51
|
Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany NY) 2022; 14:1048-1064. [PMID: 35037899 PMCID: PMC8833108 DOI: 10.18632/aging.203833] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/29/2021] [Indexed: 04/21/2023]
Abstract
Drug resistance has become an obstacle to the further development of immunotherapy in clinical applications and experimental studies. In the current review, the acquired resistance to immunotherapy was examined. The mechanisms of acquired resistance were based on three aspects as follows: The change of the tumor functions, the upregulated expression of inhibitory immune checkpoint proteins, and the effects of the tumor microenvironment. The combined use of immunotherapy and other therapies is performed to delay acquired resistance. A comprehensive understanding of acquired drug resistance may provide ideas for solving this dilemma.
Collapse
Affiliation(s)
- Xunrui Chen
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Wenyan Yang
- Medical Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Min Zhou
- Department of Respirtory Medicine, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| |
Collapse
|
52
|
Wen Y, Ouyang D, Chen Q, Zeng L, Luo N, He H, Anwar M, Qu L, Zou Q, Yi W. Prognostic value of tumor mutation burden and the relationship between tumor mutation burden and immune infiltration in HER2+ breast cancer: a gene expression-based study. Gland Surg 2022; 11:100-114. [PMID: 35242673 PMCID: PMC8825527 DOI: 10.21037/gs-21-594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/16/2021] [Indexed: 08/02/2023]
Abstract
BACKGROUND Whether tumor mutation burden (TMB) correlated with improved survival outcomes or promotion of immunotherapies remained controversy in various malignancies. We aimed to explore the prognostic value of TMB and the relationship between TMB and immune infiltration in human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC). METHODS We downloaded somatic mutation data and clinical information for 216 HER2+ BC patients from the The Cancer Genome Atlas (TCGA) and cBioPortal databases. Patients were divided into high- and low-TMB groups through TMB calculation. Cox regression analysis was used to establish an immune- and mutant-related risk model based on 5-hub genes. The relationship between 5-hub genes mutants and the level of immune infiltration, as well as the relationship between the risk model and the immune microenvironment were analyzed by "TIMER" database. RESULTS TMB was negatively correlated with overall survival (OS) and disease-free survival (DFS), and high TMB may inhibit immune infiltration in HER2+ BC. Furthermore, risk score classified effectively patients into low- and high-risk groups in training and validation cohorts. The infiltration of CD4+ T cells and NK cells and the levels of immune checkpoint pathway genes were lower in the high-risk group, which indicated a poor prognosis. CONCLUSIONS Higher TMB correlated with poor survival outcomes and might inhibit the immune infiltrates in HER2+ BC. The 5-hub TMB-related signature conferred lower immune cells infiltration which deserved further validation.
Collapse
Affiliation(s)
- Ying Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongye He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Munawar Anwar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Limeng Qu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
53
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
54
|
Fang W, Wu CH, Sun QL, Gu ZT, Zhu L, Mao T, Zhang XF, Xu N, Lu TP, Tsai MH, Chen LH, Lai LC, Chuang EY. Novel Tumor-Specific Antigens for Immunotherapy Identified From Multi-omics Profiling in Thymic Carcinomas. Front Immunol 2021; 12:748820. [PMID: 34867976 PMCID: PMC8635231 DOI: 10.3389/fimmu.2021.748820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Thymic carcinoma (TC) is the most aggressive thymic epithelial neoplasm. TC patients with microsatellite instability, whole-genome doubling, or alternative tumor-specific antigens from gene fusion are most likely to benefit from immunotherapies. However, due to the rarity of this disease, how to prioritize the putative biomarkers and what constitutes an optimal treatment regimen remains largely unknown. Therefore, we integrated genomic and transcriptomic analyses from TC patients and revealed that frameshift indels in KMT2C and CYLD frequently produce neoantigens. Moreover, a median of 3 fusion-derived neoantigens was predicted across affected patients, especially the CATSPERB-TC2N neoantigens that were recurrently predicted in TC patients. Lastly, potentially actionable alterations with early levels of evidence were uncovered and could be used for designing clinical trials. In summary, this study shed light on our understanding of tumorigenesis and presented new avenues for molecular characterization and immunotherapy in TC.
Collapse
Affiliation(s)
- Wentao Fang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Chia-Hsin Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Qiang-Ling Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China.,Thoracic Cancer institute, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Tao Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Lei Zhu
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Teng Mao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Xue-Fei Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Ning Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.,Master Program for Biomedical Engineering, China Medical University, Taichung, Taiwan
| |
Collapse
|
55
|
Radziuviene G, Rasmusson A, Augulis R, Grineviciute RB, Zilenaite D, Laurinaviciene A, Ostapenko V, Laurinavicius A. Intratumoral Heterogeneity and Immune Response Indicators to Predict Overall Survival in a Retrospective Study of HER2-Borderline (IHC 2+) Breast Cancer Patients. Front Oncol 2021; 11:774088. [PMID: 34858854 PMCID: PMC8631965 DOI: 10.3389/fonc.2021.774088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) categorized as human epidermal growth factor receptor 2 (HER2) borderline [2+ by immunohistochemistry (IHC 2+)] presents challenges for the testing, frequently obscured by intratumoral heterogeneity (ITH). This leads to difficulties in therapy decisions. We aimed to establish prognostic models of overall survival (OS) of these patients, which take into account spatial aspects of ITH and tumor microenvironment by using hexagonal tiling analytics of digital image analysis (DIA). In particular, we assessed the prognostic value of Immunogradient indicators at the tumor–stroma interface zone (IZ) as a feature of antitumor immune response. Surgical excision samples stained for estrogen receptor (ER), progesterone receptor (PR), Ki67, HER2, and CD8 from 275 patients with HER2 IHC 2+ invasive ductal BC were used in the study. DIA outputs were subsampled by HexT for ITH quantification and tumor microenvironment extraction for Immunogradient indicators. Multiple Cox regression revealed HER2 membrane completeness (HER2 MC) (HR: 0.18, p = 0.0007), its spatial entropy (HR: 0.37, p = 0.0341), and ER contrast (HR: 0.21, p = 0.0449) as independent predictors of better OS, with worse OS predicted by pT status (HR: 6.04, p = 0.0014) in the HER2 non-amplified patients. In the HER2-amplified patients, HER2 MC contrast (HR: 0.35, p = 0.0367) and CEP17 copy number (HR: 0.19, p = 0.0035) were independent predictors of better OS along with worse OS predicted by pN status (HR: 4.75, p = 0.0018). In the non-amplified tumors, three Immunogradient indicators provided the independent prognostic value: CD8 density in the tumor aspect of the IZ and CD8 center of mass were associated with better OS (HR: 0.23, p = 0.0079 and 0.14, p = 0.0014, respectively), and CD8 density variance along the tumor edge predicted worse OS (HR: 9.45, p = 0.0002). Combining these three computational indicators of the CD8 cell spatial distribution within the tumor microenvironment augmented prognostic stratification of the patients. In the HER2-amplified group, CD8 cell density in the tumor aspect of the IZ was the only independent immune response feature to predict better OS (HR: 0.22, p = 0.0047). In conclusion, we present novel prognostic models, based on computational ITH and Immunogradient indicators of the IHC biomarkers, in HER2 IHC 2+ BC patients.
Collapse
Affiliation(s)
- Gedmante Radziuviene
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Allan Rasmusson
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Renaldas Augulis
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Ruta Barbora Grineviciute
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Dovile Zilenaite
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Aida Laurinaviciene
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Valerijus Ostapenko
- Department of Breast Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania.,Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
56
|
Chen Y, Huang Y, Huang H, Luo Z, Zhang Z, Sun R, Wan Z, Sun J, Lu B, Li S. Farnesylthiosalicylic acid-derivatized PEI-based nanocomplex for improved tumor vaccination. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:594-602. [PMID: 34703645 PMCID: PMC8517092 DOI: 10.1016/j.omtn.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022]
Abstract
Cancer vaccines that make use of tumor antigens represent a promising therapeutic strategy by stimulating immune responses against tumors to generate long-term anti-tumor immunity. However, vaccines have shown limited clinical efficacy due to inefficient delivery. In this study, we focus on vaccine delivery assisted by nanocomplexes for cancer immunotherapy. Nanocomplex-mediated vaccination can efficiently deliver nucleic acids encoding neoantigens to lymphoid tissues and antigen-presenting cells. Polyethylenimine (PEI) was conjugated with farnesylthiosalicylic acid (FTS) to form micelles. Subsequent interaction with nucleic acids led to formation of polymer/nucleic acid nanocomplexes of well-controlled structure. Tumor transfection via FTS-PEI was much more effective than that by PEI, other PEI derivatives, or naked DNA. Significant numbers of transfected cells were also observed in draining lymph nodes (LNs). In vivo delivery of ovalbumin (OVA; a model antigen) expression plasmid (pOVA) by FTS-PEI led to a significant growth inhibition of the OVA-expressing B16 tumor through presentation of OVA epitopes as well as other epitopes via epitope spreading. Moreover, in vivo delivery of an endogenous melanoma neoantigen tyrosinase-related protein 2 (Trp2) also led to substantial tumor growth inhibition. FTS-PEI represents a promising transfection agent for effective gene delivery to tumors and LNs to mediate effective neoantigen vaccination.
Collapse
Affiliation(s)
- Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Runzi Sun
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
57
|
Wang L, Yao Y, Xu C, Wang X, Wu D, Hong Z. Exploration of the Tumor Mutational Burden as a Prognostic Biomarker and Related Hub Gene Identification in Prostate Cancer. Technol Cancer Res Treat 2021; 20:15330338211052154. [PMID: 34806485 PMCID: PMC8606726 DOI: 10.1177/15330338211052154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To explore the signature function of the tumor mutational burden (TMB) and
potential biomarkers in prostate cancer (PCa), transcriptome profiles, somatic
mutation data, and clinicopathologic feature information were downloaded from
The Cancer Genome Atlas (TCGA) database. R software package was used to generate
a waterfall plot to summarize the specific mutation information and calculate
the TMB value of PCa. Least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was used to select the hub genes related to the TMB from
the ImmPort network to build a risk score (RS) model to evaluate prognostic
values and plot Kaplan–Meier (K-M) curves to predict PCa patients survival. The
results showed that PCa patients with a high TMB exhibited higher infiltration
of CD8+ T cells and CD4+ T cells and better overall survival (OS) than those
with a low TMB. The anti-Mullerian hormone (AMH), baculoviral IAP
repeat-containing 5 (BIRC5), and opoid receptor kappa 1 (OPRK1) genes were three
hub genes and their copy number variation (CNV) was relatively likely to affect
the infiltration of immune cells. Moreover, PCa patients with low AMH or BIRC5
expression had a longer survival time and lower cancer recurrence, while
elevated AMH or BIRC5 expression favored PCa progression. In contrast, PCa
patients with low OPRK1 expression had poorer OS in the early stage of PCa and a
higher recurrent rate than those with high expression. Taken together, these
results suggest that the TMB may be a promising prognostic biomarker for PCa and
that AMH, OPRK1, and BIRC5 are hub genes affecting the TMB; AMH, OPRK1, and
BIRC5 could serve as potential immunotherapeutic targets for PCa treatment.
