51
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 438] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
52
|
Bylińska A, Wilczyńska K, Malejczyk J, Milewski Ł, Wagner M, Jasek M, Niepiekło-Miniewska W, Wiśniewski A, Płoski R, Barcz E, Roszkowski P, Kamiński P, Malinowski A, Wilczyński JR, Radwan P, Radwan M, Kuśnierczyk P, Nowak I. The impact of HLA-G, LILRB1 and LILRB2 gene polymorphisms on susceptibility to and severity of endometriosis. Mol Genet Genomics 2017; 293:601-613. [PMID: 29234882 PMCID: PMC5948266 DOI: 10.1007/s00438-017-1404-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
Endometriosis is a disease in which endometriotic tissue occurs outside the uterus. Its pathogenesis is still unknown. The most widespread hypothesis claims that ectopic endometrium appears as a result of retrograde menstruation and its insufficient elimination by immunocytes. Some reports have shown expression of non-classical HLA-G molecules on ectopic endometrium. HLA-G is recognized by KIR2DL4, LILRB1 and LILRB2 receptors on natural killer (NK) and other cells. These receptors are polymorphic, which may affect their activity. In this study we investigated whether HLA-G, KIR2DL4, LILRB1 and LILRB2 polymorphisms may influence susceptibility to endometriosis and disease progression. We used polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP) and allelic discrimination methods with TaqMan SNP Genotyping Assays for typing of 276 patients with endometriosis and 314 healthy fertile women. The HLA-G rs1632947:GG genotype was associated with protection against the disease and its severe stages; HLA-G rs1233334:CT protected against progression; LILRB1 rs41308748:AA and LILRB2 rs383369:AG predisposed to the disease and its progression. No effect of KIR2DL4 polymorphism was observed. These results support the role of polymorphisms of HLA-G and its receptors LILRB1 and LILRB2 in susceptibility to endometriosis and its progression.
Collapse
Affiliation(s)
- Aleksandra Bylińska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Karolina Wilczyńska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Centre of Biostructure Research, Medical University of Warsaw, ul. Chałubińskiego 5, 02-004, Warszawa, Poland
| | - Łukasz Milewski
- Department of Histology and Embryology, Centre of Biostructure Research, Medical University of Warsaw, ul. Chałubińskiego 5, 02-004, Warszawa, Poland
| | - Marta Wagner
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Monika Jasek
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Andrzej Wiśniewski
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Centre of Biostructure Research, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106, Warszawa, Poland
| | - Ewa Barcz
- First Chair and Clinic of Obstetrics and Gynecology, Medical University of Warsaw, Pl. Starynkiewcza 1/3, 02-015, Warszawa, Poland
| | - Piotr Roszkowski
- Second Clinic of Obstetrics and Gynecology, Medical University of Warsaw, ul. Karowa 2, 00-315, Warszawa, Poland
| | - Paweł Kamiński
- Department of Gynecology and Gynecological Oncology, Military Medical Institute, Central Clinical Hospital of Ministry of Defence, ul. Szaserów 128, 04-141, Warszawa, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers' Memorial Hospital-Research Institute, ul. Rzgowska 281/289, 93-338, Łódź, Poland
| | - Jacek R Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, Al. Kościuszki 4, 90-419, Łódź, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, ul. Rudzka 34/36, 95-030, Rzgów, Poland.,Biogeno - Regional Science-Technology Centre, Podzamcze 45, 26-060 Chęciny Kielce, Podzamcze, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, ul. Rudzka 34/36, 95-030, Rzgów, Poland.,Faculty of Health Sciences, The State University of Applied Sciences in Plock, Plac Dąbrowskiego 2, 09-402, Płock, Poland
| | - Piotr Kuśnierczyk
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| | - Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| |
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. RECENT FINDINGS Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.
