek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Ostrava, Czechia
| | - Lenka Sedlarikova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Tereza Dyskova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Petra Schneiderova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Tomas Novosad
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Ostrava, Czechia
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
89
|
Bruton's tyrosine kinase is at the crossroads of metabolic adaptation in primary malignant human lymphocytes. Sci Rep 2019; 9:11069. [PMID: 31363127 PMCID: PMC6667467 DOI: 10.1038/s41598-019-47305-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
In this work we explored metabolic aspects of human primary leukemic lymphocytes that hold a potential impact on the treatment of Bruton tyrosine kinase (BTK)-driven diseases. Our results suggest that there is crosstalk between Bruton tyrosine kinase (BTK) signaling and bioenergetic stress responses. In primary chronic lymphocytic leukemia (CLL) lymphocytes, pharmacological interference with mitochondrial ATP synthesis or glucose metabolism affects BTK activity. Conversely, an inhibitor of BTK used clinically (ibrutinib) induces bioenergetic stress responses that in turn affect ibrutinib resistance. Although the detailed molecular mechanisms are still to be defined, our work shows for the first time that in primary B cells, metabolic stressors enhance BTK signaling and suggest that metabolic rewiring to hyperglycemia affects ibrutinib resistance in TP53 deficient chronic lymphocytic leukemia (CLL) lymphocytes.
Collapse
|
90
|
Griggio V, Vitale C, Todaro M, Riganti C, Kopecka J, Salvetti C, Bomben R, Bo MD, Magliulo D, Rossi D, Pozzato G, Bonello L, Marchetti M, Omedè P, Kodipad AA, Laurenti L, Del Poeta G, Mauro FR, Bernardi R, Zenz T, Gattei V, Gaidano G, Foà R, Massaia M, Boccadoro M, Coscia M. HIF-1α is over-expressed in leukemic cells from TP53-disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia. Haematologica 2019; 105:1042-1054. [PMID: 31289209 PMCID: PMC7109756 DOI: 10.3324/haematol.2019.217430] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), the hypoxia-inducible factor 1 (HIF-1) regulates the response of tumor cells to hypoxia and their protective interactions with the leukemic microenvironment. In this study, we demonstrate that CLL cells from TP53-disrupted (TP53dis) patients have constitutively higher expression levels of the α-subunit of HIF-1 (HIF-1α) and increased HIF-1 transcriptional activity compared to the wild-type counterpart. In the TP53dis subset, HIF-1α upregulation is due to reduced expression of the HIF-1α ubiquitin ligase von Hippel-Lindau protein (pVHL). Hypoxia and stromal cells further enhance HIF-1α accumulation, independently of TP53 status. Hypoxia acts through the downmodulation of pVHL and the activation of the PI3K/AKT and RAS/ERK1-2 pathways, whereas stromal cells induce an increased activity of the RAS/ERK1-2, RHOA/RHOA kinase and PI3K/AKT pathways, without affecting pVHL expression. Interestingly, we observed that higher levels of HIF-1A mRNA correlate with a lower susceptibility of leukemic cells to spontaneous apoptosis, and associate with the fludarabine resistance that mainly characterizes TP53dis tumor cells. The HIF-1α inhibitor BAY87-2243 exerts cytotoxic effects toward leukemic cells, regardless of the TP53 status, and has anti-tumor activity in Em-TCL1 mice. BAY87-2243 also overcomes the constitutive fludarabine resistance of TP53dis leukemic cells and elicits a strongly synergistic cytotoxic effect in combination with ibrutinib, thus providing preclinical evidence to stimulate further investigation into use as a potential new drug in CLL.
Collapse
Affiliation(s)
- Valentina Griggio
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Candida Vitale
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maria Todaro
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Chiara Salvetti
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Daniela Magliulo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Rossi
- Department of Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Gabriele Pozzato
- Department of Internal Medicine and Hematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | - Lisa Bonello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Monia Marchetti
- Hematology Day Service, Oncology SOC, Hospital Cardinal Massaia, Asti, Italy
| | - Paola Omedè
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Ahad Ahmed Kodipad
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giovanni Del Poeta
- Division of Hematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Policlinico Umberto I, Rome, Italy
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Policlinico Umberto I, Rome, Italy
| | | | - Mario Boccadoro
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Coscia
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy .,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|