Collapse
Affiliation(s)
- Licheng Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yicong Yao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Hong
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
58
|
Jørgensen N, Hviid TVF, Nielsen LB, Sønderstrup IMH, Eriksen JO, Ejlertsen B, Gerdes AM, Kruse TA, Thomassen M, Jensen MB, Lænkholm AV. Tumour-infiltrating CD4-, CD8- and FOXP3-positive immune cells as predictive markers of mortality in BRCA1- and BRCA2-associated breast cancer. Br J Cancer 2021; 125:1388-1398. [PMID: 34365471 PMCID: PMC8576013 DOI: 10.1038/s41416-021-01514-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognostic value of tumour-infiltrating lymphocytes (TILs) in breast cancer is well-established. However, the investigation of specific T-cell subsets exclusively in BRCA-associated breast cancer is sparse. METHODS Tumour tissues from 414 BRCA-mutated breast cancer patients were analysed by immunohistochemistry and digital image analysis for expression of CD4, CD8 and FOXP3 immune markers. Distribution of CD4-, CD8- and FOXP3-positive cells and clinicopathological characteristics were assessed according to groups of low or high expression. The prognostic value was evaluated as continuous variables in univariate and multivariate analyses of overall survival and disease-free survival. RESULTS Both CD4 and CD8 expression are associated with histological diagnosis, tumour grade and oestrogen and progesterone receptor expression status. CD4 expression is associated with BRCA gene status. A high percentage of tumour-infiltrating CD4-, CD8- or FOXP3-positive cells is significantly associated with lower mortality in BRCA1- and BRCA2-associated breast cancer and CD8-positive cells are associated with disease-free survival. No heterogeneity according to BRCA gene status was found for the prognostic value of the immune markers. CONCLUSIONS The results support a prognostic role of specific T-cell subsets in BRCA-associated breast cancer and the promising potential of targeting the immune system in the treatment of these patients.
Collapse
Affiliation(s)
- Nanna Jørgensen
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Lise B Nielsen
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ida M H Sønderstrup
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Bent Ejlertsen
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Maj-Britt Jensen
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
59
|
Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis 2021; 8:655-661. [PMID: 34291136 PMCID: PMC8278524 DOI: 10.1016/j.gendis.2020.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer is a disease of altered signaling and metabolism, causing uncontrolled division and survival of transformed cells. A host of molecules, factors, and conditions have been designated as underlying causes for the inception and progression of the disease. An enormous amount of data is available, system-wide interaction networks of the genes and proteins are generated over the years and have now reached up to a level of saturation, where we need to shift our focus to the more advanced and comprehensive methods and approaches of data analysis and visualization. Even with the availability of enormous literature on this one of the most pressing pathological conditions, a successful cure of the disease seems to be obscure. New treatment plans, like immunotherapy and precision medicine, are being employed for different studies. Nevertheless, their actual benefits to the patients would be known only after the evaluation of clinical data over the next few years. Therefore, we need to look at few fundamental challenges that should be addressed in more depth before we could devise better, rigorous, and comprehensive treatment plans and may successfully reach a possible cure of the disease. This article aims at bringing attention towards some fundamental gaps in our approach towards the disease that leads to failure in devising successful therapeutics.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, 305817, India
| |
Collapse
|
60
|
Fu J, Li Y, Li C, Tong Y, Li M, Cang S. A special prognostic indicator: tumor mutation burden combined with immune infiltrates in lung adenocarcinoma with TP53 mutation. Transl Cancer Res 2021; 10:3963-3978. [PMID: 35116695 PMCID: PMC8797931 DOI: 10.21037/tcr-21-565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND TP53 mutation (TP53 mut) is significantly associated with immunotherapy response in lung adenocarcinoma (LUAD), but not an ideal independent prognostic predictor for it. Here, we investigated a novel potential biomarker and constructed a model for prognostic prediction in LUAD TP53 mut patients. METHODS 469 LUAD samples retrieved from The Cancer Genome Atlas database were divided into TP53 wt (wild-type TP53) and TP53 mut groups. TMB values were calculated based on the number of variants/exon lengths, and high- and low-TMB groups were divided by the median value. Differentially expressed genes (DEGs) between the two TMB groups were identified using "limma" package, and functional analyses were performed by Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Gene Set Enrichment Analysis. The infiltration ratio of 22 immune cells were calculated with the CIBERSORT algorithm. Survival analyses were estimated by Kaplan-Meier with the log-rank test. Finally a TMB prognostic index (TMBPI) with receiver operating characteristic (ROC) curve was constructed and calculated to evaluate the predictive value in TP53 mut LUAD. RESULTS There were diverse mutation types in 100% of TP53 mutants, while mutations were present in 86.5% of cases with TP53 wt. TP53 mut patients had higher TMB levels than TP53 wt patients. Overall survival in TP53 mut patients with low-TMB levels was significantly shorter than that in high-TMB TP53 mut patients. High-TMB patients had higher levels of CD8 T cell and effector B cell, while lower levels of resting memory CD4 T cells, monocytes, activated dendritic cells, etc. than low-TMB patients. Poor survival outcome in TP53 mut patients was correlated with lower effector B cell infiltration and higher activated dendritic cell. Survival risk analyses of 121 DEGs showed that good survival outcomes correlated positively with FBXO36 and KLHL35 expression levels, but correlated negatively with that of LINC0054. TMBPI analysis of the TP53 mut patients showed that high-TMBPI patients had worse survival outcomes than low-TMBPI patients. CONCLUSIONS Our findings suggest that the TMB value with immune infiltrates is a novel potential biomarker for prognostic prediction of TP53 mut patients. The TMBPI combined with detection of TP53 mutation can be used as a better predictor of prognosis in LUAD.
Collapse
Affiliation(s)
- Jing Fu
- Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Yaonan Li
- Department of Emergency, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Yuyang Tong
- Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Mengyuan Li
- Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
61
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Liu Z, Hildesheim A. Association Between Human Leukocyte Antigen Class I and II Diversity and Non-virus-associated Solid Tumors. Front Genet 2021; 12:675860. [PMID: 34421988 PMCID: PMC8371526 DOI: 10.3389/fgene.2021.675860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Homozygosity at human leukocyte antigen (HLA) loci might lead to reduced immunosurveillance and increased disease risk, including cancers caused by infection or of hematopoietic origin. To investigate the association between HLA zygosity and risk of non-virus-associated solid tumors, we leveraged genome-wide association study (GWAS) data from over 28,000 individuals of European ancestry who participated in studies of 12 cancer sites (bladder, brain, breast, colon, endometrial, kidney, lung, ovary, pancreas, prostate, skin, and testis). Information on HLA zygosity was obtained by imputation; individuals were classified as homozygotes at a given locus when imputed to carry the same four-digit allele at that locus. We observed no evidence for an association between zygosity at six HLA loci and all cancers combined. Increase in number of homozygous at HLA class I loci, class II loci, or class I and II loci was also not associated with cancer overall (P trend = 0.28), with adjusted odds ratios (ORs) for risk-per-locus of 1.00 [95% confidence intervals (CIs) = 0.97, 1.03], 1.02 (0.99, 1.04), and 1.01 (0.99, 1.02), respectively. This study does not support a strong role for HLA zygosity on risk of non-virus-associated solid tumors.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | | |
Collapse
|
63
|
Abstract
Hepatocellular carcinoma (HCC) is a prevalent disease with a progression that is modulated by the immune system. Systemic therapy is used in the advanced stage and until 2017 consisted only of antiangiogenic tyrosine kinase inhibitors (TKIs). Immunotherapy with checkpoint inhibitors has shown strong anti-tumour activity in a subset of patients and the combination of the anti-PDL1 antibody atezolizumab and the VEGF-neutralizing antibody bevacizumab has or will soon become the standard of care as a first-line therapy for HCC, whereas the anti-PD1 agents nivolumab and pembrolizumab are used after TKIs in several regions. Other immune strategies such as adoptive T-cell transfer, vaccination or virotherapy have not yet demonstrated consistent clinical activity. Major unmet challenges in HCC checkpoint immunotherapy are the discovery and validation of predictive biomarkers, advancing treatment to earlier stages of the disease, applying the treatment to patients with liver dysfunction and the discovery of more effective combinatorial or sequential approaches. Combinations with other systemic or local treatments are perceived as the most promising opportunities in HCC and some are already under evaluation in large-scale clinical trials. This Review provides up-to-date information on the best use of currently available immunotherapies in HCC and the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain.
