51
|
Martinsen A, Tejera N, Vauzour D, Harden G, Dick J, Shinde S, Barden A, Mori TA, Minihane AM. Altered SPMs and age-associated decrease in brain DHA in APOE4 female mice. FASEB J 2019; 33:10315-10326. [PMID: 31251078 DOI: 10.1096/fj.201900423r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An apolipoprotein E (APOE) 4 genotype is the most important, common genetic determinant for Alzheimer disease (AD), and female APOE4 carriers present with an increased risk compared with males. The study quantified cortical and hippocampal fatty acid and phospholipid profiles along with select eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-derived specialized proresolving mediators (SPMs) in 2-, 9-, and 18-mo-old APOE3 and APOE4 male and female mice. A 10% lower cortical DHA was evident in APOE4 females at 18 mo compared with 2 mo, with no significant decrease in APOE3 or APOE4 males. This decrease was associated with a reduction in DHA-phosphatidylethanolamine. Older APOE4 females had a 15% higher oleic acid content compared with young mice. Although no sex*APOE genotype interactions were observed for SPMs expressed as a ratio of their parent compound, higher cortical 18R/S-hydroxy-5Z,8Z,11Z,14Z,16E-EPA, resolvin D3, protectin D1, 10S,17S-dihydroxy-4Z,7Z,11E,13E,15Z,19Z-DHA (10S,17S-diHDHA), maresin 1, 17S-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-DHA, and 14S-hydroxy-4Z,7Z,10Z,12E,16Z,19Z-DHA were evident in females, and lower cortical 17R-resolvin D1, 10S,17S-diHDHA, and 18-HEPE in APOE4. Our findings show a strong association between age, female sex, and an APOE4 genotype, with decreased cortical DHA and a number of SPMs, which together may contribute to the development of cognitive decline and AD pathology.-Martinsen, A., Tejera, N., Vauzour, D., Harden, G., Dick, J., Shinde, S., Barden, A., Mori, T. A., Minihane, A. M. Altered SPMs and age-associated decrease in brain DHA in APOE4 female mice.
Collapse
Affiliation(s)
- Anneloes Martinsen
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Glenn Harden
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - James Dick
- Nutrition Analytical Service, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sujata Shinde
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Anne Barden
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
52
|
Jović M, Lončarević-Vasiljković N, Ivković S, Dinić J, Milanović D, Zlokovic B, Kanazir S. Short-term fish oil supplementation applied in presymptomatic stage of Alzheimer's disease enhances microglial/macrophage barrier and prevents neuritic dystrophy in parietal cortex of 5xFAD mouse model. PLoS One 2019; 14:e0216726. [PMID: 31095617 PMCID: PMC6522015 DOI: 10.1371/journal.pone.0216726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Dystrophic neurites and activated microglia are one of the main neuropathological characteristics of Alzheimer's disease (AD). Although the use of supplements with omega-3 fatty acids has been associated with reduced risk and lessened AD pathology, it still remains elusive whether such a treatment could affect dystrophic neurites (DNs) formation and microglia/macrophage behavior in the early phase of disease. We analyzed the effects of short-term (3 weeks) fish oil supplementation on DNs formation, tau hyperphosphorylation, Amyloid-beta peptide 1–42 (Aβ42) levels and microglial/macrophage response to AD pathology in the parietal cortex of 4-month-old 5xFAD mice, a mouse model of AD. The present study shows for the first time that short-term FO supplementation applied in presymptomatic stage of AD, alters the behaviour of microglia/macrophages prompting them to establish a physical barrier around amyloid plaques. This barrier significantly suppresses DNs formation through the reduction of both Aβ content and tau hyperphosphorylation. Moreover, the short-term FO treatment neither suppresses inflammation nor enhances phagocytic properties of microglia/macrophages in the response to Aβ pathology, the effects most commonly attributed to the fish oil supplementation. Our findings suggest that fish oil consumption may play an important role in modulating microglial/macrophage response and ameliorating the AD pathology in presymptomatic stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Milena Jović
