51
|
Lara-Hernandez F, Cortez J, Garcia-Sorribes S, Blesa S, Olivares MD, Alic AS, Garcia-Garcia AB, Chaves FJ, Ivorra C. EOSAL-CNV for Easy and Rapid Detection of CNVs by Fragment Analysis : EOSAL: A Fast and Reliable New Method for CNV Detection. Methods Mol Biol 2023; 2621:241-253. [PMID: 37041448 DOI: 10.1007/978-1-0716-2950-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Copy number variations (CNVs) are a type of genetic variation involving from 50 base pairs (bps) to millions of bps and, in a general point of view, can include alterations of complete chromosomes. As CNVs mean the gain or loss of DNA sequences, their detection requires specific techniques and analysis. We have developed Easy One-Step Amplification and Labeling for CNV Detection (EOSAL-CNV) by fragment analysis in a DNA sequencer. The procedure is based on a single PCR reaction for amplification and labeling of all fragments included. The protocol includes specific primers for the amplification of the regions of interest with a tail in each of the primers (one for forward and another for the reverse primers) together with primers for tail amplification. One of the primers for tail amplification is labeled with a fluorophore, allowing the amplification and labeling in the same reaction. Combination of several tail pairs and labels allows the detection of DNA fragment by different fluorophores and increases the number of fragments that can be analyzed in one reaction. PCR products can be analyzed without any purification on a DNA sequencer for fragment detection and quantification. Finally, simple and easy calculations allow the detection of fragments with deletions or extra copies. The use of EOSAL-CNV allows simplifying and reducing costs in sample analysis for CNV detection.
Collapse
Affiliation(s)
| | - Jessica Cortez
- I+D+I Department, Sequencing Multiplex SL Serra, Valencia, Spain
| | | | - Sebastian Blesa
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | - Andy S Alic
- I+D+I Department, Sequencing Multiplex SL Serra, Valencia, Spain
| | - Ana-Barbara Garcia-Garcia
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain.
- CIBERDEM, ISCIII, Madrid, Spain.
| | - F Javier Chaves
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
- I+D+I Department, Sequencing Multiplex SL Serra, Valencia, Spain
- CIBERDEM, ISCIII, Madrid, Spain
| | - Carmen Ivorra
- I+D+I Department, Sequencing Multiplex SL Serra, Valencia, Spain
| |
Collapse
|
52
|
Viushkov VS, Lomov NA, Rubtsov MA, Vassetzky YS. Visualizing the Genome: Experimental Approaches for Live-Cell Chromatin Imaging. Cells 2022; 11:cells11244086. [PMID: 36552850 PMCID: PMC9776900 DOI: 10.3390/cells11244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over the years, our vision of the genome has changed from a linear molecule to that of a complex 3D structure that follows specific patterns and possesses a hierarchical organization. Currently, genomics is becoming "four-dimensional": our attention is increasingly focused on the study of chromatin dynamics over time, in the fourth dimension. Recent methods for visualizing the movements of chromatin loci in living cells by targeting fluorescent proteins can be divided into two groups. The first group requires the insertion of a special sequence into the locus of interest, to which proteins that recognize the sequence are recruited (e.g., FROS and ParB-INT methods). In the methods of the second approach, "programmed" proteins are targeted to the locus of interest (i.e., systems based on CRISPR/Cas, TALE, and zinc finger proteins). In the present review, we discuss these approaches, examine their strengths and weaknesses, and identify the key scientific problems that can be studied using these methods.
Collapse
Affiliation(s)
- Vladimir S. Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikolai A. Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail A. Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Yegor S. Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence:
| |
Collapse
|
53
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
54
|
Kaczynski TJ, Au ED, Farkas MH. Oxidative stress alters transcript localization of disease-associated genes in the retinal pigment epithelium. Mol Vis 2022; 28:340-351. [PMID: 36338668 PMCID: PMC9603899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Nuclear retention is a mechanism whereby excess RNA transcripts are stored in the event that a cell needs to quickly respond to a stimulus; maintaining proper nuclear-to-cytoplasmic balance is important for cellular homeostasis and cell function. There are many mechanisms that are employed to determine whether to retain a transcript or export it to the cytoplasm, although the extent to which tissue or cell type, internal and external stressors, and disease pathogenesis affect this process is not yet clear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis or progression of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes as well as externally from environmental insult. Here, we evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), with specific focus on transcripts related to RPE function and disease. METHODS We performed poly(A) RNA sequencing on nuclear and cytoplasmic fractions from human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), as well as on untreated controls. RESULTS Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies on other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts was altered following oxidative stress, as was the retention of genes associated with AMD and IRDs, as well as those that are important for RPE physiology. CONCLUSIONS These results provide a localization catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to H<sub>2</sub>O<sub>2</sub>, shedding light on the extent to which H<sub>2</sub>O<sub>2</sub> alters transcript localization and potentially offering insight into one mechanism through which oxidative stress may contribute to the progression of visual disorders.
Collapse
Affiliation(s)
- Tadeusz J. Kaczynski
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY,Research Service, VA Medical Center, Buffalo, NY
| | - Elizabeth D. Au
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY
| | - Michael H. Farkas
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY,Research Service, VA Medical Center, Buffalo, NY,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
55
|
Tang L, Shu X, Hu D, Deng C, Ren H, Su X. Clinical significance of multi-genic assay in identifying aggressive papillary thyroid carcinoma. Am J Otolaryngol 2022; 43:103563. [DOI: 10.1016/j.amjoto.2022.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
56
|
Impact of Surface Area on Sensitivity in Autonomously Reporting Sensing Hydrogel Nanomaterials for the Detection of Bacterial Enzymes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The rapid and selective detection of bacterial contaminations and bacterial infections in a non-laboratory setting using advanced sensing materials holds the promise to enable robust point-of-care tests and rapid diagnostics for applications in the medical field as well as food safety. Among the various possible analytes, bacterial enzymes have been targeted successfully in various sensing formats. In this current work, we focus on the systematic investigation of the role of surface area on the sensitivity in micro- and nanostructured autonomously reporting sensing hydrogel materials for the detection of bacterial enzymes. The colorimetric sensing materials for the detection of β-glucuronidase (ß-GUS) from Escherichia coli (E. coli) were fabricated by template replication of crosslinked pullulan acetoacetate (PUAA) and by electrospinning chitosan/polyethylene oxide nanofibers (CS/PEO NFs), both equipped with the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronide. The investigation of the dependence of the initial reaction rates on surface area unveiled a linear relationship of rate and thereby time to observe a signal for a given concentration of bacterial enzyme. This knowledge was exploited in nanoscale sensing materials made of CS/PEO NFs with diameters of 295 ± 100 nm. Compared to bulk hydrogel slabs, the rate of hydrolysis was significantly enhanced in NFs when exposed to bacteria suspension cultures and thus ensuring a rapid detection of living E. coli that produces the enzyme β-GUS. The findings afford generalized design principles for the improvement of known and novel sensing materials towards rapid detection of bacteria by nanostructuring in medical and food related settings.
Collapse
|
57
|
Das S, Rai A, Rai SN. Differential Expression Analysis of Single-Cell RNA-Seq Data: Current Statistical Approaches and Outstanding Challenges. ENTROPY 2022; 24:e24070995. [PMID: 35885218 PMCID: PMC9315519 DOI: 10.3390/e24070995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 01/11/2023]
Abstract
With the advent of single-cell RNA-sequencing (scRNA-seq), it is possible to measure the expression dynamics of genes at the single-cell level. Through scRNA-seq, a huge amount of expression data for several thousand(s) of genes over million(s) of cells are generated in a single experiment. Differential expression analysis is the primary downstream analysis of such data to identify gene markers for cell type detection and also provide inputs to other secondary analyses. Many statistical approaches for differential expression analysis have been reported in the literature. Therefore, we critically discuss the underlying statistical principles of the approaches and distinctly divide them into six major classes, i.e., generalized linear, generalized additive, Hurdle, mixture models, two-class parametric, and non-parametric approaches. We also succinctly discuss the limitations that are specific to each class of approaches, and how they are addressed by other subsequent classes of approach. A number of challenges are identified in this study that must be addressed to develop the next class of innovative approaches. Furthermore, we also emphasize the methodological challenges involved in differential expression analysis of scRNA-seq data that researchers must address to draw maximum benefit from this recent single-cell technology. This study will serve as a guide to genome researchers and experimental biologists to objectively select options for their analysis.