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra-IDISNA and CIBERONC, Pamplona, Spain
| |
Collapse
|
64
|
Ebrahimi N, Akbari M, Ghanaatian M, Roozbahani Moghaddam P, Adelian S, Borjian Boroujeni M, Yazdani E, Ahmadi A, Hamblin MR. Development of neoantigens: from identification in cancer cells to application in cancer vaccines. Expert Rev Vaccines 2021; 21:941-955. [PMID: 34196590 DOI: 10.1080/14760584.2021.1951246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: The discovery of neoantigens as mutated proteins specifically expressed in tumor cells but not in normal cells has led to improved cancer vaccines. Targeting neoantigens can induce anti-tumor T-cell responses to destroy tumors without damaging healthy cells. Extensive advances in genome sequencing technology and bioinformatics analysis have made it possible to discover and design effective neoantigens for use in therapeutic cancer vaccines. Neoantigens-based therapeutic personalized vaccines have shown promising results in cancer immunotherapy.Areas covered: We discuss the types of cancer neoantigens that can be recognized by the immune system in this review. We also summarize the detection, identification, and design of neoantigens and their appliction in developing cancer vaccines. Finally, clinical trials of neoantigen-based vaccines, their advantages, and their limitations are reviewed. From 2015 to 2020, the authors conducted a literature search of controlled randomized trials and laboratory investigations that that focused on neoantigens, their use in the design of various types of cancer vaccines.Expert opinion: Neoantigens are cancer cell-specific antigens, which their expression leads to the immune stimulation against tumor cells. The identification and delivery of specific neoantigens to antigen-presenting cells (APCs) with the help of anti-cancer vaccines promise novel and more effective cancer treatments.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department Cell, and Molecular Biology & Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Akbari
- Department of Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Fars, Iran
| | | | - Samaneh Adelian
- Department of Genetics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University Of Isfahan, Isfahan, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
65
|
Gong L, He R, Xu Y, Luo T, Jin K, Yuan W, Zheng Z, Liu L, Liang Z, Li A, Zheng Z, Li H. Neoantigen load as a prognostic and predictive marker for stage II/III non-small cell lung cancer in Chinese patients. Thorac Cancer 2021; 12:2170-2181. [PMID: 34128337 PMCID: PMC8327700 DOI: 10.1111/1759-7714.14046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The prognosis for patients with stage II/III non-small cell lung cancer (NSCLC) is unsatisfactory, even after complete tumor resection and adjuvant chemotherapy. Here, we assessed the prognostic and predictive value of immunogenomic signatures for stage II/III NSCLC in Chinese patients. METHODS A total of 91 paired resected stage II/III NSCLC and normal tissues, including 47 squamous cell lung carcinomas (SCC) and 44 lung adenocarcinomas (ADC), were collected and analyzed using whole exome sequencing (WES) to identify immunogenomic signatures for association with clinicopathological variables and disease-free survival (DFS). RESULTS Higher neoantigen load (NAL, >2 neoantigens/Mb) exhibited better DFS for SCC patients (p = 0.021) but not ADC patients. A benefit from adjuvant chemotherapy was correlated with lower NAL (≤2 neoantigens/Mb) (p = 0.009). However, tumor mutation burden (TMB), mutations of individual gene, oncogene pathways, and antigen presentation machinery genes, and human leukocyte antigen (HLA)-I number and HLA-I loss of heterozygosity (LOH) had no prognostic or predictive value for DFS of SCC or ADC patients. CONCLUSIONS NAL is a useful biomarker for lung SCC prognosis and prediction of chemotherapy responses in Chinese patients. The predictive value of NAL for adjuvant immunotherapy should be further explored in patients with resected NSCLC.
Collapse
Affiliation(s)
- Lei Gong
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) and Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ronghui He
- Hangzhou YITU Healthcare Technology Co., Ltd., Hangzhou, China
| | - Yanjun Xu
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) and Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Taobo Luo
- Department of Thoracic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital) and Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Kaixiu Jin
- Hangzhou YITU Healthcare Technology Co., Ltd., Hangzhou, China
| | - Wuzhou Yuan
- Mingma Technologies Co., Ltd., Shanghai, China
| | - Zengguang Zheng
- Department of Pathology, Tthe Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) and Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lanxuan Liu
- Hangzhou YITU Healthcare Technology Co., Ltd., Hangzhou, China
| | - Zebin Liang
- Hangzhou YITU Healthcare Technology Co., Ltd., Hangzhou, China
| | - Ao Li
- Mingma Technologies Co., Ltd., Shanghai, China
| | - Zhiguo Zheng
- Zhejiang Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) and Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hui Li
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) and Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
66
|
Poorebrahim M, Mohammadkhani N, Mahmoudi R, Gholizadeh M, Fakhr E, Cid-Arregui A. TCR-like CARs and TCR-CARs targeting neoepitopes: an emerging potential. Cancer Gene Ther 2021; 28:581-589. [PMID: 33654227 PMCID: PMC8203496 DOI: 10.1038/s41417-021-00307-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Neoepitopes or neoantigens are a spectrum of unique mutations presented in a particular patient's tumor. Neoepitope-based adoptive therapies have the potential of tumor eradication without undue damaging effect on normal tissues. In this context, methods based on the T cell receptor (TCR) engineering or chimeric antigen receptors (CARs) have shown great promise. This review focuses on the TCR-like CARs and TCR-CARs directed against tumor-derived epitopes, with a concerted view on neoepitopes. We also address the current limitations of the field to know how to harness the full benefits of this approach and thereby design a sustained and specific antitumor therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/therapeutic use
- Humans
- Immunotherapy, Adoptive
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Gholizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Fakhr
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
67
|
Yin Q, Yu W, Grzeskowiak CL, Li J, Huang H, Guo J, Chen L, Wang F, Zhao F, von Boehmer L, Metzner TJ, Leppert JT, Chien YH, Kuo CJ, Davis MM. Nanoparticle-enabled innate immune stimulation activates endogenous tumor-infiltrating T cells with broad antigen specificities. Proc Natl Acad Sci U S A 2021; 118:e2016168118. [PMID: 34021082 PMCID: PMC8166076 DOI: 10.1073/pnas.2016168118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumors are often infiltrated by T lymphocytes recognizing either self- or mutated antigens but are generally inactive, although they often show signs of prior clonal expansion. Hypothesizing that this may be due to peripheral tolerance, we formulated nanoparticles containing innate immune stimulants that we found were sufficient to activate self-specific CD8+ T cells and injected them into two different mouse tumor models, B16F10 and MC38. These nanoparticles robustly activated and/or expanded antigen-specific CD8+ tumor-infiltrating T cells, along with a decrease in regulatory CD4+ T cells and an increase in Interleukin-17 producers, resulting in significant tumor growth retardation or elimination and the establishment of immune memory in surviving mice. Furthermore, nanoparticles with modification of stimulating human T cells enabled the robust activation of endogenous T cells in patient-derived tumor organoids. These results indicate that breaking peripheral tolerance without regard to the antigen specificity creates a promising pathway for cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Yin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305
| | - Wong Yu
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA 94305
| | - Caitlin L Grzeskowiak
- Division of Hematology, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305
| | - Huang Huang
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| | - Jing Guo
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Liang Chen
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305
| | - Feng Wang
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| | - Fan Zhao
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Lotta von Boehmer
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305
| | - Thomas J Metzner
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305
| | - John T Leppert
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Yueh-Hsiu Chien
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305;
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
68
|
Keshinro A, Vanderbilt C, Kim JK, Firat C, Chen CT, Yaeger R, Ganesh K, Segal NH, Gonen M, Shia J, Stadler Z, Weiser MR. Tumor-Infiltrating Lymphocytes, Tumor Mutational Burden, and Genetic Alterations in Microsatellite Unstable, Microsatellite Stable, or Mutant POLE/POLD1 Colon Cancer. JCO Precis Oncol 2021; 5:PO.20.00456. [PMID: 34250404 PMCID: PMC8232557 DOI: 10.1200/po.20.00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
To characterize the relationship between tumor-infiltrating lymphocytes (TIL), tumor mutational burden (TMB), and genetic alterations in microsatellite stable (MSS), microsatellite instability (MSI), or mutant POLE/POLD1 colon cancer. MATERIALS AND METHODS Four hundred ninety-nine resected stage I-III colon tumors treated between 2014 and 2019 were assessed for TIL; somatic mutations, copy number alterations, and structural changes in > 400 oncogenes; and MSI status. RESULTS Of the 499 tumors analyzed, 313 were MSS, 175 were MSI, and 11 had POLE/POLD1 pathogenic mutations. Both the percentage of tumors with a high level of TIL (≥ 4 lymphocytes per high-power field) and the median TMB differed significantly between the three phenotypes: MSS, 4.5% and 6 mutations/Mb; MSI, 68% and 54 mutations/Mb; POLE/POLD1, 82% and 158 mutations/Mb (P < .05). Within each phenotype, TMB did not vary significantly with TIL level. Among MSI tumors, the median number of frameshift indels was significantly higher in tumors with high levels of TIL (20 v 17; P = .018). In the MSS group, significantly higher proportions of tumors with high levels of TIL had mutations in the transforming growth factor-β (36% v 12%; P = .01), RAS (86% v 54%; P = .02), and Hippo (7% v 1%; P = .046) pathways; in contrast, TP53 alterations were associated with low levels of TIL (74% v 43%; P = .01). CONCLUSION The association between TIL, TMB, and genetic alterations varies significantly between MSI, MSS, and mutant POLE/POLD1 colon tumors. These differences may help explain tumoral immunity and lead to predictors of response to immunotherapy.
Collapse
Affiliation(s)
- Ajaratu Keshinro
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jin K. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chin-Tung Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neil H. Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin R. Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
69
|
Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opin Investig Drugs 2021; 30:529-541. [PMID: 33641576 DOI: 10.1080/13543784.2021.1896702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Derived from genetic alterations, cancer neoantigens are proteins with novel amino acid sequences that can be recognized by the immune system. Recent evidence demonstrates that cancer neoantigens represent important targets of cancer immunotherapy. The goal of cancer neoantigen vaccines is to induce neoantigen-specific immune responses and antitumor immunity, while minimizing the potential for autoimmune toxicity. Advances in sequencing technologies, neoantigen prediction ?algorithms,? and other technologies have dramatically improved the ability to identify and prioritize cancer neoantigens. These advances have generated considerable enthusiasm for ?the ?development of neoantigen vaccines. Several neoantigen vaccine platforms are currently being evaluated in early phase clinical trials including the synthetic long peptide (SLP), RNA, dendritic cell (DC), and DNA vaccine platforms. AREAS COVERED In this review, we describe, evaluate the mechanism(s) of action, compare the advantages and disadvantages, and summarize early clinical experience with each vaccine platform. We provide perspectives on the future directions of the neoantigen vaccine field. All data are derived from PubMed and ClinicalTrials search updated in October 2020. EXPERT OPINION Although the initial clinical experience is promising, significant challenges to the success of neoantigen vaccines include limitations in neoantigen identification and the need to successfully target the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Suangson Supabphol
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
70
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
71
|
Wong SK, Iams WT. Front Line Applications and Future Directions of Immunotherapy in Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:506. [PMID: 33572705 PMCID: PMC7865814 DOI: 10.3390/cancers13030506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
After being stagnant for decades, there has finally been a paradigm shift in the treatment of small-cell lung cancer (SCLC) with the emergence and application of immune checkpoint inhibitors (ICIs). Multiple trials of first-line ICI-chemotherapy combinations have demonstrated survival benefit compared to chemotherapy alone in patients with extensive-stage SCLC, establishing this as the new standard of care. ICIs are now being applied in the potentially curative limited-stage setting, actively being investigated as concurrent treatment with chemoradiation and as adjuvant treatment following completion of chemoradiation. This review highlights the evidence behind the practice-changing addition of ICIs in the first-line setting of extensive-stage SCLC, the potentially practice-changing immunotherapy trials that are currently underway in the limited-stage setting, and alternate immunotherapeutic strategies being studied in the treatment of SCLC.