Collapse
|
54
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
55
|
Nowak I, Wilczyńska K, Wilczyński JR, Malinowski A, Radwan P, Radwan M, Kuśnierczyk P. KIR, LILRB and their Ligands' Genes as Potential Biomarkers in Recurrent Implantation Failure. Arch Immunol Ther Exp (Warsz) 2017; 65:391-399. [PMID: 28523429 PMCID: PMC5602049 DOI: 10.1007/s00005-017-0474-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Reproductive failure in humans is a very important social and economic problem, because nowadays women decide to conceive later in life and delay motherhood. Unfortunately, with increasing age they have less chance for natural fertilization and maintenance of pregnancy. Many of them need assisted reproductive technology. Approximately 10% of women after in vitro fertilization-embryo transfers experience recurrent implantation failure (RIF). Multiple factors may contribute to RIF, including oocyte and sperm quality, parental chromosomal anomalies, genetic or metabolic abnormalities of the embryo, poor uterine receptivity, immunological disturbances in the implantation site, and some gynecologic pathologies such as endometriosis, uterine fibroids, hydrosalpinx and endometrial polyps. Moreover, the procedure of in vitro fertilization itself could adversely influence the implantation. Nowadays, many studies are focused on the role of natural killer (NK) cells in normal and pathologic pregnancy because NK cells constitute the dominant cell population in the endometrium and they come in close contact with the allogeneic extravillous trophoblast cells in early pregnancy decidua. The majority of these cells are of CD56bright phenotype. These cells can express killer immunoglobulin-like receptors (KIRs), which, upon recognition of HLA class I molecules (HLA-C and HLA-G) on trophoblasts, may either stimulate or inhibit NK cells to produce soluble factors, and display low cytotoxicity necessary for maintenance of the allogeneic embryo and fetus in the next steps of pregnancy. Moreover, some members of the leukocyte immunoglobulin-like receptor (LILR) family, also named ILT (immunoglobulin-like transcript), are present in the human placenta. LILRB1 (ILT2) was described mainly on stromal cells, while LILRB2 (ILT4), in addition to stromal cells, was also found around vessels in the smooth muscle layer. In this review we focus on the possible role of polymorphism of KIR, LILRB and their ligands (HLA-C, HLA-G) in susceptibility to recurrent implantation failure, which could serve as diagnostic biomarkers of this disease.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| | - Karolina Wilczyńska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Jacek R Wilczyński
- Department of Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Łódź, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers' Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Łódź, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rudzka 34/36, 95-030, Rzgów, Poland.,Biogeno, Regional Science-Technology Centre, Podzamcze 45, 26-060, Chęciny Kielce, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rudzka 34/36, 95-030, Rzgów, Poland
| | - Piotr Kuśnierczyk
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
56
|
Bimber BN, Ramakrishnan R, Cervera-Juanes R, Madhira R, Peterson SM, Norgren RB, Ferguson B. Whole genome sequencing predicts novel human disease models in rhesus macaques. Genomics 2017; 109:214-220. [PMID: 28438488 DOI: 10.1016/j.ygeno.2017.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/23/2022]
Abstract
Rhesus macaques are an important pre-clinical model of human disease. To advance our understanding of genomic variation that may influence disease, we surveyed genome-wide variation in 21 rhesus macaques. We employed best-practice variant calling, validated with Mendelian inheritance. Next, we used alignment data from our cohort to detect genomic regions likely to produce inaccurate genotypes, potentially due to either gene duplication or structural variation between individuals. We generated a final dataset of >16 million high confidence variants, including 13 million in Chinese-origin rhesus macaques, an increasingly important disease model. We detected an average of 131 mutations predicted to severely alter protein coding per animal, and identified 45 such variants that coincide with known pathogenic human variants. These data suggest that expanded screening of existing breeding colonies will identify novel models of human disease, and that increased genomic characterization can help inform research studies in macaques.
Collapse
Affiliation(s)
- Benjamin N Bimber
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Ranjani Ramakrishnan
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Rita Cervera-Juanes
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Ravi Madhira
- Oregon Health & Sciences University, Portland, OR 97239, United States
| | - Samuel M Peterson
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States
| | - Robert B Norgren
- Dept. of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Betsy Ferguson
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, United States.
| |
Collapse
|
57
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|