Collapse
Affiliation(s)
- Samarendra Das
- ICAR-Directorate of Foot and Mouth Disease, Arugul, Bhubaneswar 752050, India
- International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar 752050, India
- Correspondence: or (S.D.); (S.N.R.)
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India;
| | - Shesh N. Rai
- School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY 40292, USA
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Biostatisitcs and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA
- Data Analysis and Sample Management Facility, The University of Louisville Super Fund Center, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
- Correspondence: or (S.D.); (S.N.R.)
| |
Collapse
|
58
|
Murphy PR, Narayanan D, Kumari S. Methods to Identify Immune Cells in Tissues With a Focus on Skin as a Model. Curr Protoc 2022; 2:e485. [PMID: 35822855 DOI: 10.1002/cpz1.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The skin protects our body from external challenges, insults, and pathogens and consists of two layers, epidermis and dermis. The immune cells of the skin are an integral part of protecting the body and essential for mediating skin immune homeostasis. They are distributed in the epidermal and dermal layers of the skin. Under homeostatic conditions, the mouse and human skin epidermis harbors immune cells such as Langerhans cells and CD8+ T cells, whereas the dermis contains dendritic cells (DCs), mast cells, macrophages, T cells, and neutrophils. Skin immune homeostasis is maintained through communication between epidermal and dermal cells and soluble factors. This communication is important for proper recruitment of immune cells in the skin to mount immune responses during infection/injury or in response to external/internal insults that alter the local cellular milieu. Imbalance in this crosstalk that occurs in association with inflammatory skin disorders such as psoriasis and atopic dermatitis can lead to alterations in the number and type of immune cells contributing to pathological manifestation in these disorders. Profiling changes in the immune cell type, localization, and number can provide important information about disease mechanisms and help design interventional therapeutic strategies. Toward this end, skin cells can be detected and characterized using basic techniques like immunofluorescence, immunohistochemistry, and flow cytometry, and recently developed methods of multiplexing. This article provides an overview on the basic techniques that are widely accessible to researchers to characterize immune cells of the skin. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Peter R Murphy
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Queensland, Australia
| | - Divyaa Narayanan
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Queensland, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
59
|
Xing L, Shen Y, Wei X, Luo Y, Yang Y, Liu H, Liu H. Long-read Oxford nanopore sequencing reveals a de novo case of complex chromosomal rearrangement involving chromosomes 2, 7, and 13. Mol Genet Genomic Med 2022; 10:e2011. [PMID: 35758276 PMCID: PMC9482406 DOI: 10.1002/mgg3.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022] Open
Abstract
Background Complex chromosomal rearrangements (CCRs) are associated with high reproductive risk, infertility, abnormalities in offspring, and recurrent miscarriage in women. It is essential to accurately characterize apparently balanced chromosome rearrangements in unaffected individuals. Methods A CCR young couple who suffered two spontaneous abortions and underwent labor induction due to fetal chromosomal abnormalities was studied using long‐read sequencing(LRS), single‐nucleotide polymorphism (SNP) array, G‐banding karyotype analysis (550‐band resolution), and Sanger sequencing. Results SNP analysis of the amniotic fluid cells during the third pregnancy revealed a 9.9‐Mb duplication at 7q21.11q21.2 and a 24.8‐Mb heterozygous deletion at 13q21.1q31.1. The unaffected female partner was a carrier of a three‐way CCR [46,XX,? ins(7;13)(q21.1;q21.1q22)t(2;13)(p23;q22)]. Subsequent LRS analysis revealed the exact breakpoint locations on the derivative chromosomes and the specific method of chromosome rearrangement, indicating that the CCR carrier was a more complex structural rearrangement comprising five breakpoints. Furthermore, LRS detected an inserted fragment of chromosome 13 in chromosome 7. Conclusions LRS is effective for analyzing the complex structural variations of the human genome and may be used to clarify the specific CCRs for effective genetic counseling and appropriate intervention.
Collapse
Affiliation(s)
- Lingling Xing
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiang Wei
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yuan Luo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Haipeng Liu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hongqian Liu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Caligola S, De Sanctis F, Canè S, Ugel S. Breaking the Immune Complexity of the Tumor Microenvironment Using Single-Cell Technologies. Front Genet 2022; 13:867880. [PMID: 35651929 PMCID: PMC9149246 DOI: 10.3389/fgene.2022.867880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Tumors are not a simple aggregate of transformed cells but rather a complicated ecosystem containing various components, including infiltrating immune cells, tumor-related stromal cells, endothelial cells, soluble factors, and extracellular matrix proteins. Profiling the immune contexture of this intricate framework is now mandatory to develop more effective cancer therapies and precise immunotherapeutic approaches by identifying exact targets or predictive biomarkers, respectively. Conventional technologies are limited in reaching this goal because they lack high resolution. Recent developments in single-cell technologies, such as single-cell RNA transcriptomics, mass cytometry, and multiparameter immunofluorescence, have revolutionized the cancer immunology field, capturing the heterogeneity of tumor-infiltrating immune cells and the dynamic complexity of tenets that regulate cell networks in the tumor microenvironment. In this review, we describe some of the current single-cell technologies and computational techniques applied for immune-profiling the cancer landscape and discuss future directions of how integrating multi-omics data can guide a new "precision oncology" advancement.
Collapse
Affiliation(s)
| | | | | | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
61
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
62
|
Egloff S, Melnychuk N, Cruz Da Silva E, Reisch A, Martin S, Klymchenko AS. Amplified Fluorescence in Situ Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles. ACS NANO 2022; 16:1381-1394. [PMID: 34928570 DOI: 10.1021/acsnano.1c09409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection and imaging of RNA at the single-cell level is of utmost importance for fundamental research and clinical diagnostics. Current techniques of RNA analysis, including fluorescence in situ hybridization (FISH), are long, complex, and expensive. Here, we report a methodology of amplified FISH (AmpliFISH) that enables simpler and faster RNA imaging using small and ultrabright dye-loaded polymeric nanoparticles (NPs) functionalized with DNA. We found that the small size of NPs (below 20 nm) was essential for their access to the intracellular mRNA targets in fixed permeabilized cells. Moreover, proper selection of the polymer matrix of DNA-NPs minimized nonspecific intracellular interactions. Optimized DNA-NPs enabled sequence-specific imaging of different mRNA targets (survivin, actin, and polyA tails), using a simple 1 h staining protocol. Encapsulation of cyanine and rhodamine dyes with bulky counterions yielded green-, red-, and far-red-emitting NPs that were 2-100-fold brighter than corresponding quantum dots. These NPs enabled multiplexed detection of three mRNA targets simultaneously, showing distinctive mRNA expression profiles in three cancer cell lines. Image analysis confirmed the single-particle nature of the intracellular signal, suggesting single-molecule sensitivity of the method. AmpliFISH was found to be semiquantitative, correlating with RT-qPCR. In comparison with the commercial locked nucleic acid (LNA)-based FISH technique, AmpliFISH provides 8-200-fold stronger signal (dependent on the NP color) and requires only three steps vs ∼20 steps together with a much shorter time. Thus, combination of bright fluorescent polymeric NPs with FISH yields a fast and sensitive single-cell transcriptomic analysis method for RNA research and clinical diagnostics.