Collapse
Affiliation(s)
- Selina K. Wong
- Department of Medicine, Division of Hematology and Oncology, Nashville, TN 37232, USA;
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wade T. Iams
- Department of Medicine, Division of Hematology and Oncology, Nashville, TN 37232, USA;
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
72
|
Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18:525-543. [PMID: 33850328 PMCID: PMC8042636 DOI: 10.1038/s41575-021-00438-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 226.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent disease with a progression that is modulated by the immune system. Systemic therapy is used in the advanced stage and until 2017 consisted only of antiangiogenic tyrosine kinase inhibitors (TKIs). Immunotherapy with checkpoint inhibitors has shown strong anti-tumour activity in a subset of patients and the combination of the anti-PDL1 antibody atezolizumab and the VEGF-neutralizing antibody bevacizumab has or will soon become the standard of care as a first-line therapy for HCC, whereas the anti-PD1 agents nivolumab and pembrolizumab are used after TKIs in several regions. Other immune strategies such as adoptive T-cell transfer, vaccination or virotherapy have not yet demonstrated consistent clinical activity. Major unmet challenges in HCC checkpoint immunotherapy are the discovery and validation of predictive biomarkers, advancing treatment to earlier stages of the disease, applying the treatment to patients with liver dysfunction and the discovery of more effective combinatorial or sequential approaches. Combinations with other systemic or local treatments are perceived as the most promising opportunities in HCC and some are already under evaluation in large-scale clinical trials. This Review provides up-to-date information on the best use of currently available immunotherapies in HCC and the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bruno Sangro
- grid.411730.00000 0001 2191 685XLiver Unit and HPB Oncology Area, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Ignacio Melero
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain ,grid.411730.00000 0001 2191 685XDepartment of Immunology and Immunotherapy, Clinica Universidad de Navarra-IDISNA and CIBERONC, Pamplona, Spain
| |
Collapse
|
73
|
Lischer C, Vera-González J. The Road to Effective Cancer Immunotherapy—A Computational Perspective on Tumor Epitopes in Anti-Cancer Immunotherapy. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
74
|
Gaissmaier L, Christopoulos P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020; 99:1-27. [PMID: 33291116 DOI: 10.1159/000510385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
75
|
Chen WS, Haynes WA, Waitz R, Kamath K, Vega-Crespo A, Shrestha R, Zhang M, Foye A, Baselga Carretero I, Perez Garcilazo I, Zhang M, Zhao SG, Sjöström M, Quigley DA, Chou J, Beer TM, Rettig M, Gleave M, Evans CP, Lara P, Chi KN, Reiter RE, Alumkal JJ, Ashworth A, Aggarwal R, Small EJ, Daugherty PS, Ribas A, Oh DY, Shon JC, Feng FY. Autoantibody Landscape in Patients with Advanced Prostate Cancer. Clin Cancer Res 2020; 26:6204-6214. [PMID: 32967941 PMCID: PMC7710628 DOI: 10.1158/1078-0432.ccr-20-1966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Autoantibody responses in cancer are of great interest, as they may be concordant with T-cell responses to cancer antigens or predictive of response to cancer immunotherapies. Thus, we sought to characterize the antibody landscape of metastatic castration-resistant prostate cancer (mCRPC). EXPERIMENTAL DESIGN Serum antibody epitope repertoire analysis (SERA) was performed on patient serum to identify tumor-specific neoepitopes. Somatic mutation-specific neoepitopes were investigated by associating serum epitope enrichment scores with whole-genome sequencing results from paired solid tumor metastasis biopsies and germline blood samples. A protein-based immunome-wide association study (PIWAS) was performed to identify significantly enriched epitopes, and candidate serum antibodies enriched in select patients were validated by ELISA profiling. A distinct cohort of patients with melanoma was evaluated to validate the top cancer-specific epitopes. RESULTS SERA was performed on 1,229 serum samples obtained from 72 men with mCRPC and 1,157 healthy control patients. Twenty-nine of 6,636 somatic mutations (0.44%) were associated with an antibody response specific to the mutated peptide. PIWAS analyses identified motifs in 11 proteins, including NY-ESO-1 and HERVK-113, as immunogenic in mCRPC, and ELISA confirmed serum antibody enrichment in candidate patients. Confirmatory PIWAS, Identifying Motifs Using Next-generation sequencing Experiments (IMUNE), and ELISA analyses performed on serum samples from 106 patients with melanoma similarly revealed enriched cancer-specific antibody responses to NY-ESO-1. CONCLUSIONS We present the first large-scale profiling of autoantibodies in advanced prostate cancer, utilizing a new antibody profiling approach to reveal novel cancer-specific antigens and epitopes. Our study recovers antigens of known importance and identifies novel tumor-specific epitopes of translational interest.
Collapse
Affiliation(s)
- William S Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | | | | | - Agustin Vega-Crespo
- Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| | - Raunak Shrestha
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Ivan Perez Garcilazo
- Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Shuang G Zhao
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Matthew Rettig
- Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Martin Gleave
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Primo Lara
- University of California Davis, Davis, California
| | - Kim N Chi
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E Reiter
- Department of Urology, University of California Los Angeles, Los Angeles, California
| | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Antoni Ribas
- Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| | - David Y Oh
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| |
Collapse
|
76
|
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov 2020; 10:1808-1825. [PMID: 33139244 PMCID: PMC7710563 DOI: 10.1158/2159-8290.cd-20-0522] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, varies across malignancies. Panel sequencing-based estimates of TMB have largely replaced whole-exome sequencing-derived TMB in the clinic. Retrospective evidence suggests that TMB can predict the efficacy of immune checkpoint inhibitors, and data from KEYNOTE-158 led to the recent FDA approval of pembrolizumab for the TMB-high tumor subgroup. Unmet needs include prospective validation of TMB cutoffs in relationship to tumor type and patient outcomes. Furthermore, standardization and harmonization of TMB measurement across test platforms are important to the successful implementation of TMB in clinical practice. SIGNIFICANCE: Evaluation of TMB as a predictive biomarker creates the need to harmonize panel-based TMB estimation and standardize its reporting. TMB can improve the predictive accuracy for immunotherapy outcomes, and has the potential to expand the candidate pool of patients for treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Dan Sha
- Departments of Medicine and Gastrointestinal Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Frank A Sinicrope
- Departments of Medicine and Gastrointestinal Research Unit, Mayo Clinic, Rochester, Minnesota.
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
77
|
Xie F, Bai Y, Yang X, Long J, Mao J, Lin J, Wang D, Song Y, Xun Z, Huang H, Yang X, Zhang L, Mao Y, Sang X, Zhao H. Comprehensive analysis of tumour mutation burden and the immune microenvironment in hepatocellular carcinoma. Int Immunopharmacol 2020; 89:107135. [PMID: 33189609 DOI: 10.1016/j.intimp.2020.107135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Tumour mutation burden (TMB) and the immune microenvironment (IME) are reportedly associated with immunotherapy responses, but this relationship remains unclear in hepatocellular carcinoma (HCC). We classified HCC patients in the liver hepatocellular carcinoma cohort from The Cancer Genome Atlas into low- and high-TMB groups and evaluated differences in immune infiltrates. Additionally, differentially expressed genes in the low- and high-TMB groups were identified, and functional analyses were conducted. A risk score model was constructed based on three differentially expressed immune genes (DEIGs). The Tumor Immune Estimation Resource database was utilized to analyse how the IME was affected by the three hub DEIGs. Finally, a prognostic nomogram combining risk scores and stages was established and externally validated with the International Cancer Genome Consortium and GSE14520 cohorts. High-TMB (top 20%) patients exhibited a worse prognosis (P = 0.017). Follicular helper cells (P = 0.001) and activated natural killer cells (P = 0.003) were enriched in high-TMB patients, while resting dendritic cells (P = 0.002) were enriched in low-TMB samples. A risk score model was generated with three hub DEIGs (CCR7, STC2 and S100A9) to predict overall survival in HCC cohorts. Moreover, copy number variations mainly reduced infiltration levels. The nomogram performed better than the risk score model in the training and validation datasets. Higher TMB was associated with IME diversification and worse prognosis in HCC. Mutations in three hub TMB-associated DEIGs correlated with lower immune cell infiltration.