- Department of Neurobiology, Institute for Biological Research ‘Sinisa Stankovic’, University of Belgrade, Belgrade, Serbia
| | - Nataša Lončarević-Vasiljković
- Department of Neurobiology, Institute for Biological Research ‘Sinisa Stankovic’, University of Belgrade, Belgrade, Serbia
- * E-mail: (NLV); (SK)
| | - Sanja Ivković
- Department of Neurobiology, Institute for Biological Research ‘Sinisa Stankovic’, University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research ‘Sinisa Stankovic’, University of Belgrade, Belgrade, Serbia
| | - Desanka Milanović
- Department of Neurobiology, Institute for Biological Research ‘Sinisa Stankovic’, University of Belgrade, Belgrade, Serbia
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research ‘Sinisa Stankovic’, University of Belgrade, Belgrade, Serbia
- * E-mail: (NLV); (SK)
| |
Collapse
|
53
|
Zheng Y, Ning P, Luo Q, He Y, Yu X, Liu X, Chen Y, Wang X, Kang Y, Gao Z. Inflammatory responses relate to distinct bronchoalveolar lavage lipidome in community-acquired pneumonia patients: a pilot study. Respir Res 2019; 20:82. [PMID: 31046764 PMCID: PMC6498485 DOI: 10.1186/s12931-019-1028-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Antibiotics are losing their effectiveness due to the emerging infectious diseases, the scarcity of novel antibiotics, and the contributions of antibiotic misuse and overuse to resistance. Characterization of the lipidomic response to pneumonia and exploring the “lipidomic phenotype” can provide new insight into the underlying mechanisms of pathogenesis and potential avenues for diagnostic and therapeutic treatments. Methods Lipid profiles of bronchoalveolar lavage fluid (BALF) samples were generated through untargeted lipidomic profiling analysis using high-performance liquid chromatography with mass spectrometry (HPLC-MS). Principal component analysis (PCA) was applied to identify possible sources of variations among samples. Partitioning clustering analysis (k-means) was employed to evaluate the existence of distinct lipidomic clusters. Results PCA showed that BALF lipidomes differed significantly between CAP (n = 52) and controls (n = 68, including 35 healthy volunteers and 33 patients with non-infectious lung diseases); while no clear separation was found between severe CAP and non-severe CAP cases. Lactosylceramides were the most prominently elevated lipid constituent in CAP. Clustering analysis revealed three separate lipid profiles; subjects in each cluster exhibited significant differences in disease severity, incidence of hypoxemia, percentages of phagocytes in BALF, and serum concentrations of albumin and total cholesterol (all p < 0.05). In addition, SM (d34:1) was negatively related to macrophage (adjusted r = − 0.462, p < 0.0001) and PE (18:1p/20:4) was positively correlated with polymorphonuclear neutrophil (PMN) percentages of BALF (adjusted r = 0.541, p < 0.0001). The 30-day mortality did not differ amongst three clusters (p < 0.05). Conclusions Our data suggest that specific lower airway lipid composition is related to different intensities of host inflammatory responses, and may contribute to functionally relevant shifts in disease pathogenesis in CAP individuals. These findings argue for the need to tailor therapy based on specific lipid profiles and related inflammatory status. Trial registration ClinicalTrials.gov (NCT03093220). Registered on 28 March 2017 (retrospectively registered). Electronic supplementary material The online version of this article (10.1186/s12931-019-1028-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yali Zheng
- Department of Pulmonary and Critical Care, Peking University People's Hospital, Beijing, China
| | - Pu Ning
- Department of Pulmonary and Critical Care, Peking University People's Hospital, Beijing, China.,Department of Pulmonary and Critical Care, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiongzhen Luo
- Department of Pulmonary and Critical Care, Peking University People's Hospital, Beijing, China
| | - Yukun He
- Department of Pulmonary and Critical Care, Peking University People's Hospital, Beijing, China