Collapse
Affiliation(s)
- Sylvie Egloff
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Elisabete Cruz Da Silva
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
63
|
Wang XQ, Goytain A, Dickson BC, Nielsen TO. Advances in Sarcoma Molecular Diagnostics. Genes Chromosomes Cancer 2022; 61:332-345. [DOI: 10.1002/gcc.23025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xue Qi Wang
- Faculty of Medicine University of British Columbia Vancouver Canada
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
| | - Angela Goytain
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
| | - Brendan C. Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
| | - Torsten Owen Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
| |
Collapse
|
64
|
Pei Z, Deng K, Lei C, Du D, Yu G, Sun X, Xu C, Zhang S. Identifying Balanced Chromosomal Translocations in Human Embryos by Oxford Nanopore Sequencing and Breakpoints Region Analysis. Front Genet 2022; 12:810900. [PMID: 35116057 PMCID: PMC8804325 DOI: 10.3389/fgene.2021.810900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Balanced chromosomal aberrations, especially balanced translocations, can cause infertility, recurrent miscarriage or having chromosomally defective offspring. Preimplantation genetic testing for structural rearrangement (PGT-SR) has been widely implemented to improve the clinical outcomes by selecting euploid embryos for transfer, whereas embryos with balanced translocation karyotype were difficult to be distinguished by routine genetic techniques from those with a normal karyotype. Method: In this present study, we developed a clinically applicable method for reciprocal translocation carriers to reduce the risk of pregnancy loss. In the preclinical phase, we identified reciprocal translocation breakpoints in blood of translocation carriers by long-read Oxford Nanopore sequencing, followed by junction-spanning polymerase chain reaction (PCR) and Sanger sequencing. In the clinical phase of embryo diagnosis, aneuploidies and unbalanced translocations were screened by comprehensive chromosomal screening (CCS) with single nucleotide polymorphism (SNP) microarray, carrier embryos were diagnosed by junction-spanning PCR and family haplotype linkage analysis of the breakpoints region. Amniocentesis and cytogenetic analysis of fetuses in the second trimester were performed after embryo transfer to conform the results diagnosed by the presented method. Results: All the accurate reciprocal translocation breakpoints were effectively identified by Nanopore sequencing and confirmed by Sanger sequencing. Twelve embryos were biopsied and detected, the results of junction-spanning PCR and haplotype linkage analysis were consistent. In total, 12 biopsied blastocysts diagnosed to be euploid, in which 6 were aneuploid or unbalanced, three blastocysts were identified to be balanced translocation carriers and three to be normal karyotypes. Two euploid embryos were subsequently transferred back to patients and late prenatal karyotype analysis of amniotic fluid cells was performed. The outcomes diagnosed by the current approach were totally consistent with the fetal karyotypes. Conclusions: In summary, these investigations in our study illustrated that chromosomal reciprocal translocations in embryos can be accurately diagnosed. Long-read Nanopore sequencing and breakpoint analysis contributes to precisely evaluate the genetic risk of disrupted genes, and provides a way of selecting embryos with normal karyotype, especially for couples those without a reference.
Collapse
Affiliation(s)
- Zhenle Pei
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixai Lei
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Danfeng Du
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guoliang Yu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., Beijing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Congjian Xu, ; Shuo Zhang,
| | - Shuo Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Congjian Xu, ; Shuo Zhang,
| |
Collapse
|
65
|
Yu Z, Potapova TA. Superresolution Microscopy for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution. Methods Mol Biol 2022; 2458:359-375. [PMID: 35103978 DOI: 10.1007/978-1-0716-2140-0_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the fluorescence in situ hybridization (FISH) of DNA probes on mitotic chromosome spreads optimized for two super-resolution microscopy approaches-structured illumination microscopy (SIM) and stimulated emission depletion (STED). It is based on traditional DNA FISH methods that can be combined with immunofluorescence labeling (Immuno-FISH). This technique previously allowed us to visualize ribosomal DNA linkages between human acrocentric chromosomes and provided information about the activity status of linked rDNA loci. Compared to the conventional wide-field and confocal microscopy, the quality of SIM and STED data depends a lot more on the optimal specimen preparation, choice of fluorophores, and quality of the fluorescent labeling. This protocol highlights details that make specimens suitable for super-resolution microscopy and tips for good imaging practices.
Collapse
Affiliation(s)
- Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
66
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
67
|
Gao Y, Zhang S, Wu C, Li Q, Shen Z, Lu Y, Wu ZS. Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. ACS NANO 2021; 15:19211-19224. [PMID: 34854292 DOI: 10.1021/acsnano.1c04260] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abnormal expression of miRNAs is often detected in various human cancers. DNAzyme machines combined with gold nanoparticles (AuNPs) hold promise for detecting specific miRNAs in living cells but show short circulation time due to the fragility of catalytic core. Using miRNA-21 as the model target, by introducing a circular bulging DNA shield into the middle of the catalytic core, we report herein a self-protected DNAzyme (E) walker capable of fully stepping on the substrate (S)-modified AuNP for imaging intracellular miRNAs. The DNAzyme walker exhibits 5-fold enhanced serum resistance and more than 8-fold enhanced catalytic activity, contributing to the capability to image miRNAs much higher than commercial transfection reagent and well-known FISH technique. Diseased cells can accurately be distinguished from healthy cells. Due to its universality, DNAzyme walker can be extended for imaging other miRNAs only by changing target binding domain, indicating a promising tool for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Chengwei Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
68
|
Zhang X, Wang T. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years. PLANT & CELL PHYSIOLOGY 2021; 62:1648-1661. [PMID: 34486654 PMCID: PMC8664644 DOI: 10.1093/pcp/pcab134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 05/05/2023]
Abstract
Over the past few decades, eukaryotic linear genomes and epigenomes have been widely and extensively studied for understanding gene expression regulation. More recently, the three-dimensional (3D) chromatin organization was found to be important for determining genome functionality, finely tuning physiological processes for appropriate cellular responses. With the development of visualization techniques and chromatin conformation capture (3C)-based techniques, increasing evidence indicates that chromosomal architecture characteristics and chromatin domains with different epigenetic modifications in the nucleus are correlated with transcriptional activities. Subsequent studies have further explored the intricate interplay between 3D genome organization and the function of interacting regions. In this review, we summarize spatial distribution patterns of chromatin, including chromatin positioning, configurations and domains, with a particular focus on the effect of a unique form of interaction between varieties of factors that shape the 3D genome conformation in plants. We further discuss the methods, advantages and limitations of various 3C-based techniques, highlighting the applications of these technologies in plants to identify chromatin domains, and address their dynamic changes and functional implications in evolution, and adaptation to development and changing environmental conditions. Moreover, the future implications and emerging research directions of 3D genome organization are discussed.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100093, P. R. China
| |
Collapse
|
69
|
At the dawn: cell-free DNA fragmentomics and gene regulation. Br J Cancer 2021; 126:379-390. [PMID: 34815523 PMCID: PMC8810841 DOI: 10.1038/s41416-021-01635-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms play instrumental roles in gene regulation during embryonic development and disease progression. However, it is challenging to non-invasively monitor the dynamics of epigenomes and related gene regulation at inaccessible human tissues, such as tumours, fetuses and transplanted organs. Circulating cell-free DNA (cfDNA) in peripheral blood provides a promising opportunity to non-invasively monitor the genomes from these inaccessible tissues. The fragmentation patterns of plasma cfDNA are unevenly distributed in the genome and reflect the in vivo gene-regulation status across multiple molecular layers, such as nucleosome positioning and gene expression. In this review, we revisited the computational and experimental approaches that have been recently developed to measure the cfDNA fragmentomics across different resolutions comprehensively. Moreover, cfDNA in peripheral blood is released following cell death, after apoptosis or necrosis, mainly from haematopoietic cells in healthy people and diseased tissues in patients. Several cfDNA-fragmentomics approaches showed the potential to identify the tissues-of-origin in cfDNA from cancer patients and healthy individuals. Overall, these studies paved the road for cfDNA fragmentomics to non-invasively monitor the in vivo gene-regulatory dynamics in both peripheral immune cells and diseased tissues.