Collapse
Affiliation(s)
- Fucun Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China; Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Jinzhu Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Dongxu Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yang Song
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Ziyu Xun
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Hanchan Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
78
|
Gokuldass A, Draghi A, Papp K, Borch TH, Nielsen M, Westergaard MCW, Andersen R, Schina A, Bol KF, Chamberlain CA, Presti M, Met Ö, Harbst K, Lauss M, Soraggi S, Csabai I, Szállási Z, Jönsson G, Svane IM, Donia M. Qualitative Analysis of Tumor-Infiltrating Lymphocytes across Human Tumor Types Reveals a Higher Proportion of Bystander CD8 + T Cells in Non-Melanoma Cancers Compared to Melanoma. Cancers (Basel) 2020; 12:E3344. [PMID: 33198174 PMCID: PMC7696049 DOI: 10.3390/cancers12113344] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Human intratumoral T cell infiltrates can be defined by quantitative or qualitative features, such as their ability to recognize autologous tumor antigens. In this study, we reproduced the tumor-T cell interactions of individual patients to determine and compared the qualitative characteristics of intratumoral T cell infiltrates across multiple tumor types. Methods: We employed 187 pairs of unselected tumor-infiltrating lymphocytes (TILs) and autologous tumor cells from patients with melanoma, renal-, ovarian-cancer or sarcoma, and single-cell RNA sequencing data from a pooled cohort of 93 patients with melanoma or epithelial cancers. Measures of TIL quality including the proportion of tumor-reactive CD8+ and CD4+ TILs, and TIL response polyfunctionality were determined. Results: Tumor-specific CD8+ and CD4+ TIL responses were detected in over half of the patients in vitro, and greater CD8+ TIL responses were observed in melanoma, regardless of previous anti-PD-1 treatment, compared to renal cancer, ovarian cancer and sarcoma. The proportion of tumor-reactive CD4+ TILs was on average lower and the differences less pronounced across tumor types. Overall, the proportion of tumor-reactive TILs in vitro was remarkably low, implying a high fraction of TILs to be bystanders, and highly variable within the same tumor type. In situ analyses, based on eight single-cell RNA-sequencing datasets encompassing melanoma and five epithelial cancers types, corroborated the results obtained in vitro. Strikingly, no strong correlation between the proportion of CD8+ and CD4+ tumor-reactive TILs was detected, suggesting the accumulation of these responses in the tumor microenvironment to follow non-overlapping biological pathways. Additionally, no strong correlation between TIL responses and tumor mutational burden (TMB) in melanoma was observed, indicating that TMB was not a major driving force of response. No substantial differences in polyfunctionality across tumor types were observed. Conclusions: These analyses shed light on the functional features defining the quality of TIL infiltrates in cancer. A significant proportion of TILs across tumor types, especially non-melanoma, are bystander T cells. These results highlight the need to develop strategies focused on the tumor-reactive TIL subpopulation.
Collapse
Affiliation(s)
- Aishwarya Gokuldass
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Krisztian Papp
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (K.P.); (I.C.)
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Marie Christine Wulff Westergaard
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Rikke Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Aimilia Schina
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Kalijn Fredrike Bol
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katja Harbst
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Faculty of Medicine, Lund University, 221 00 Lund, Sweden; (K.H.); (M.L.); (G.J.)
- Lund University Cancer Centre, Lund University, 221 00 Lund, Sweden
| | - Martin Lauss
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Faculty of Medicine, Lund University, 221 00 Lund, Sweden; (K.H.); (M.L.); (G.J.)
- Lund University Cancer Centre, Lund University, 221 00 Lund, Sweden
| | - Samuele Soraggi
- Bioinformatics Research Center, Aarhus University, 8000 Aarhus, Denmark;
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (K.P.); (I.C.)
| | - Zoltán Szállási
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark;
| | - Göran Jönsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Faculty of Medicine, Lund University, 221 00 Lund, Sweden; (K.H.); (M.L.); (G.J.)
- Lund University Cancer Centre, Lund University, 221 00 Lund, Sweden
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (A.G.); (A.D.); (T.H.B.); (M.N.); (M.C.W.W.); (R.A.); (A.S.); (K.F.B.); (C.A.C.); (M.P.); (Ö.M.); (I.M.S.)
| |
Collapse
|
79
|
Yan J, Wu X, Yu J, Zhu Y, Cang S. Prognostic Role of Tumor Mutation Burden Combined With Immune Infiltrates in Skin Cutaneous Melanoma Based on Multi-Omics Analysis. Front Oncol 2020; 10:570654. [PMID: 33240814 PMCID: PMC7683772 DOI: 10.3389/fonc.2020.570654] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023] Open
Abstract
Tumor mutation burden (TMB) and tumor infiltrating lymphocytes have been well-recognized as molecular determinants of immunotherapeutic responsiveness in many types of cancer. However, the relationship between TMB with immune infiltrates and their prognostic role are reported occasionally in skin cutaneous melanoma (SKCM). We obtained the somatic mutation data and transcriptome profiles of 454 SKCM patients from The Cancer Genome Atlas (TCGA) database, and analyzed the mutation profiles using “maftools” package. Correlation analysis revealed that lower TMB levels conferred poor survival outcomes, associated with lower age and advanced pathological stage. Differential analysis was conducted to the genome expression between two TMB groups using “limma” package, and we identified four hub TMB-related immune genes including CNTFR, CRABP2, GAL, and PAEP. We further analyzed the underlying relationships of the copy number variations (CNVs) of four hub genes with immune infiltrates in SKCM microenvironment through TIMER database. The results indicated that diverse forms of CNVs carried by hub genes could commonly inhibit immune infiltrates. Based on the CIBERSORT method, we compared the proportions of 22 immune cells in two TMB groups and assessed their prognostic value. The data revealed that infiltrations levels of regulatory T (Treg) cell and dendritic activated cells in high-TMB group were lower than that in low-TMB group, while M1 and M2 macrophages showed the opposite trend, especially the levels of neutrophil and macrophage correlated positively with prognosis of SKCM. Finally, we constructed a TMB Prognostic Index (TMBPI) to evaluate the predictive accuracy of the four hub TMB-related immune genes. The ROC curve was drawn to assess the predictive accuracy with AUC = 0.664 and higher TMBPI conferred poor survival outcomes, which warranted further investigation and larger samples to validate.
Collapse
Affiliation(s)
- Junya Yan
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanyan Zhu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
80
|
Rovida A, Maccalli C, Scarfò L, Dellabona P, Stamatopoulos K, Ghia P. Exploiting B-cell Receptor Stereotypy to Design Tailored Immunotherapy in Chronic Lymphocytic Leukemia. Clin Cancer Res 2020; 27:729-739. [PMID: 33051305 DOI: 10.1158/1078-0432.ccr-20-1632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/12/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Approximately 30% of patients with chronic lymphocytic leukemia (CLL) can be grouped into subsets with stereotyped B-cell receptor immunoglobulin (BcR IG) displaying remarkable similarity in the heavy complementarity-determining region 3 (VH CDR3). Here, we investigated whether the consensus VH CDR3 sequences from CLL stereotyped subsets can be exploited for immunotherapy approaches. EXPERIMENTAL DESIGN Immunogenic epitopes from the consensus VH CDR3 sequence of the clinically aggressive subsets #1 and #2 and from Eμ-TCL1 mice, which spontaneously develop CLL with BcR IG stereotypy, were identified and used to generate specific HLA class I- and II-restricted T cells in vitro. T-cell reactivity was assayed in vitro as IFNγ production. Bone marrow-derived dendritic cells loaded with the peptides were used as vaccination strategy to restrain leukemia development in the Eμ-TCL1 mouse model. RESULTS These stereotyped epitopes were naturally processed and presented by CLL cells to the VH CDR3-specific T cells. Furthermore, we validated the efficacy of VH CDR3 peptide-based immunotherapy in the Eμ-TCL1 transplantable mouse model. Immunization of mice against defined VH CDR3 peptide epitopes, prior to the challenge with the corresponding leukemia cells, resulted in the control of CLL development in a significant fraction of mice, and increased overall survival. CONCLUSIONS Our data highlight the immunogenicity of stereotyped VH CDR3 sequences and support the feasibility and efficacy of their use for novel cancer vaccine in CLL. Such approach has the advantage to generate "off-the-shelf" therapeutic vaccines for relevant groups of patients belonging to stereotyped subsets.See related commentary by Seiffert, p. 659.
Collapse
Affiliation(s)
- Alessandra Rovida
- Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Cristina Maccalli
- Unit of Immuno-biotherapy of melanoma and solid tumors, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lydia Scarfò
- Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS, Ospedale San Raffaele, Milano, Italy
| | - Paolo Dellabona
- Unit of Experimental Immunology, Division of Immunology, Transplantation and Infectious diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Kostas Stamatopoulos
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece. .,Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy. .,Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS, Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
81
|
Chen H, Yang G, Xiao J, Zheng L, You L, Zhang T. Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Lett 2020; 490:12-19. [PMID: 32590021 DOI: 10.1016/j.canlet.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Neoantigens generated in neoplasms are a type of protein completely absent in healthy tissues. Therefore, anti-tumor immunity targeting neoantigens is highly specific, which provides an optional approach to boost tumor immunotherapy. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies in humans, with few efficient treatments to improve its prognosis. Therefore, immunotherapies reinforced by neoantigen-based strategies should be considered. In PDAC, the mutational burden is intermediate compared with other common malignancies, while the naturally formed tumor immunity is significantly inferior. Moreover, the high mutation load in PDAC correlates with a poor clinical prognosis, although the combination of a large mutation repertoire and competent T cell population is indispensable for long-term survival. In clinical practice, three strategies have been mainly used: peptide or tumor cell vaccines, neo-epitope-coding nucleotide vaccines, and dendritic cell vaccines. However, three major problems remain to be addressed, including (1) highly personalized protocols after sampling, (2) insufficient neoantigen quantity, and (3) ineffective immunotherapy of PDAC. In summary, neoantigen-based therapy of PDAC is increasing and the treatment methods are accompanied by great challenges. Currently, extensive development is needed for effective neoantigen-based therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; School of Medicine, Tsinghua University, 1 Tsinghua Yuan Haidian District, Beijing, 100084, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
82
|
Cheng S, J. Cheadle E, M. Illidge T. Understanding the Effects of Radiotherapy on the Tumour Immune Microenvironment to Identify Potential Prognostic and Predictive Biomarkers of Radiotherapy Response. Cancers (Basel) 2020; 12:E2835. [PMID: 33008040 PMCID: PMC7600906 DOI: 10.3390/cancers12102835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is a highly effective anti-cancer treatment. Immunotherapy using immune checkpoint blockade (ICI) has emerged as a new and robust pillar in cancer therapy; however, the response rate to single agent ICI is low whilst toxicity remains. Radiotherapy has been shown to have local and systemic immunomodulatory effects. Therefore, combining RT and immunotherapy is a rational approach to enhance anti-tumour immune responses. However, the immunomodulatory effects of RT can be both immunostimulatory or immunosuppressive and may be different across different tumour types and patients. Therefore, there is an urgent medical need to establish biomarkers to guide clinical decision making in predicting responses or in patient selection for RT-based combination treatments. In this review, we summarize the immunological effects of RT on the tumour microenvironment and emerging biomarkers to help better understand the implications of these immunological changes, and we provide new insights into the potential for combination therapies with RT and immunotherapy.
