51
|
Loffredo S, Marone G. Hereditary angioedema: the plasma contact system out of control: comment. J Thromb Haemost 2018; 16:2347-2348. [PMID: 30129093 DOI: 10.1111/jth.14270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- S Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - G Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| |
Collapse
|
52
|
Loffredo S, Ferrara AL, Bova M, Borriello F, Suffritti C, Veszeli N, Petraroli A, Galdiero MR, Varricchi G, Granata F, Zanichelli A, Farkas H, Cicardi M, Lambeau G, Marone G. Secreted Phospholipases A 2 in Hereditary Angioedema With C1-Inhibitor Deficiency. Front Immunol 2018; 9:1721. [PMID: 30083168 PMCID: PMC6064723 DOI: 10.3389/fimmu.2018.01721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hereditary angioedema (HAE) caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein (C1-INH-HAE) is a disabling, potentially fatal condition characterized by recurrent episodes of swelling. We have recently found that patients with C1-INH-HAE have increased plasma levels of vascular endothelial growth factors and angiopoietins (Angs), which have been associated with vascular permeability in several diseases. Among these and other factors, blood endothelial cells and vascular permeability can be modulated by extracellular or secreted phospholipases A2 (sPLA2s). Objective We sought to investigate the enzymatic activity and biological functions of sPLA2 in patients with C1-INH-HAE. Methods sPLA2s enzymatic activity was evaluated in the plasma from 109 adult patients with C1-INH-HAE and 68 healthy donors in symptom-free period and attacks. Plasma level of group IIA sPLA2 (hGIIA) protein was measured in selected samples. The effect of C1-INH-HAE plasma on endothelial permeability was examined in vitro using a vascular permeability assay. The role of hGIIA was determined using highly specific sPLA2 indole inhibitors. The effect of recombinant hGIIA on C1-INH activity was examined in vitro by functional assay. Results Plasma sPLA2 activity and hGIIA levels are increased in symptom-free C1-INH-HAE patients compared with controls. sPLA2 activity negatively correlates with C1-INH protein level and function. C1-INH-HAE plasma increases endothelial permeability in vitro, and this effect is partially reverted by a specific hGIIA enzymatic inhibitor. Finally, recombinant hGIIA inhibits C1-INH activity in vitro. Conclusion sPLA2 enzymatic activity (likely attributable to hGIIA), which is increased in C1-INH-HAE patients, can promote vascular permeability and impairs C1-INH activity. Our results may pave the way for investigating the functions of sPLA2s (in particular, hGIIA) in the pathophysiology of C1-INH-HAE and may inform the development of new therapeutic targets.
Collapse
Affiliation(s)
- Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Maria Bova
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy.,Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chiara Suffritti
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Nóra Veszeli
- Hungarian Angioedema Center, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Angelica Petraroli
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Andrea Zanichelli
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Henriette Farkas
- Hungarian Angioedema Center, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gianni Marone
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| |
Collapse
|
53
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
54
|
Moldobaeva A, Zhong Q, Eldridge L, Wagner EM. CD11b + interstitial macrophages are required for ischemia-induced lung angiogenesis. Physiol Rep 2018; 6:e13721. [PMID: 29894584 PMCID: PMC5997213 DOI: 10.14814/phy2.13721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/13/2023] Open
Abstract
The importance of myeloid cells in promoting neovascularization has been shown in a number of pathological settings in several organs. However, the specific role of macrophages in promoting systemic angiogenesis during pulmonary ischemia is not fully determined. Our past work suggested that cells of monocytic lineage contributed to systemic angiogenesis in the lung since clodronate-induced depletion of all macrophages resulted in attenuated neovascularization. Our current goals were to define the population of macrophages important for systemic vessel growth into the lung after the onset of pulmonary ischemia in mice. Interstitial macrophages (CD64+ MerTK+ CD11b+ ) increased significantly as did the percent of CD45+ Ly6G+ neutrophils 1 day after the induction of left lung ischemia, despite the fact there was limited cell recruitment due to complete obstruction of the left pulmonary artery in this ischemia model. Since both interstitial macrophages and neutrophils express CD11b, we used CD11b+ DTR mice and showed the critical role for these cells since CD11b+ depleted mice showed no systemic angiogenesis 7 days after the onset of ischemia when compared to control mice. Coculture of mouse aortic endothelial cells with macrophages showed increased proliferation relative to endothelial cells in culture without inflammatory cells, or pulmonary artery endothelial cells. We conclude that CD11b+ leukocytes, trapped within the lung at the onset of ischemia, contribute to growth factor release, and are critical for new blood vessel proliferation.