Collapse
|
70
|
Mohanta TK, Mishra AK, Al-Harrasi A. The 3D Genome: From Structure to Function. Int J Mol Sci 2021; 22:11585. [PMID: 34769016 PMCID: PMC8584255 DOI: 10.3390/ijms222111585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The genome is the most functional part of a cell, and genomic contents are organized in a compact three-dimensional (3D) structure. The genome contains millions of nucleotide bases organized in its proper frame. Rapid development in genome sequencing and advanced microscopy techniques have enabled us to understand the 3D spatial organization of the genome. Chromosome capture methods using a ligation approach and the visualization tool of a 3D genome browser have facilitated detailed exploration of the genome. Topologically associated domains (TADs), lamin-associated domains, CCCTC-binding factor domains, cohesin, and chromatin structures are the prominent identified components that encode the 3D structure of the genome. Although TADs are the major contributors to 3D genome organization, they are absent in Arabidopsis. However, a few research groups have reported the presence of TAD-like structures in the plant kingdom.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; or
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
71
|
Liehr T. Molecular Cytogenetics in the Era of Chromosomics and Cytogenomic Approaches. Front Genet 2021; 12:720507. [PMID: 34721522 PMCID: PMC8548727 DOI: 10.3389/fgene.2021.720507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 02/04/2023] Open
Abstract
Here the role of molecular cytogenetics in the context of yet available all other cytogenomic approaches is discussed. A short introduction how cytogenetics and molecular cytogenetics were established is followed by technical aspects of fluorescence in situ hybridization (FISH). The latter contains the methodology itself, the types of probe- and target-DNA, as well as probe sets. The main part deals with examples of modern FISH-applications, highlighting unique possibilities of the approach, like the possibility to study individual cells and even individual chromosomes. Different variants of FISH can be used to retrieve information on genomes from (almost) base pair to whole genomic level, as besides only second and third generation sequencing approaches can do. Here especially highlighted variations of FISH are molecular combing, chromosome orientation-FISH (CO-FISH), telomere-FISH, parental origin determination FISH (POD-FISH), FISH to resolve the nuclear architecture, multicolor-FISH (mFISH) approaches, among other applied in chromoanagenesis studies, Comet-FISH, and CRISPR-mediated FISH-applications. Overall, molecular cytogenetics is far from being outdated and actively involved in up-to-date diagnostics and research.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
72
|
da Cunha IW, de Almeida Coudry R, de Macedo MP, de Assis EACP, Stefani S, Soares FA. A call to action: molecular pathology in Brazil. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-021-00096-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Adoption of molecular pathology in Brazil is currently very limited. Of note, there are no programs for training new molecular pathologists in the country; thus, documents compiling nationally applicable information on molecular pathology are few.
Methods
A selected panel of Brazilian experts in fields related to molecular pathology were provided with a series of relevant questions to address prior to the multi-day conference. Within this conference, each narrative was discussed and edited by the entire group, through numerous drafts and rounds of discussion until a consensus was achieved.
Results
The panel proposes specific and realistic recommendations for implementing molecular pathology in cancer care in Brazil. In creating these recommendations, the authors strived to address all barriers to the widespread use and impediments to access mentioned previously within this manuscript.
Conclusion
This manuscript provides a review of molecular pathology principles as well as the current state of molecular pathology in Brazil. Additionally, the panel proposes practical and actionable recommendations for the implementation of molecular pathology throughout the country in order to increase awareness of the importance molecular pathology in Brazil.
Collapse
|
73
|
Li Z, Jiang H, Ding Y, Zhang D, Zhang X, Xue J, Ma R, Hu L, Yue Y. Platelet Endothelial Aggregation Receptor 1 Polymorphism Is Associated With Functional Outcome in Small-Artery Occlusion Stroke Patients Treated With Aspirin. Front Cardiovasc Med 2021; 8:664012. [PMID: 34540909 PMCID: PMC8440843 DOI: 10.3389/fcvm.2021.664012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The role of genetic polymorphisms is important in defining the patient's prognosis and outcomes in coronary artery disease. The present study aimed to explore the association between platelet endothelial aggregation receptor 1 (PEAR1) rs12041331 polymorphism and the outcomes in patients with acute ischemic stroke treated with aspirin or dual antiplatelet therapy (DAPT) with clopidogrel. Methods: A total of 868 ischemic stroke patients admitted to our hospital from January 1, 2016 to December 30, 2018 were retrospectively studied. The Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification defined stroke subtypes. These patients were treated with aspirin alone or DAPT. The genotype distribution of PEAR1 rs12041331 single-nucleotide polymorphism (AA, AC, and CC) between different TOAST subtypes and treatment groups was assessed, and the clinical impact of genetic variants on functional outcomes defined by the National Institutes of Health Stroke Scale, modified Rankin Scale, and Barthel Index was analyzed using univariate and multivariate logistic regression models. Results: Among the 868 stroke patients, the PEAR1 AA genotype was 16%, GA was 47%, and GG was 36%. Forty-four percent had aspirin alone, and 56% had DAPT. Overall, the distribution of PEAR single-nucleotide polymorphism was not significant among the two treatment groups or subtypes of TOAST. In contrast, in patients treated with aspirin alone, PEAR1 AA tended to be higher in the small-artery occlusion (SAO) subtype when compared with the no-lacunar subtype, including cardioembolism and large-artery atherosclerosis. PEAR1 AA genotype was significantly associated with favorable functional outcomes at day 7 and discharge only in SAO patients treated with aspirin alone compared with the GG genotype. Multivariate regression models further suggested that AA genotype was independently associated with favorable outcomes in this group after being adjusted for three common stroke risk factors such as age, hypertension history, and C-reactive protein level [odds ratio (OR) 0.23, 95% confidence interval (CI), 0.07–0.64, P = 0.02 for 7-day National Institutes of Health Stroke Scale; OR 0.2, 95% CI, 0.06–0.66, P = 0.03 for 7-day modified Rankin Scale, and OR 0.25, 95% CI, 0.08–0.72, P = 0.03 for 7-day Barthel Index, respectively]. Conclusion: The impact of PEAR1 rs12041331 polymorphism on aspirin depends on the TOAST subtype. PEAR1 AA carrier with SAO stroke is most sensitive to aspirin therapy. PEAR1 AA is an independent factor for the short-term functional outcomes in SAO patients treated with aspirin alone. Clinical Registration Number: 1800019911.
Collapse
Affiliation(s)
- Zhizhang Li
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Huayu Jiang
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Ying Ding
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Dong Zhang
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Xiaoguang Zhang
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Jie Xue
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Ruinan Ma
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Liang Hu
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| | - Yunhua Yue
- Department of Neurology, Yangpu Hospital Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
74
|
Adeel MM, Jiang H, Arega Y, Cao K, Lin D, Cao C, Cao G, Wu P, Li G. Structural Variations of the 3D Genome Architecture in Cervical Cancer Development. Front Cell Dev Biol 2021; 9:706375. [PMID: 34368157 PMCID: PMC8344058 DOI: 10.3389/fcell.2021.706375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) integration is the major contributor to cervical cancer (CC) development by inducing structural variations (SVs) in the human genome. SVs are directly associated with the three-dimensional (3D) genome structure leading to cancer development. The detection of SVs is not a trivial task, and several genome-wide techniques have greatly helped in the identification of SVs in the cancerous genome. However, in cervical cancer, precise prediction of SVs mainly translocations and their effects on 3D-genome and gene expression still need to be explored. Here, we have used high-throughput chromosome conformation capture (Hi-C) data of cervical cancer to detect the SVs, especially the translocations, and validated it through whole-genome sequencing (WGS) data. We found that the cervical cancer 3D-genome architecture rearranges itself as compared to that in the normal tissue, and 24% of the total genome switches their A/B compartments. Moreover, translocation detection from Hi-C data showed the presence of high-resolution t(4;7) (q13.1; q31.32) and t(1;16) (q21.2; q22.1) translocations, which disrupted the expression of the genes located at and nearby positions. Enrichment analysis suggested that the disrupted genes were mainly involved in controlling cervical cancer-related pathways. In summary, we detect the novel SVs through Hi-C data and unfold the association among genome-reorganization, translocations, and gene expression regulation. The results help understand the underlying pathogenicity mechanism of SVs in cervical cancer development and identify the targeted therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Muhammad Muzammal Adeel
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hao Jiang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yibeltal Arega
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Kai Cao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
75
|
Angus RB, Sadílek D, Shaarawi F, Dollimore H, Liu HC, Seidel M, Sýkora V, Fikáček M. Karyotypes of water scavenger beetles (Coleoptera: Hydrophilidae): new data and review of published records. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
This study summarizes available data on karyotypes of water scavenger beetles (Coleoptera: Hydrophiloidea: Hydrophilidae), based on newly acquired data of 23 genera and 64 species. We combine these data with previously published data, which we review. In total, karyotypes are available for 33 genera and 95 species, covering all subfamilies and tribes. Available data indicate that most groups of the Hydrophilidae are diploid and sexually reproducing, with XY (♂) and XX (♀) sex chromosomes; the Y chromosome is always minute and does not recombine with X during meiosis. Exceptions are known in Anacaena, with parthenogenetic diploid or triploid populations in some species and sex chromosomes fused with autosomes in others. The diploid number of chromosomes is 2n = 18 in the subfamilies Acidocerinae, Chaetarthriinae, Enochrinae and Hydrophilinae. Variations are known in species of Anacaena and Berosus (both usually with 2n = 18) and in Hydrochara and Hydrophilus with an increased number of chromosomes (2n = 30). The number of chromosomes is increased in the subfamily Cylominae (2n = 24–30) and in all subclades of the subfamily Sphaeridiinae (2n = 22–32). We summarize protocols for obtaining chromosome slides used for this study and provide step-by-step guidelines to facilitate future cytogenetic studies.