Collapse
Affiliation(s)
- Shuhui Cheng
- Manchester Academic Health Science Centre, Manchester NIHR Biomedical Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.C.); (E.J.C.)
| | - Eleanor J. Cheadle
- Manchester Academic Health Science Centre, Manchester NIHR Biomedical Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.C.); (E.J.C.)
| | - Timothy M. Illidge
- Manchester Academic Health Science Centre, Manchester NIHR Biomedical Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.C.); (E.J.C.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
83
|
Wood MA, Nguyen A, Struck AJ, Ellrott K, Nellore A, Thompson RF. neoepiscope improves neoepitope prediction with multivariant phasing. Bioinformatics 2020; 36:713-720. [PMID: 31424527 DOI: 10.1093/bioinformatics/btz653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/22/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION The vast majority of tools for neoepitope prediction from DNA sequencing of complementary tumor and normal patient samples do not consider germline context or the potential for the co-occurrence of two or more somatic variants on the same mRNA transcript. Without consideration of these phenomena, existing approaches are likely to produce both false-positive and false-negative results, resulting in an inaccurate and incomplete picture of the cancer neoepitope landscape. We developed neoepiscope chiefly to address this issue for single nucleotide variants (SNVs) and insertions/deletions (indels). RESULTS Herein, we illustrate how germline and somatic variant phasing affects neoepitope prediction across multiple datasets. We estimate that up to ∼5% of neoepitopes arising from SNVs and indels may require variant phasing for their accurate assessment. neoepiscope is performant, flexible and supports several major histocompatibility complex binding affinity prediction tools. AVAILABILITY AND IMPLEMENTATION neoepiscope is available on GitHub at https://github.com/pdxgx/neoepiscope under the MIT license. Scripts for reproducing results described in the text are available at https://github.com/pdxgx/neoepiscope-paper under the MIT license. Additional data from this study, including summaries of variant phasing incidence and benchmarking wallclock times, are available in Supplementary Files 1, 2 and 3. Supplementary File 1 contains Supplementary Table 1, Supplementary Figures 1 and 2, and descriptions of Supplementary Tables 2-8. Supplementary File 2 contains Supplementary Tables 2-6 and 8. Supplementary File 3 contains Supplementary Table 7. Raw sequencing data used for the analyses in this manuscript are available from the Sequence Read Archive under accessions PRJNA278450, PRJNA312948, PRJNA307199, PRJNA343789, PRJNA357321, PRJNA293912, PRJNA369259, PRJNA305077, PRJNA306070, PRJNA82745 and PRJNA324705; from the European Genome-phenome Archive under accessions EGAD00001004352 and EGAD00001002731; and by direct request to the authors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mary A Wood
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Portland VA Research Foundation, Portland, OR 97239, USA
| | - Austin Nguyen
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
| | - Adam J Struck
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kyle Ellrott
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, OR 97239, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, OR 97239, USA
- Department of Surgery, OR 97239, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Portland VA Research Foundation, Portland, OR 97239, USA
- Department of Radiation Medicine, OR 97239, USA
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University Portland, OR 97239, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR 97239, USA
| |
Collapse
|
84
|
Wu W, Chen Y, Huang L, Li W, Tao C, Shen H. Point mutation screening of tumor neoantigens and peptide-induced specific cytotoxic T lymphocytes using The Cancer Genome Atlas database. Oncol Lett 2020; 20:123. [PMID: 32934692 PMCID: PMC7471748 DOI: 10.3892/ol.2020.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to use The Cancer Genome Atlas (TCGA) database to identify tumor neoantigens, combined with a bioinformatics analysis to design and analyze antigen epitope peptides. Epitopes were screened using immunogenicity tests to identify the ideal epitope peptides to target tumor neoantigens, which can specifically activate the immune response of T cells. The high-frequency mutation loci (top 10) of colorectal, lung and liver cancer genes were screened using TCGA database. The antigenic epitope peptides with high affinity for major histocompatibility complex molecules were selected and synthesized using computer prediction algorithms, and were subsequently detected using flow cytometry. The cytotoxicity of specific cytotoxic T lymphocytes (CTLs) on peptide-loaded T2 cells was initially verified using interferon IFN-γ detection and a calcein-acetoxymethyl (Cal-AM) release assay. Tumor cell lines expressing point mutations in KRAS, TP53 and CTNNB1 genes were constructed respectively, and the cytotoxicity of peptide-induced specific CTLs on wild-type and mutant tumor cells was verified using a Cal-AM release assay and carboxyfluorescein succinimidyl ester-propidium iodide staining. The high-frequency gene mutation loci of KRAS proto-oncogene (KRAS) G12V, tumor protein p53 (TP53) R158L and catenin β1 (CTNNB1) K335I were identified in TCGA database. A total of 3 groups of wild-type and mutant peptides were screened using a peptide prediction algorithm. The CTNNB1 group had a strong affinity for the human leukocyte antigen-A2 molecule, as determined using flow cytometry. The IFN-γ secretion of specific CTLs in the CTNNB1 group was the highest, followed by the TP53 and the KRAS groups. The killing rate of mutant peptide-induced specific CTLs on peptide-loaded T2 cells in the CTNNB1 group was higher compared with that observed in the other groups. The killing rate of specific CTLs induced by mutant peptides present on tumor cells was higher compared with that induced by wild-type peptides. However, when compared with the TP53 and KRAS groups, specific CTLs induced by mutant peptides in the CTNNB1 group had more potent cytotoxicity towards mutant and wild-type tumor cells. In conclusion, point mutant tumor neoantigens screened in the three groups improved the cytotoxicity of specific T cells, and the mutant peptides in the CTNNB1 group were more prominent, indicating that they may activate the cellular immune response more readily.
Collapse
Affiliation(s)
- Wanwen Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wenjian Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
85
|
Dimou A, Grewe P, Sidney J, Sette A, Norman PJ, Doebele RC. HLA Class I Binding of Mutant EGFR Peptides in NSCLC Is Associated With Improved Survival. J Thorac Oncol 2020; 16:104-112. [PMID: 32927123 DOI: 10.1016/j.jtho.2020.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/11/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer-associated mutations have the potential to generate neoantigens and elicit CD8-positive T-cell-dependent adaptive immune responses. There are currently no reports of CD8-positive T-cells with specificity for neoepitopes generated by EGFR mutations, which are driver oncogenes in a subset of patients with lung cancer. METHODS We used NETMHCpan 4.0 to identify putative protective human leukocyte antigen (HLA) class I allotypes that are predicted in silico to bind and present mutant EGFR-generated peptides on the basis of predefined criteria. We associated the presence or absence of these alleles with clinical outcomes in patients from The Cancer Genome Atlas with lung adenocarcinoma. RESULTS We identified 12 HLA class I alleles that fulfilled the predefined criteria for being protective for EGFR p.L858R and six for EGFR p.E746_A750del, the two most common EGFR mutations in lung cancer. We validated the in silico predictions for peptide-HLA allele binding in vitro. A third (12 of 36) of patients with mostly early stage lung adenocarcinoma in The Cancer Genome Atlas with either EGFR p.L858R or EGFR p.E746_A750del had at least one protective allele in their host genomes. More importantly, patients with protective alleles exhibited better disease-free (hazard ratio: 0.20, 95% confidence interval: 0.05-0.78) and overall survival (hazard ratio: 0.13, 95% confidence interval: 0.02-0.64), and this effect was independent of the EGFR mutation type, stage, age, and sex. CONCLUSIONS Our data revealed that clinical outcomes were improved in patients with EGFR mutation-positive lung adenocarcinoma who harbored protective HLA class I alleles. Thus, immunity with specificity for mutant EGFR is possible in a subset of patients with early stage lung cancer and portends a better prognosis.
Collapse
Affiliation(s)
- Anastasios Dimou
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado; Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Paul Grewe
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado
| | - John Sidney
- La Jolla Institute for Immunology, La Jolla, California
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, California; Department of Medicine, University of California in San Diego, La Jolla, California
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Aurora, Colorado; Department of Microbiology and Immunology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Robert C Doebele
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
86
|
Lu Z, Peng Z, Liu C, Wang Z, Wang Y, Jiao X, Li J, Shen L. Current Status and Future Perspective of Immunotherapy in Gastrointestinal Cancers. Innovation (N Y) 2020; 1:100041. [PMID: 34557714 PMCID: PMC8454608 DOI: 10.1016/j.xinn.2020.100041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal (GI) cancers represent a major public health problem worldwide. Due to the late detection and high heterogeneity of GI cancers, traditional treatments, including surgery, radiotherapy, chemotherapy, and targeted therapy, have shown limited effects, and the overall prognosis of these patients remains poor. Recently, immunotherapy, involving programmed cell death-1 (PD-1) and its ligand (PD-L1), has shown promising efficacy in several solid cancers and seems to have become a potential treatment option for GI cancers This review focuses on data on the development of immunotherapy-based clinical trials in esophageal cancer, gastric cancer, and colorectal cancer. The predictive biomarkers and combination strategies in clinical trials and translational medicine are also discussed. Finally, prospects for immunotherapy in the treatment of GI cancers are described. Although only a small proportion of patients with GI cancers respond to PD-1/PD-L1 blockade, we strongly believe that precision immunotherapy might improve the overall survival of many more GI cancer patients in the future.
Collapse
Affiliation(s)
- Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chang Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 FuCheng Road, Hai-Dian District, Beijing, 100142, China
| |
Collapse
|
87
|
Li H, Li J, Zhang C, Zhang C, Wang H. TERT mutations correlate with higher TMB value and unique tumor microenvironment and may be a potential biomarker for anti-CTLA4 treatment. Cancer Med 2020; 9:7151-7160. [PMID: 32810393 PMCID: PMC7541140 DOI: 10.1002/cam4.3376] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have recently changed therapeutic paradigms for patients across multiple cancer types. However, current biomarkers cannot accurately predict responses to ICIs. Telomerase reverse transcriptase (TERT) mutations lead to an aberrant upregulation of TERT expression, and ultimately allow telomere maintenance, thus supporting immortalization of cancer cells. This study aimed to investigate whether the TERT mutation is a potential predictor of ICI treatment across all cancer types. TERT mutations positively correlated with a higher tumor mutational burden (TMB) value, neoantigen load, and tumor purity. Lymphocyte infiltration, macrophage regulation, interferon‐gamma (IFN‐γ) response, and transforming growth factor‐β (TGF‐β) response which was representative immune‐expression signatures, all had higher signature scores in the TERT mutation group. Activated CD4 T cell, naïve B cell, activated dendritic cell, M0 macrophage, M1 macrophage, neutrophil, resting NK cell, and plasma cells all had relatively higher immune scores in the TERT mutation group, whereas Th series cells, memory B cell, resting mast cells, monocytes, and activated NK cells had lower immune scores. Notably, in the subgroup analysis of monotherapy and combination ICI treatment, only in the anti‐cytotoxic‐T‐lymphocyte‐associated antigen 4 (anti‐CTLA4) group, patients with TERT mutations had a better prognosis, especially for melanoma. Therefore, TERT mutations were closely related to a higher TMB value and unique tumor microenvironment, which may be the reason that TERT mutations may be a potential biomarker for anti‐CTLA4 treatment.