| | - Xu Yu
- Department of Pulmonary and Critical Care, Peking University People's Hospital, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, Beijing, China
| | - Yusheng Chen
- Department of Pulmonary and Critical Care, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaorong Wang
- Department of Pulmonary and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
54
|
van der Willik KD, Fani L, Rizopoulos D, Licher S, Fest J, Schagen SB, Ikram MK, Ikram MA. Balance between innate versus adaptive immune system and the risk of dementia: a population-based cohort study. J Neuroinflammation 2019; 16:68. [PMID: 30927918 PMCID: PMC6441146 DOI: 10.1186/s12974-019-1454-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Immunity has been suggested to be important in the pathogenesis of dementia. However, the contribution of innate versus adaptive immunity in the development of dementia is not clear. In this study, we aimed to investigate (1) the association between components of innate immunity (granulocytes and platelets) and adaptive immunity (lymphocytes) with risk of dementia and (2) the association between their derived ratios (granulocyte-to-lymphocyte ratio [GLR], platelet-to-lymphocyte ratio [PLR], and systemic immune-inflammation index [SII]), reflecting the balance between innate and adaptive immunity, with risk of dementia. Methods Blood cell counts were measured repeatedly between 2002 and 2015 in dementia-free participants of the prospective population-based Rotterdam Study. Participants were followed-up for dementia until 1 January 2016. Joint models were used to determine the association between granulocyte, platelets, and lymphocyte counts, and their derived ratios with risk of dementia. Results Of the 8313 participants (mean [standard deviation] age 61.1 [7.4] years, 56.9% women), 664 (8.0%) developed dementia during a median follow-up of 8.6 years. Doubling of granulocyte and platelet counts tended to be associated with an increased risk of dementia (HR [95%CI] 1.22 [0.89–1.67] and 1.45 [1.07–1.95], respectively). Doubling of the derived ratios GLR, PLR, and SII were all associated with an increased dementia risk (HR [95%CI] 1.26 [1.03–1.53], 1.27 [1.05–1.53], and 1.15 [0.98–1.34], respectively). Conclusions GLR, PLR, and SII are associated with an increased risk of dementia in the general population. This supports the role of an imbalance in the immune system towards innate immunity in the pathogenesis of dementia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1454-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly D van der Willik
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands.,Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Silvan Licher
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Jesse Fest
- Department of Surgery, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000CA, Rotterdam, the Netherlands.
| |
Collapse
|
55
|
Yang T, Terrando N. The Evolving Role of Specialized Pro-resolving Mediators in Modulating Neuroinflammation in Perioperative Neurocognitive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:27-35. [PMID: 31562619 DOI: 10.1007/978-3-030-21735-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surgery can be a life-saving procedure; however, significant complications may occur after routine procedures especially in older and more frail patients. Perioperative neurocognitive disorders (PNDs), including delirium and postoperative cognitive dysfunction, are the most common complications in older adults following common procedures such as orthopedic or cardiac surgery. The consequences of PNDs can be devastating, with longer in-hospital stay, poorer prognosis, and higher mortality rates. Inflammation is gaining considerable interest as a critical driver of cognitive deficits. In this regard, resolution of inflammation, once thought to be a passive process, may provide novel approaches to treat neuroinflammation and PNDs. Herein we review the role for impaired resolution after surgery and the growing role of specialized pro-resolving mediators (SPMs) in regulating postoperative neuroinflammation and neurological complications after surgery.