Collapse
Affiliation(s)
- Robert B Angus
- Department of Life Sciences (Insects), Natural History Museum, London, UK
| | - David Sadílek
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
| | - Fatma Shaarawi
- Department of Entomology, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Hsing-Che Liu
- Department of Environmental Engineering and Management, Chaoyang University of TechnologyTaichung City, Taiwan
| | - Matthias Seidel
- Centrum für Naturkunde, University of Hamburg, Martin-Luther-King Platz, Hamburg, Germany
| | - Vít Sýkora
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
| | - Martin Fikáček
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
- Department of Entomology, National Museum, Cirkusová, Praha, Czech Republic
| |
Collapse
|
76
|
Veselinyová D, Mašlanková J, Kalinová K, Mičková H, Mareková M, Rabajdová M. Selected In Situ Hybridization Methods: Principles and Application. Molecules 2021; 26:molecules26133874. [PMID: 34202914 PMCID: PMC8270300 DOI: 10.3390/molecules26133874] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
We are experiencing rapid progress in all types of imaging techniques used in the detection of various numbers and types of mutation. In situ hybridization (ISH) is the primary technique for the discovery of mutation agents, which are presented in a variety of cells. The ability of DNA to complementary bind is one of the main principles in every method used in ISH. From the first use of in situ techniques, scientists paid attention to the improvement of the probe design and detection, to enhance the fluorescent signal intensity and inhibition of cross-hybrid presence. This article discusses the individual types and modifications, and is focused on explaining the principles and limitations of ISH division on different types of probes. The article describes a design of probes for individual types of in situ hybridization (ISH), as well as the gradual combination of several laboratory procedures to achieve the highest possible sensitivity and to prevent undesirable events accompanying hybridization. The article also informs about applications of the methodology, in practice and in research, to detect cell to cell communication and principles of gene silencing, process of oncogenesis, and many other unknown processes taking place in organisms at the DNA/RNA level.
Collapse
Affiliation(s)
- Dominika Veselinyová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
- Correspondence:
| | - Katarina Kalinová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| | - Helena Mičková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia;
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.V.); (K.K.); (M.M.); (M.R.)
| |
Collapse
|
77
|
Khan A, Davis D, Brown L. A Comparison of Diagnostic Accuracy of a Rapid Antigen Detection Test in Screening for Group A Streptococcal Throat Infection Between 3- to 10-Year-Old (Children and Preadolescents) and 11- to 21-Year-Old (Adolescents). Cureus 2021; 13:e14840. [PMID: 33968544 PMCID: PMC8098778 DOI: 10.7759/cureus.14840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction Pharyngitis is one of the most common childhood diseases worldwide. We intended to compare the performance of one such rapid antigen detection test (RADT) using lateral flow immunoassay technique, between 3- to 10-year-old (children and preadolescent) and 11- to 21-year-old (adolescents). Methods Children and adolescents attending the pediatric ED with complaints of throat pain and signs of pharyngeal and tonsillar inflammation were tested by both the RADT and throat culture (TC) directed towards group A streptococcal (GAS) between April and June of 2016. The prevalence, sensitivity (SN), specificity (SP), positive predictive value (PPV) and negative predictive value (NPV) were calculated against throat culture, the gold standard for the diagnosis of GAS pharyngitis. Comparisons between the two age groups were made using the Chi-square test Results Of 202 patients, 123 (61%) patients were between 3-11 and 79 (39%) between 11-21 years of age. A positive throat culture was recorded in 56 patients yielding an overall prevalence of GAS pharyngitis at 28%. For the whole sample, the screening RADT had an SN, SP, PPV and NPV of 79%, 90%, 75%, and 92%, respectively. Also, there was no statistically significant difference between the two groups in terms of SN, SP, PPV and NPV. Conclusion The RADT in use at our institution, performed comparable to studies reported in the literature using a similar technique in both preadolescent and adolescent age groups.
Collapse
Affiliation(s)
- Abdullah Khan
- Pediatric Emergency Medicine, Loma Linda University Medical Center, Loma Linda, USA.,Pediatric Emergency Medicine, Dignity Health - St. Rose Dominican Hospital, Siena Campus, Henderson, USA
| | - Drew Davis
- Pediatric Emergency Medicine, Loma Linda University Medical Center, Loma Linda, USA
| | - Lance Brown
- Pediatric Emergency Medicine, Loma Linda University Medical Center, Loma Linda, USA
| |
Collapse
|
78
|
Cusenza VY, Bisagni A, Rinaldini M, Cattani C, Frazzi R. Copy Number Variation and Rearrangements Assessment in Cancer: Comparison of Droplet Digital PCR with the Current Approaches. Int J Mol Sci 2021; 22:ijms22094732. [PMID: 33946969 PMCID: PMC8124143 DOI: 10.3390/ijms22094732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The cytogenetic and molecular assessment of deletions, amplifications and rearrangements are key aspects in the diagnosis and therapy of cancer. Not only the initial evaluation and classification of the disease, but also the follow-up of the tumor rely on these laboratory approaches. The therapeutic choice can be guided by the results of the laboratory testing. Genetic deletions and/or amplifications directly affect the susceptibility or the resistance to specific therapies. In an era of personalized medicine, the correct and reliable molecular characterization of the disease, also during the therapeutic path, acquires a pivotal role. Molecular assays like multiplex ligation-dependent probe amplification and droplet digital PCR represent exceptional tools for a sensitive and reliable detection of genetic alterations and deserve a role in molecular oncology. In this manuscript we provide a technical comparison of these two approaches with the golden standard represented by fluorescence in situ hybridization. We also describe some relevant targets currently evaluated with these techniques in solid and hematologic tumors.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Monia Rinaldini
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Chiara Cattani
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Correspondence:
| |
Collapse
|
79
|
Ma J, Tran G, Wan AMD, Young EWK, Kumacheva E, Iscove NN, Zandstra PW. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Sci Rep 2021; 11:6777. [PMID: 33762663 PMCID: PMC7990930 DOI: 10.1038/s41598-021-86087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023] Open
Abstract
Gene expression analysis of individual cells enables characterization of heterogeneous and rare cell populations, yet widespread implementation of existing single-cell gene analysis techniques has been hindered due to limitations in scale, ease, and cost. Here, we present a novel microdroplet-based, one-step reverse-transcriptase polymerase chain reaction (RT-PCR) platform and demonstrate the detection of three targets simultaneously in over 100,000 single cells in a single experiment with a rapid read-out. Our customized reagent cocktail incorporates the bacteriophage T7 gene 2.5 protein to overcome cell lysate-mediated inhibition and allows for one-step RT-PCR of single cells encapsulated in nanoliter droplets. Fluorescent signals indicative of gene expressions are analyzed using a probabilistic deconvolution method to account for ambient RNA and cell doublets and produce single-cell gene signature profiles, as well as predict cell frequencies within heterogeneous samples. We also developed a simulation model to guide experimental design and optimize the accuracy and precision of the assay. Using mixtures of in vitro transcripts and murine cell lines, we demonstrated the detection of single RNA molecules and rare cell populations at a frequency of 0.1%. This low cost, sensitive, and adaptable technique will provide an accessible platform for high throughput single-cell analysis and enable a wide range of research and clinical applications.