Collapse
Affiliation(s)
- Huahua Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
88
|
Abstract
Medullary pancreatic carcinoma (MPC) is a rare histological variant of pancreatic ductal adenocarcinoma (PDAC). Because of its rarity, data on the molecular background of MPC are limited. Previous studies have shown that a subset of MPCs is microsatellite instable due to mismatch repair deficiency. Here, we present a unique case of a female patient in her 60s who is a long-term survivor after surgery for pancreatic cancer. The patient had a microsatellite stable MPC with a somatic mutation of the polymerase epsilon gene (POLE). Both microsatellite instable and POLE-mutated cancers are usually associated with high tumor mutational burden and antigen load, resulting in a prominent antitumor immune response and overall better survival. The current case illustrates that, in addition to mismatch repair deficiency, MPC can develop because of a somatic POLE mutation, resulting in a tumor with a high tumor mutational burden and leading to a better prognosis compared with conventional PDAC. This new finding may have important implications in the management of patients with MPC and calls for further studies on the role of POLE in PDAC.
Collapse
|
89
|
Grund-Gröschke S, Ortner D, Szenes-Nagy AB, Zaborsky N, Weiss R, Neureiter D, Wipplinger M, Risch A, Hammerl P, Greil R, Sibilia M, Gratz IK, Stoitzner P, Aberger F. Epidermal activation of Hedgehog signaling establishes an immunosuppressive microenvironment in basal cell carcinoma by modulating skin immunity. Mol Oncol 2020; 14:1930-1946. [PMID: 32615027 PMCID: PMC7463314 DOI: 10.1002/1878-0261.12758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/27/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic activation of hedgehog/glioma‐associated oncogene homolog (HH/GLI) signaling causes basal cell carcinoma (BCC), a very frequent nonmelanoma skin cancer. Small molecule targeting of the essential HH effector Smoothened (SMO) has proven an effective therapy of BCC, though the frequent development of drug resistance poses major challenges to anti‐HH treatments. In light of recent breakthroughs in cancer immunotherapy, we analyzed the possible immunosuppressive mechanisms in HH/GLI‐induced BCC in detail. Using a genetic mouse model of BCC, we identified profound differences in the infiltration of BCC lesions with cells of the adaptive and innate immune system. Epidermal activation of Hh/Gli signaling led to an accumulation of immunosuppressive regulatory T cells, and to an increased expression of immune checkpoint molecules including programmed death (PD)‐1/PD‐ligand 1. Anti‐PD‐1 monotherapy, however, did not reduce tumor growth, presumably due to the lack of immunogenic mutations in common BCC mouse models, as shown by whole‐exome sequencing. BCC lesions also displayed a marked infiltration with neutrophils, the depletion of which unexpectedly promoted BCC growth. The study provides a comprehensive survey of and novel insights into the immune status of murine BCC and serves as a basis for the design of efficacious rational combination treatments. This study also underlines the need for predictive immunogenic mouse models of BCC to evaluate the efficacy of immunotherapeutic strategies in vivo.
Collapse
Affiliation(s)
- Sandra Grund-Gröschke
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Daniela Ortner
- Department of Dermatology, Venereology & Allergology, Medical University Innsbruck, Austria
| | - Antal B Szenes-Nagy
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Nadja Zaborsky
- IIIrd Medical Department, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University Salzburg, Cancer Cluster Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University Salzburg, Cancer Cluster Salzburg, Austria
| | - Martin Wipplinger
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Angela Risch
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Peter Hammerl
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Richard Greil
- IIIrd Medical Department, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University Salzburg, Cancer Cluster Salzburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Iris K Gratz
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University Innsbruck, Austria
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| |
Collapse
|
90
|
Grilo I, Rodrigues C, Soares A, Grande E. Facing treatment of non-urothelial bladder cancers in the immunotherapy era. Crit Rev Oncol Hematol 2020; 153:103034. [PMID: 32622321 DOI: 10.1016/j.critrevonc.2020.103034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022] Open
Abstract
Non-urothelial Bladder Cancer (BC) and variants of urothelial carcinoma account for up to 25 % of all BCs. Given their heterogeneity, these entities are not well represented in clinical trials and treatment remains challenging. Checkpoint inhibitor therapy has shown a role in the treatment of urothelial BC. By contrast, robust evidence regarding its use in other histological types is lacking. We aimed to provide a comprehensive update of non-urothelial and variant urothelial BC, exploring the evidence for immune checkpoint inhibitor therapy. A detailed analysis of the literature was conducted regarding epidemiology, aetiology, diagnosis, prognosis, treatment and outcomes of these patients in the immunotherapy era. A growing body of evidence suggests that immune checkpoint inhibition might have a role to play in non-urothelial BC, similarly to what happened with urothelial carcinomas.
Collapse
Affiliation(s)
- I Grilo
- Medical Oncology Department, Centro Hospitalar de Trás-os-Montes e Alto Douro, EPE, Vila Real, Portugal
| | - C Rodrigues
- Medical Oncology Department, Centro Hospitalar de Entre o Douro e Vouga, EPE, Sta Maria da Feira, Portugal
| | - A Soares
- Medical Oncology Department, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
| | - E Grande
- Medical Oncology Department, MD Anderson Cancer Center Madrid, Madrid, Spain.
| |
Collapse
|
91
|
Wang G, Wan H, Jian X, Li Y, Ouyang J, Tan X, Zhao Y, Lin Y, Xie L. INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5798356. [PMID: 32626747 PMCID: PMC7315274 DOI: 10.1155/2020/5798356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
In silico T-cell epitope prediction plays an important role in immunization experimental design and vaccine preparation. Currently, most epitope prediction research focuses on peptide processing and presentation, e.g., proteasomal cleavage, transporter associated with antigen processing (TAP), and major histocompatibility complex (MHC) combination. To date, however, the mechanism for the immunogenicity of epitopes remains unclear. It is generally agreed upon that T-cell immunogenicity may be influenced by the foreignness, accessibility, molecular weight, molecular structure, molecular conformation, chemical properties, and physical properties of target peptides to different degrees. In this work, we tried to combine these factors. Firstly, we collected significant experimental HLA-I T-cell immunogenic peptide data, as well as the potential immunogenic amino acid properties. Several characteristics were extracted, including the amino acid physicochemical property of the epitope sequence, peptide entropy, eluted ligand likelihood percentile rank (EL rank(%)) score, and frequency score for an immunogenic peptide. Subsequently, a random forest classifier for T-cell immunogenic HLA-I presenting antigen epitopes and neoantigens was constructed. The classification results for the antigen epitopes outperformed the previous research (the optimal AUC = 0.81, external validation data set AUC = 0.77). As mutational epitopes generated by the coding region contain only the alterations of one or two amino acids, we assume that these characteristics might also be applied to the classification of the endogenic mutational neoepitopes also called "neoantigens." Based on mutation information and sequence-related amino acid characteristics, a prediction model of a neoantigen was established as well (the optimal AUC = 0.78). Further, an easy-to-use web-based tool "INeo-Epp" was developed for the prediction of human immunogenic antigen epitopes and neoantigen epitopes.
Collapse
Affiliation(s)
- Guangzhi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Huihui Wan
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education and Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuyu Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Xiaoxiu Tan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| |
Collapse
|
92
|
Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21114071. [PMID: 32517213 PMCID: PMC7313051 DOI: 10.3390/ijms21114071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Modern immunotherapy together with targeted therapy has revolutionized the treatment of advanced melanoma. Inhibition of immune checkpoints significantly improved the median overall survival and gave hope to many melanoma patients. However, this treatment has three serious drawbacks: high cost, serious side effects, and an effectiveness limited only to approximately 50% of patients. Some patients do not derive any or short-term benefit from this treatment due to primary or secondary resistance. The response to immunotherapy depends on many factors that fall into three main categories: those associated with melanoma cells, those linked to a tumor and its microenvironment, and those classified as individual ontogenic and physiological features of the patient. The first category comprises expression of PD-L1 and HLA proteins on melanoma cells as well as genetic/genomic metrics such as mutational load, (de)activation of specific signaling pathways and epigenetic factors. The second category is the inflammatory status of the tumor: “hot” versus “cold” (i.e., high versus low infiltration of immune cells). The third category comprises metabolome and single nucleotide polymorphisms of specific genes. Here we present up-to-date data on those biological factors influencing melanoma response to immunotherapy with a special focus on signaling pathways regulating the complex process of anti-tumor immune response. We also discuss their potential predictive capacity.
Collapse
|
93
|
Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer 2020; 147:2658-2668. [PMID: 32383203 DOI: 10.1002/ijc.33038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Defects in DNA repair machinery play a critical role in the pathogenesis and progression of human cancer. When they occur, the tumor cells activate error-prone mechanisms which lead to genomic instability and high mutation rate. These defects represent, therefore, a cancer Achilles'heel which could be therapeutically exploited by the use of DNA damage response inhibitors. Moreover, experimental and clinical evidence indicates that DNA repair deregulation has a pivotal role also in promoting immune recognition and immune destruction of cancer cells. Indeed, immune checkpoint inhibitors have received regulatory approval in tumors characterized by high genomic instability, such as melanomas and lung cancer. Here, we discuss how deregulation of DNA repair, through activation of error-prone mechanisms, increases immune activation against cancer. Finally, we address the potential strategies to use DNA repair components as biomarkers and/or therapeutic targets to empower immune-oncology treatment of human cancer.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
94
|
Zhou WJ, Qu Z, Song CY, Sun Y, Lai AL, Luo MY, Ying YZ, Meng H, Liang Z, He YJ, Li YH, Liu J. NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5670755. [PMID: 31819989 PMCID: PMC6901387 DOI: 10.1093/database/baz128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic vaccines represent a promising immunotherapeutic modality against cancer. Discovery and validation of antigens is the key to develop effective anti-cancer vaccines. Neoantigens, arising from somatic mutations in individual cancers, are considered as ideal cancer vaccine targets because of their immunogenicity and lack of expression in normal tissues. However, only few databases support convenient access to these neoantigens for use in vaccines. To address this gap, we developed a web-accessible database, called NeoPeptide, which contains most of the important characteristics of neoantigens (such as mutation site, subunit sequence, major histocompatibility complex restriction) derived from published literature and other immunological resources. NeoPeptide also provides links to resources for further characterization of the novel features of these neoantigens. NeoPeptide will be regularly updated with newly identified and published neoantigens. Our work will help researchers in identifying neoantigens in different cancers and hasten the search for appropriate cancer vaccine candidates.