Collapse
Affiliation(s)
- Ting Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
56
|
Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci 2019; 59:6-11. [DOI: 10.1016/j.jocn.2018.10.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
|
57
|
Sollini M, Berchiolli R, Kirienko M, Rossi A, Glaudemans AWJM, Slart R, Erba PA. PET/MRI in Infection and Inflammation. Semin Nucl Med 2018; 48:225-241. [PMID: 29626940 DOI: 10.1053/j.semnuclmed.2018.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) systems are now more and more available for clinical use. PET/MR combines the unique features of MR including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most of the evidence of the potential clinical utility of PET/MRI is available for neuroimaging. Other areas, where PET/MR can play a larger role include head and neck, upper abdominal, and pelvic tumours. Although the role of PET/MR in infection and inflammation of the cardiovascular system and in musculoskeletal applications are promising, these areas of clinical investigation are still in the early phase and it may be a little longer before these areas reach their full potential in clinical practice. In this review, we outline the potential of hybrid PET/MR for imaging infection and inflammation. A background to the main radiopharmaceuticals and some technical considerations are also included.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Raffaella Berchiolli
- Vascular Surgery Unit Department of Translational Research and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - A W J M Glaudemans
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands
| | - Riemer Slart
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands.; University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging, Enschede, The Netherlands
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and Advanced, Technologies in Medicine, University of Pisa, Pisa, Italy..
| |
Collapse
|
58
|
Doyle R, Sadlier DM, Godson C. Pro-resolving lipid mediators: Agents of anti-ageing? Semin Immunol 2018; 40:36-48. [PMID: 30293857 DOI: 10.1016/j.smim.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential response to injury and its timely and adequate resolution permits tissue repair and avoidance of chronic inflammation. Ageing is associated with increased inflammation, sub-optimal resolution and these act as drivers for a number of ageing-associated pathologies. We describe the role played by specialised proresolving lipid mediators (SPMs) in the resolution of inflammation and how insufficient levels of these mediators, or compromised responsiveness may play a role in the pathogenesis of many ageing-associated pathologies, e.g. Alzheimer's Disease, atherosclerosis, obesity, diabetes and kidney disease. Detailed examination of the resolution phase of inflammation highlights the potential to harness these lipid mediators and or mimetics of their bioactions, in particular, their synthetic analogues to promote effective resolution of inflammation, without compromising the host immune system.
Collapse
Affiliation(s)
- Ross Doyle
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Mater Misericordiae University Hospital, Eccles St., Inns Quay, Dublin 7, Ireland.
| | - Denise M Sadlier
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Mater Misericordiae University Hospital, Eccles St., Inns Quay, Dublin 7, Ireland
| | - Catherine Godson
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
59
|
Alzheimer's disease in the omics era. Clin Biochem 2018; 59:9-16. [DOI: 10.1016/j.clinbiochem.2018.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
60
|
Franceschi C, Ostan R, Santoro A. Nutrition and Inflammation: Are Centenarians Similar to Individuals on Calorie-Restricted Diets? Annu Rev Nutr 2018; 38:329-356. [DOI: 10.1146/annurev-nutr-082117-051637] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals capable of reaching the extreme limit of human life such as centenarians are characterized by an exceptionally healthy phenotype—that is, a low number of diseases, low blood pressure, optimal metabolic and endocrine parameters, and increased diversity in the gut microbiota—and they are epigenetically younger than their chronological age. We present data suggesting that such a remarkable phenotype is largely similar to that found in adults following a calorie-restricted diet. Interviews with centenarians and historical data on the nutritional and lifestyle habits of Italians during the twentieth century suggest that as children and into adulthood, centenarians lived in an environment that was nonobesogenic, but at the same time the environment did not produce malnutrition. Centenarians appear to be creatures of habit, and we argue that their habit of eating meals at the same time each day favored the maintenance of circadian rhythms, including their sleep cycle. Finally, we argue that centenarians’ chronic inflammatory status, which we dubbed inflammaging, is peculiar, likely adaptive, and less detrimental than in younger people.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rita Ostan
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| |
Collapse
|
61
|
Zhang L, Terrando N, Xu ZZ, Bang S, Jordt SE, Maixner W, Serhan CN, Ji RR. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Front Pharmacol 2018; 9:412. [PMID: 29765320 PMCID: PMC5938385 DOI: 10.3389/fphar.2018.00412] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Physiology, Center of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Sangsu Bang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Sven-Eric Jordt
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Neurology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|