Collapse
Affiliation(s)
- Jennifer Ma
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Gary Tran
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alwin M D Wan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Edmond W K Young
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Eugenia Kumacheva
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Norman N Iscove
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
80
|
Wang X, Wu C, Hao D, Zhang J, Tan C, Cheng DH, Fei J, Yu Y. One healthy live birth after preimplantation genetic testing of a cryptic balanced translocation (9;13) in a family with cerebral palsy and glaucoma: a case report. BMC Med Genomics 2021; 14:82. [PMID: 33731094 PMCID: PMC7972244 DOI: 10.1186/s12920-021-00938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cryptic balanced translocations often evade detection by conventional cytogenetics. The preimplantation genetic testing (PGT) technique can be used to help carriers of balanced translocations give birth to healthy offspring; however, for carriers of cryptic balanced translocations, there is only one report about trying assisted reproduction using the PGT technique but with no pregnancy. CASE PRESENTATION A couple had 3 births out of 4 pregnancies, and all died very young, with two of them having both cerebral palsy and glaucoma. The husband with oligoasthenospermia was found to be a cryptic balanced translocation carrier for t (9,13) (p24.3, q31.3) with G-banding, FISH (fluorescence in-situ hybridization), and MicroSeq techniques; live birth of a healthy baby girl was achieved with PGT/NGS (next-generation sequencing) for the couple. CONCLUSION Here, we report for the first time a successful live birth of a healthy baby through the PGT technique for a family in which the husband is a carrier of the cryptic balanced translocation t (9,13) (p24.3, q31.3), presumably causative for cerebral palsy and glaucoma. Our study showed that the PGT/NGS technique can effectively help families with a cryptic balanced translocation have healthy offspring.
Collapse
Affiliation(s)
- Xiliang Wang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | | | - Dongmei Hao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Jinyan Zhang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Chang Tan
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - De-Hua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Jia Fei
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, China.
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
81
|
de Bruijn SE, Fadaie Z, Cremers FPM, Kremer H, Roosing S. The Impact of Modern Technologies on Molecular Diagnostic Success Rates, with a Focus on Inherited Retinal Dystrophy and Hearing Loss. Int J Mol Sci 2021; 22:2943. [PMID: 33799353 PMCID: PMC7998853 DOI: 10.3390/ijms22062943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined "third-generation" sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.
Collapse
Affiliation(s)
- Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
- Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
82
|
Hariharan G, Prasannath K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front Cell Infect Microbiol 2021; 10:600234. [PMID: 33505921 PMCID: PMC7829251 DOI: 10.3389/fcimb.2020.600234] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- Ganeshamoorthy Hariharan
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Kandeeparoopan Prasannath
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
83
|
Pavani RS, Elias MC. Following Trypanosoma cruzi RPA-DNA Interaction Using Fluorescent In Situ Hybridization Coupled with Immunofluorescence (FISH/IF). Methods Mol Biol 2021; 2281:209-215. [PMID: 33847960 DOI: 10.1007/978-1-0716-1290-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescent in situ hybridization coupled with immunofluorescence (FISH/IF) is an assay that has been widely used to study DNA-protein interactions. The technique is based on the use of a fluorescent nucleic acid probe and fluorescent antibodies to reveal the localization of a DNA sequence and a specific protein in the cell. The interaction can be inferred by the quantification of the co-localization between the protein and the DNA. Here, we describe a detailed FISH/IF methodology that our group used to study RPA-telomere interaction in the pathogenic protozoa parasite Trypanosoma cruzi.
Collapse
Affiliation(s)
- Raphael S Pavani
- Laboratório de Ciclo Celular and Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Maria Carolina Elias
- Laboratório de Ciclo Celular and Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
84
|
Gene-Editing Technologies and Applications for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
85
|
Belanger MC, Anbaei P, Dunn AF, Kinman AW, Pompano RR. Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Anal Chem 2020; 92:15255-15262. [PMID: 33201681 PMCID: PMC7864589 DOI: 10.1021/acs.analchem.0c03625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissues are an exciting frontier for bioanalytical chemistry, one in which spatial distribution is just as important as total content. Intact tissue preserves the native cellular and molecular organization and the cell-cell contacts found in vivo. Live tissue, in particular, offers the potential to analyze dynamic events in a spatially resolved manner, leading to fundamental biological insights and translational discoveries. In this Perspective, we provide a tutorial on the four fundamental challenges for the bioanalytical chemist working in living tissue samples as well as best practices for mitigating them. The challenges include (i) the complexity of the sample matrix, which contributes myriad interfering species and causes nonspecific binding of reagents; (ii) hindered delivery and mixing; (iii) the need to maintain physiological conditions; and (iv) tissue reactivity. This framework is relevant to a variety of methods for spatially resolved chemical analysis, including optical imaging, inserted sensors and probes such as electrodes, and surface analyses such as sensing arrays. The discussion focuses primarily on ex vivo tissues, though many considerations are relevant in vivo as well. Our goal is to convey the exciting potential of analytical chemistry to contribute to understanding the functions of live, intact tissues.
Collapse
Affiliation(s)
- Maura C. Belanger
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Austin F. Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Andrew W.L. Kinman
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| |
Collapse
|
86
|
Yang D, Liu W, Deng X, Xie W, Chen H, Zhong Z, Ma J. GC-Content Dependence of Elastic and Overstretching Properties of DNA:RNA Hybrid Duplexes. Biophys J 2020; 119:852-861. [PMID: 32738216 DOI: 10.1016/j.bpj.2020.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 01/25/2023] Open
Abstract
DNA:RNA hybrid duplex plays important roles in various biological processes. Both its structural stability and interactions with proteins are highly sequence dependent. In this study, we utilize homebuilt optical tweezers to investigate how GC contents in the sequence influence the structural and mechanical properties of DNA:RNA hybrid by measuring its contour length, elasticities, and overstretching dynamics. Our results support that the DNA:RNA hybrid adopts a conformation between the A- and B-form helix, and the GC content does not affect its structural and elastic parameters obviously when varying from 40 to 60% before the overstretching transition of DNA:RNA hybrid occurs. In the overstretching transition, however, our study unravels significant heterogeneity and strong sequence dependence, suggesting the presence of a highly dynamic competition between the two processes, namely the S-form duplex formation (nonhysteretic) and the unpeeling (hysteretic). Analyzing the components left in DNA:RNA hybrid after the overstretching transition suggests that the RNA strand is more easily unpeeled than the DNA strand, whereas an increase in the GC content from 40 to 60% can significantly reduce unpeeling. Large hysteresis is observed between the stretching and relaxation processes, which is also quantitatively correlated with the percentage of unpeeling in the DNA:RNA duplex. Increasing in both the salt concentration and GC content can effectively reduce the hysteresis with the latter being more significant. Together, our study reveals that the mechanical properties of DNA:RNA hybrid duplexes are significantly different from double-stranded DNA and double-stranded RNA, and its overstretching behavior is highly sequence dependent. These results should be taken into account in the future studies on DNA:RNA-hybrid-related functional structures and motor proteins.
Collapse
Affiliation(s)
- Dongni Yang
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenzhao Liu
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangyu Deng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Xie
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, Fujian, China
| | - Zhensheng Zhong
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
87
|
Zhu Y, Yan Z, Tang Z, Li W. Novel Approaches to Profile Functional Long Noncoding RNAs Associated with Stem Cell Pluripotency. Curr Genomics 2020; 21:37-45. [PMID: 32655297 PMCID: PMC7324891 DOI: 10.2174/1389202921666200210142840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
The pluripotent state of stem cells depends on the complicated network orchestrated by thousands of factors and genes. Long noncoding RNAs (lncRNAs) are a class of RNA longer than 200 nt without a protein-coding function. Single-cell sequencing studies have identified hundreds of lncRNAs with dynamic changes in somatic cell reprogramming. Accumulating evidence suggests that they participate in the initiation of reprogramming, maintenance of pluripotency, and developmental processes by cis and/or trans mechanisms. In particular, they may interact with proteins, RNAs, and chromatin modifier complexes to form an intricate pluripotency-associated network. In this review, we focus on recent progress in approaches to profiling functional lncRNAs in somatic cell reprogramming and cell differentiation.
Collapse
Affiliation(s)
- Yanbo Zhu
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Zi Yan
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Ze Tang
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Wei Li
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| |
Collapse
|
88
|
Genetic testing strategies in the newborn. J Perinatol 2020; 40:1007-1016. [PMID: 32472107 DOI: 10.1038/s41372-020-0697-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Genetic disorders presenting in the neonatal period can have a significant impact on morbidity and mortality. Early diagnosis can facilitate timely prognostic counseling to families and possibility of precision care, which could improve outcome. As availability of diagnostic testing expands, the required knowledge base of the neonatologist must also expand to include proper application and understanding of genetic testing modalities, especially where availability of clinical genetics consultation is limited. Herein, we review genetic tests utilized in the neonatal intensive care unit (NICU) providing background on the technology, clinical indications, advantages, and limitations of the tests. This review will span from classic cytogenetics to the evolving role of next generation sequencing and its impact on the management of neonatal disease.