Collapse
Affiliation(s)
- Aigul Moldobaeva
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| | - Qiong Zhong
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| | - Lindsey Eldridge
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| | - Elizabeth M. Wagner
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| |
Collapse
|
55
|
Varricchi G, Loffredo S, Galdiero MR, Marone G, Cristinziano L, Granata F, Marone G. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol 2018; 53:152-160. [PMID: 29778674 DOI: 10.1016/j.coi.2018.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Angiogenesis and lymphangiogenesis are distinct and complex processes requiring a finely tuned balance between stimulatory and inhibitory signals. During adulthood, angiogenesis and lymphangiogenesis are activated at sites of tumor growth, tissue injury and remodeling, and chronic inflammation. Vascular endothelial growth factors (VEGFs), angiopoietin (ANGPTs) and a multitude of additional signaling molecules play distinct roles in the modulation of angiogenesis/lymphangiogenesis. VEGFs and ANGPTs activate specific tyrosine kinase receptor (e.g., VEGFR1, VEGFR-2, VEGFR-3 and TIE2 respectively), expressed on blood endothelial cells (angiogenesis) and lymphatic endothelial cells (lymphangiogenesis). Although tumor cells produce VEGFs and other proangiogenic mediators, tissue resident (e.g., macrophages, mast cells) and circulating immune cells (e.g., basophils, neutrophils, monocytes, eosinophils) are an important source of angiogenic/lymphangiogenic mediators in inflammation and in tumor microenvironment and at site of chronic inflammation. Certain immune cells can also release anti-angiogenic factors. Mast cells, basophils, neutrophils and presumably other immune cells are not only a source of angiogenic/lymphangiogenic molecules, but also their target. Cells of the immune system need consideration as major players and possible targets for therapeutic manipulation of angiogenesis/lymphangiogenesis in chronic inflammatory disorders and tumors.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy.
| | - Stefania Loffredo
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, Section of Hygiene, University of Naples Federico II, Naples, Italy; Monaldi Hospital Pharmacy, Naples, Italy
| | - Leonardo Cristinziano
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy
| | - Francescopaolo Granata
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, Naples, Italy.
| |
Collapse
|
56
|
Albini A, Bruno A, Noonan DM, Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front Immunol 2018; 9:527. [PMID: 29675018 PMCID: PMC5895776 DOI: 10.3389/fimmu.2018.00527] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs) and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF) and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
57
|
Galdiero MR, Varricchi G, Loffredo S, Mantovani A, Marone G. Roles of neutrophils in cancer growth and progression. J Leukoc Biol 2017; 103:457-464. [DOI: 10.1002/jlb.3mr0717-292r] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Milan Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS); National Research Council (CNR); Naples Italy
| |
Collapse
|
58
|
Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2017; 7:e1393134. [PMID: 29308325 DOI: 10.1080/2162402x.2017.1393134] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of a cancer. Eosinophils are components of the immune microenvironment that modulates tumor initiation and progression. Although canonically associated with a detrimental role in allergic disorders, these cells can induce a protective immune response against helminthes, viral and bacterial pathogens. Eosinophils are a source of anti-tumorigenic (e.g., TNF-α, granzyme, cationic proteins, and IL-18) and protumorigenic molecules (e.g., pro-angiogenic factors) depending on the milieu. In several neoplasias (e.g., melanoma, gastric, colorectal, oral and prostate cancer) eosinophils play an anti-tumorigenic role, in others (e.g., Hodgkin's lymphoma, cervical carcinoma) have been linked to poor prognosis, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of eosinophils and their mediators could be cancer-dependent. The microlocalization (e.g., peritumoral vs intratumoral) of eosinophils could be another important aspect in the initiation/progression of solid and hematological tumors. Increasing evidence in experimental models indicates that activation/recruitment of eosinophils could represent a new therapeutic strategy for certain tumors (e.g., melanoma). Many unanswered questions should be addressed before we understand whether eosinophils are an ally, adversary or neutral bystanders in different types of human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
59
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|