Collapse
|
89
|
Isozaki A, Mikami H, Tezuka H, Matsumura H, Huang K, Akamine M, Hiramatsu K, Iino T, Ito T, Karakawa H, Kasai Y, Li Y, Nakagawa Y, Ohnuki S, Ota T, Qian Y, Sakuma S, Sekiya T, Shirasaki Y, Suzuki N, Tayyabi E, Wakamiya T, Xu M, Yamagishi M, Yan H, Yu Q, Yan S, Yuan D, Zhang W, Zhao Y, Arai F, Campbell RE, Danelon C, Di Carlo D, Hiraki K, Hoshino Y, Hosokawa Y, Inaba M, Nakagawa A, Ohya Y, Oikawa M, Uemura S, Ozeki Y, Sugimura T, Nitta N, Goda K. Intelligent image-activated cell sorting 2.0. LAB ON A CHIP 2020; 20:2263-2273. [PMID: 32459276 DOI: 10.1039/d0lc00080a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The advent of intelligent image-activated cell sorting (iIACS) has enabled high-throughput intelligent image-based sorting of single live cells from heterogeneous populations. iIACS is an on-chip microfluidic technology that builds on a seamless integration of a high-throughput fluorescence microscope, cell focuser, cell sorter, and deep neural network on a hybrid software-hardware data management architecture, thereby providing the combined merits of optical microscopy, fluorescence-activated cell sorting (FACS), and deep learning. Here we report an iIACS machine that far surpasses the state-of-the-art iIACS machine in system performance in order to expand the range of applications and discoveries enabled by the technology. Specifically, it provides a high throughput of ∼2000 events per second and a high sensitivity of ∼50 molecules of equivalent soluble fluorophores (MESFs), both of which are 20 times superior to those achieved in previous reports. This is made possible by employing (i) an image-sensor-based optomechanical flow imaging method known as virtual-freezing fluorescence imaging and (ii) a real-time intelligent image processor on an 8-PC server equipped with 8 multi-core CPUs and GPUs for intelligent decision-making, in order to significantly boost the imaging performance and computational power of the iIACS machine. We characterize the iIACS machine with fluorescent particles and various cell types and show that the performance of the iIACS machine is close to its achievable design specification. Equipped with the improved capabilities, this new generation of the iIACS technology holds promise for diverse applications in immunology, microbiology, stem cell biology, cancer biology, pathology, and synthetic biology.
Collapse
Affiliation(s)
- Akihiro Isozaki
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Fluorescence In Situ Hybridization and Rehybridization Using Bacterial Artificial Chromosome Probes. Methods Mol Biol 2020; 2054:243-261. [PMID: 31482460 DOI: 10.1007/978-1-4939-9769-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fluorescence in situ hybridization (FISH) method enables in situ genetic analysis of both metaphase and interphase cells from different types of material, including cell lines, cell smears, and fresh and paraffin-embedded tissue. Despite the growing number of commercially available FISH probes, still for large number of gene loci or chromosomal regions commercial probes are not available. Here we describe a simple method for generating FISH probes using bacterial artificial chromosomes (BAC). Due to genome-wide coverage of BAC clones, there are almost unlimited possibilities for the analysis of any genomic regions using BAC FISH probes.
Collapse
|
91
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
92
|
Bayesian inference of chromatin structure ensembles from population-averaged contact data. Proc Natl Acad Sci U S A 2020; 117:7824-7830. [PMID: 32193349 DOI: 10.1073/pnas.1910364117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mounting experimental evidence suggests a role for the spatial organization of chromatin in crucial processes of the cell nucleus such as transcription regulation. Chromosome conformation capture techniques allow us to characterize chromatin structure by mapping contacts between chromosomal loci on a genome-wide scale. The most widespread modality is to measure contact frequencies averaged over a population of cells. Single-cell variants exist, but suffer from low contact numbers and have not yet gained the same resolution as population methods. While intriguing biological insights have already been garnered from ensemble-averaged data, information about three-dimensional (3D) genome organization in the underlying individual cells remains largely obscured because the contact maps show only an average over a huge population of cells. Moreover, computational methods for structure modeling of chromatin have mostly focused on fitting a single consensus structure, thereby ignoring any cell-to-cell variability in the model itself. Here, we propose a fully Bayesian method to infer ensembles of chromatin structures and to determine the optimal number of states in a principled, objective way. We illustrate our approach on simulated data and compute multistate models of chromatin from chromosome conformation capture carbon copy (5C) data. Comparison with independent data suggests that the inferred ensembles represent the underlying sample population faithfully. Harnessing the rich information contained in multistate models, we investigate cell-to-cell variability of chromatin organization into topologically associating domains, thus highlighting the ability of our approach to deliver insights into chromatin organization of great biological relevance.
Collapse
|
93
|
Balachandran P, Beck CR. Structural variant identification and characterization. Chromosome Res 2020; 28:31-47. [PMID: 31907725 PMCID: PMC7131885 DOI: 10.1007/s10577-019-09623-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023]
Abstract
Structural variant (SV) differences between human genomes can cause germline and mosaic disease as well as inter-individual variation. De-regulation of accurate DNA repair and genomic surveillance mechanisms results in a large number of SVs in cancer. Analysis of the DNA sequences at SV breakpoints can help identify pathways of mutagenesis and regions of the genome that are more susceptible to rearrangement. Large-scale SV analyses have been enabled by high-throughput genome-level sequencing on humans in the past decade. These studies have shed light on the mechanisms and prevalence of complex genomic rearrangements. Recent advancements in both sequencing and other mapping technologies as well as calling algorithms for detection of genomic rearrangements have helped propel SV detection into population-scale studies, and have begun to elucidate previously inaccessible regions of the genome. Here, we discuss the genomic organization of simple and complex SVs, the molecular mechanisms of their formation, and various ways to detect them. We also introduce methods for characterizing SVs and their consequences on human genomes.
Collapse
Affiliation(s)
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
94
|
Lackey HH, Chen Z, Harris JM, Peterson EM, Heemstra JM. Single-Molecule Kinetics Show DNA Pyrimidine Content Strongly Affects RNA:DNA and TNA:DNA Heteroduplex Dissociation Rates. ACS Synth Biol 2020; 9:249-253. [PMID: 31909980 DOI: 10.1021/acssynbio.9b00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heteroduplex hybridization thermodynamics of DNA with either RNA or TNA are greatly affected by DNA pyrimidine content, where increased DNA pyrimidine content leads to significantly increased duplex stability. Little is known, however, about the effect that purine or pyrimidine content has on the hybridization kinetics of these duplexes. In this work, single-molecule imaging is used to measure the hybridization kinetics of oligonucleotides having varying DNA pyrimidine content with complementary DNA, RNA, and TNA sequences. Results suggest that the change in duplex stability from DNA pyrimidine content (corresponding to purine content in the complementary TNA or RNA) is primarily due to changes in the dissociation rate, and not single-strand ordering or other structural changes that increase the association rate. Decreases in heteroduplex hybridization rates with pyrimidine content are similar for RNA and TNA, indicating that TNA behaves as a kinetic analogue for RNA.
Collapse
Affiliation(s)
- Hershel H. Lackey
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhe Chen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric M. Peterson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
95
|
Chatterjee T, Li Z, Khanna K, Montoya K, Tewari M, Walter NG, Johnson-Buck A. Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules. Trends Analyt Chem 2020; 123:115764. [PMID: 32863484 PMCID: PMC7451408 DOI: 10.1016/j.trac.2019.115764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The detection and quantification of biomarkers have numerous applications in biological research and medicine. The most widely used methods to detect nucleic acids require amplification via the polymerase chain reaction (PCR). However, errors arising from the imperfect copying fidelity of DNA polymerases, limited specificity of primers, and heat-induced damage reduce the specificity of PCR-based methods, particularly for single-nucleotide variants. Furthermore, not all analytes can be amplified efficiently. While amplification-free methods avoid these pitfalls, the specificity of most such methods is strictly constrained by probe binding thermodynamics, which for example hampers detection of rare somatic mutations. In contrast, single-molecule recognition through equilibrium Poisson sampling (SiMREPS) provides ultraspecific detection with single-molecule and single-nucleotide sensitivity by monitoring the repetitive interactions of a fluorescent probe with surface-immobilized targets. In this review, we discuss SiMREPS in comparison with other analytical approaches, and describe its utility in quantifying a range of nucleic acids and other analytes.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kunal Khanna
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Karen Montoya
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
96
|
Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R. The Formation of Sex Chromosomes in Silene latifolia and S. dioica Was Accompanied by Multiple Chromosomal Rearrangements. FRONTIERS IN PLANT SCIENCE 2020; 11:205. [PMID: 32180787 PMCID: PMC7059608 DOI: 10.3389/fpls.2020.00205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 05/02/2023]
Abstract
The genus Silene includes a plethora of dioecious and gynodioecious species. Two species, Silene latifolia (white campion) and Silene dioica (red campion), are dioecious plants, having heteromorphic sex chromosomes with an XX/XY sex determination system. The X and Y chromosomes differ mainly in size, DNA content and posttranslational histone modifications. Although it is generally assumed that the sex chromosomes evolved from a single pair of autosomes, it is difficult to distinguish the ancestral pair of chromosomes in related gynodioecious and hermaphroditic plants. We designed an oligo painting probe enriched for X-linked scaffolds from currently available genomic data and used this probe on metaphase chromosomes of S. latifolia (2n = 24, XY), S. dioica (2n = 24, XY), and two gynodioecious species, S. vulgaris (2n = 24) and S. maritima (2n = 24). The X chromosome-specific oligo probe produces a signal specifically on the X and Y chromosomes in S. latifolia and S. dioica, mainly in the subtelomeric regions. Surprisingly, in S. vulgaris and S. maritima, the probe hybridized to three pairs of autosomes labeling their p-arms. This distribution suggests that sex chromosome evolution was accompanied by extensive chromosomal rearrangements in studied dioecious plants.
Collapse
Affiliation(s)
- Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- *Correspondence: Václav Bačovský,
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Roman Hobza,
| |
Collapse
|
97
|
Li CC, Li Y, Zhang Y, Zhang CY. Single-molecule fluorescence resonance energy transfer and its biomedical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
98
|
Qing Z, Hu J, Xu J, Zou Z, Lei Y, Qing T, Yang R. An intramolecular catalytic hairpin assembly on a DNA tetrahedron for mRNA imaging in living cells: improving reaction kinetics and signal stability. Chem Sci 2019; 11:1985-1990. [PMID: 34123293 PMCID: PMC8148388 DOI: 10.1039/c9sc04916a] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzyme-free amplification techniques based on dynamic DNA self-assembly (DDSA) have recently been developed for the in situ detection of mRNA in living cells. However, signal generation in traditional DDSA amplifiers is mainly dependent on the random diffusion of dissociative probes in a bulk solution, which is generally accompanied by poor kinetics and interference from complex biological systems. In this work, a new amplifier based on the design of an intramolecular catalytic hairpin assembly (intra-CHA) is proposed for the FRET imaging of mRNA in living cells. Compared with that in the free catalytic hairpin assembly (free-CHA), probes H1 and H2 in intra-CHA were simultaneously fixed on a DNA tetrahedron. The distance between them was closer, the local concentration of H1 and H2 in intra-CHA was theoretically approximately 808-times higher than that in free-CHA, and the initial reaction rate was enhanced 15.6 fold. Due to the spatial confinement effect, the reaction kinetics for target-catalyzed signal generation were significantly improved. By virtue of the three-dimensional nanostructure, H1 and H2 in the intra-CHA amplifier entered cells without any transfection or nanocarrier, and the probes and their products were free from biological interference, providing much higher signal stability for the reliable imaging of mRNA in living cells. An intramolecular catalytic hairpin assembly is implemented on a DNA tetrahedron for mRNA imaging in living cells. The spatial confinement effect enables the acceleration of target-triggered signal generation, with excellent cell permeability and FRET signal stability.![]()
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology Changsha 410114 P. R. China
| | - Jinlei Hu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology Changsha 410114 P. R. China
| | - Jingyuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology Changsha 410114 P. R. China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology Changsha 410114 P. R. China
| | - Yanli Lei
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology Changsha 410114 P. R. China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University Xiangtan 411105 P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology Changsha 410114 P. R. China
| |
Collapse
|
99
|
Rojano E, Seoane P, Ranea JAG, Perkins JR. Regulatory variants: from detection to predicting impact. Brief Bioinform 2019; 20:1639-1654. [PMID: 29893792 PMCID: PMC6917219 DOI: 10.1093/bib/bby039] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/18/2018] [Indexed: 02/01/2023] Open
Abstract
Variants within non-coding genomic regions can greatly affect disease. In recent years, increasing focus has been given to these variants, and how they can alter regulatory elements, such as enhancers, transcription factor binding sites and DNA methylation regions. Such variants can be considered regulatory variants. Concurrently, much effort has been put into establishing international consortia to undertake large projects aimed at discovering regulatory elements in different tissues, cell lines and organisms, and probing the effects of genetic variants on regulation by measuring gene expression. Here, we describe methods and techniques for discovering disease-associated non-coding variants using sequencing technologies. We then explain the computational procedures that can be used for annotating these variants using the information from the aforementioned projects, and prediction of their putative effects, including potential pathogenicity, based on rule-based and machine learning approaches. We provide the details of techniques to validate these predictions, by mapping chromatin-chromatin and chromatin-protein interactions, and introduce Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein 9 (CRISPR-Cas9) technology, which has already been used in this field and is likely to have a big impact on its future evolution. We also give examples of regulatory variants associated with multiple complex diseases. This review is aimed at bioinformaticians interested in the characterization of regulatory variants, molecular biologists and geneticists interested in understanding more about the nature and potential role of such variants from a functional point of views, and clinicians who may wish to learn about variants in non-coding genomic regions associated with a given disease and find out what to do next to uncover how they impact on the underlying mechanisms.
Collapse
Affiliation(s)
- Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Malaga (UMA), 29010 Malaga, Spain
| | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, University of Malaga (UMA), 29010 Malaga, Spain
| | - Juan A G Ranea
- CIBER de Enfermedades Raras, ISCIII, Madrid, Spain and Department of Molecular Biology and Biochemistry, University of Malaga (UMA), 29010 Malaga, Spain
| | - James R Perkins
- Research laboratory, IBIMA-Regional University Hospital of Malaga, UMA, Malaga 29009, Spain
| |
Collapse
|
100
|
Cytogenetics and Cytogenomics Evaluation in Cancer. Int J Mol Sci 2019; 20:ijms20194711. [PMID: 31547595 PMCID: PMC6801775 DOI: 10.3390/ijms20194711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
The availability of cytogenetics and cytogenomics technologies improved the detection and identification of tumor molecular signatures as well as the understanding of cancer initiation and progression. The use of large-scale and high-throughput cytogenomics technologies has led to a fast identification of several cancer candidate biomarkers associated with diagnosis, prognosis, and therapeutics. The advent of array comparative genomic hybridization and next-generation sequencing technologies has significantly improved the knowledge about cancer biology, underlining driver genes to guide targeted therapy development, drug-resistance prediction, and pharmacogenetics. However, few of these candidate biomarkers have made the transition to the clinic with a clear benefit for the patients. Technological progress helped to demonstrate that cellular heterogeneity plays a significant role in tumor progression and resistance/sensitivity to cancer therapies, representing the major challenge of precision cancer therapy. A paradigm shift has been introduced in cancer genomics with the recent advent of single-cell sequencing, since it presents a lot of applications with a clear benefit to oncological patients, namely, detection of intra-tumoral heterogeneity, mapping clonal evolution, monitoring the development of therapy resistance, and detection of rare tumor cell populations. It seems now evident that no single biomarker could provide the whole information necessary to early detect and predict the behavior and prognosis of tumors. The promise of precision medicine is based on the molecular profiling of tumors being vital the continuous progress of high-throughput technologies and the multidisciplinary efforts to catalogue chromosomal rearrangements and genomic alterations of human cancers and to do a good interpretation of the relation genotype-phenotype.
Collapse
|