Collapse
Affiliation(s)
- Wei-Jun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Zhi Qu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street,Nan Gang District, Harbin 150001, China
| | - Chao-Yang Song
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Yang Sun
- The Second Clinical Medical College (Zhujiang Hospital), Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - An-Li Lai
- The Second Clinical Medical College (Zhujiang Hospital), Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Ma-Yao Luo
- The Second Clinical Medical College (Zhujiang Hospital), Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Yu-Zhe Ying
- The Second Clinical Medical College (Zhujiang Hospital), Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Hu Meng
- The Second Clinical Medical College (Zhujiang Hospital), Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Yan-Jie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Yu-Hua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510282, China
| | - Jian Liu
- College of Computer Science, NanKai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
95
|
Lin C, Shi X, Zhao J, He Q, Fan Y, Xu W, Shao Y, Yu X, Jin Y. Tumor Mutation Burden Correlates With Efficacy of Chemotherapy/Targeted Therapy in Advanced Non-Small Cell Lung Cancer. Front Oncol 2020; 10:480. [PMID: 32411590 PMCID: PMC7201001 DOI: 10.3389/fonc.2020.00480] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
Objectives: Accumulating evidence has illustrated greater benefit of immunotherapy in tumors with high tumor mutation burden (TMB), whereas its impact on targeted therapy or chemotherapy is undefined. Herein, we evaluated TMB outside of immuno-oncology in epidermal growth factor receptor (EGFR)-mutant patients and EGFR/ALK wild-type cohorts. Methods: In this retrospective study, we correlated TMB with response rate and progression-free survival (PFS) of patients who received EGFR-tyrosine kinase inhibitors (TKIs) or pemetrexed/platinum as first-line therapy. Tumor mutation burden was evaluated by targeted next-generation sequencing. Patients were divided into low (L)/intermediate (I)/high (H) TMB groups by tertiles. Results: In EGFR-mutant cohort, TMB-L patients had a massively improved PFS compared to TMB-I and TMB-H patients (16.4 vs. 9.0 vs. 7.4 months; log-rank p = 0.006) when treated with first-generation EGFR-TKIs. In EGFR/ALK wild-type cohorts who received pemetrexed/platinum regimen, the objective response rate (ORR) of TMB-L group was statistically superior than that of TMB-I and TMB-H groups (53.8% vs. 23% vs. 8.3%; log-rank p = 0.037), and patients with low TMB had a numerically but not significantly prolonged PFS (6.9 vs. 4.3 vs. 4.6 m; log-rank p = 0.22). Conclusion: Our data provide insights into the relevance between TMB and targeted/chemo therapy. Higher non-synonymous TMB correlates with inferior PFS for first-generation EGFR-TKIs in EGFR-driven patients and worse response to pemetrexed/platinum regimen in EGFR/ALK wild-type patients, which has potential clinical implications for cancer treatment but needs corroboration in larger studies.
Collapse
Affiliation(s)
- Chen Lin
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xun Shi
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jun Zhao
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qiong He
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yun Fan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weizhen Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Clinical Trials Center, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nangjing, China
| | - Xinmin Yu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology of Thoracic Oncology, Hangzhou, China
| | - Ying Jin
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| |
Collapse
|
96
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|
97
|
Han KC, Park D, Ju S, Lee YE, Heo SH, Kim YA, Lee JE, Lee Y, Park KH, Park SH, Lee HJ, Lee C, Jang M. Streamlined selection of cancer antigens for vaccine development through integrative multi-omics and high-content cell imaging. Sci Rep 2020; 10:5885. [PMID: 32245999 PMCID: PMC7125174 DOI: 10.1038/s41598-020-62244-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022] Open
Abstract
Identification of tumor antigens that induce cytotoxic T lymphocytes (CTLs) is crucial for cancer-vaccine development. Despite their predictive ability, current algorithmic approaches and human leukocyte antigen (HLA)-peptidomic analysis allow limited selectivity. Here, we optimized a method to rapidly screen and identify highly immunogenic epitopes that trigger CTL responses. We used a combined application of this method involving immune-specific signature analysis and HLA-associated peptidomics using samples from six patients with triple-negative breast cancer (TNBC) in order to select immunogenic HLA epitopes for in vitro testing. Additionally, we applied high-throughput imaging at the single-cell level in order to confirm the immunoreactivity of the selected peptides. The results indicated that this method enabled identification of promising CTL peptides capable of inducing antitumor immunity. This platform combining high-resolution computational analysis, HLA-peptidomics, and high-throughput immunogenicity testing allowed rapid and robust identification of highly immunogenic epitopes and represents a powerful technique for cancer-vaccine development.
Collapse
Affiliation(s)
- Ki-Cheol Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea.
| | - Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea
| | - Young Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea.,College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea
| | - Yuna Lee
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyong Hwa Park
- Oncology/Hematology, Department of Internal medicine, Korea University College of medicine, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Se-Ho Park
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea. .,Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea. .,Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
98
|
Wu W, Chen Y, Huang L, Li W, Tao C, Shen H. Effects of AKT1 E17K mutation hotspots on the biological behavior of breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:332-346. [PMID: 32269671 PMCID: PMC7137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/19/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate the effect of the AKT1 gene mutation hotspot E17K on the growth, proliferation, survival, and migration of breast cancer cells, based on the survival and prognosis of breast cancer patients with the AKT1 E17K mutation shown in TCGA database. METHODS The survival and incidence rates of AKT1 E17K mutation hotspots in breast cancer and other cancers were extracted from the Cancer Genome Atlas (TCGA). The recombinant eukaryotic expression plasmid AKT1 E17K-pIRES2-EGFP was constructed and transfected into breast cancer MCF-7, and MDA-MB-231 cell lines. MCF-7 and MDA-MB-231 cell lines were randomly divided into blank control groups, empty plasmid groups, and recombinant plasmid groups. The growth curve was drawn using the cell counting method. The proliferation and division of breast cancer cells were detected by CFSE fluorescent dye tracking. Apoptosis was detected by Annexin V/PI double labeling and cell vitality was detected using MTT assays, and cell migratory ability was detected by cell scratch and transwell chamber tests. RESULTS In breast cancer, and other cancers, the overall survival rate of patients with an AKT E17K mutation was higher than that of patients with non-point mutation, and this mutation was the most common found in breast cancer. Compared with the wild type, the growth function of mutant MCF-7 cells was inhibited (P < 0.05), as was the proliferation of MCF-7 cells expressing the AKT1 E17K mutation gene (P < 0.001). The late apoptosis rate of mutant breast cancer cells increased (P < 0.05) and the viability was lower than that of wild-type cells (P < 0.05). Mutant MDA-MB-231 cells showed increased migration ability when compared to wild-type MDA-MB-231 cells (P < 0.05). CONCLUSIONS The expression of the AKT1 E17K mutation hotspot can inhibit the growth, proliferation, and survival ability of breast cancer cells, and promote apoptosis, while it also improves their migratory ability. The survival and prognosis of breast cancer patients with this mutation are good, which may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wanwen Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Wenjian Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006, China
| |
Collapse
|
99
|
Coelho ACMF, Fonseca AL, Martins DL, Lins PBR, da Cunha LM, de Souza SJ. neoANT-HILL: an integrated tool for identification of potential neoantigens. BMC Med Genomics 2020; 13:30. [PMID: 32087727 PMCID: PMC7036241 DOI: 10.1186/s12920-020-0694-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cancer neoantigens have attracted great interest in immunotherapy due to their capacity to elicit antitumoral responses. These molecules arise from somatic mutations in cancer cells, resulting in alterations on the original protein. Neoantigens identification remains a challenging task due largely to a high rate of false-positives. Results We have developed an efficient and automated pipeline for the identification of potential neoantigens. neoANT-HILL integrates several immunogenomic analyses to improve neoantigen detection from Next Generation Sequence (NGS) data. The pipeline has been compiled in a pre-built Docker image such that minimal computational background is required for download and setup. NeoANT-HILL was applied in The Cancer Genome Atlas (TCGA) melanoma dataset and found several putative neoantigens including ones derived from the recurrent RAC1:P29S and SERPINB3:E250K mutations. neoANT-HILL was also used to identify potential neoantigens in RNA-Seq data with a high sensitivity and specificity. Conclusion neoANT-HILL is a user-friendly tool with a graphical interface that performs neoantigens prediction efficiently. neoANT-HILL is able to process multiple samples, provides several binding predictors, enables quantification of tumor-infiltrating immune cells and considers RNA-Seq data for identifying potential neoantigens. The software is available through github at https://github.com/neoanthill/neoANT-HILL.
Collapse
Affiliation(s)
- Ana Carolina M F Coelho
- Bioinformatics Multidisciplinary Enviroment (BioME), Institute Metropolis Digital, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil
| | - André L Fonseca
- Bioinformatics Multidisciplinary Enviroment (BioME), Institute Metropolis Digital, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil
| | - Danilo L Martins
- Bioinformatics Multidisciplinary Enviroment (BioME), Institute Metropolis Digital, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil
| | - Paulo B R Lins
- Bioinformatics Multidisciplinary Enviroment (BioME), Institute Metropolis Digital, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil
| | - Lucas M da Cunha
- Bioinformatics Multidisciplinary Enviroment (BioME), Institute Metropolis Digital, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil.,PhD Program in Bioinformatics, UFRN, Natal, Brazil
| | - Sandro J de Souza
- Bioinformatics Multidisciplinary Enviroment (BioME), Institute Metropolis Digital, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil. .,Brain Institute, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil. .,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
100
|
Krieger T, Pearson I, Bell J, Doherty J, Robbins P. Targeted literature review on use of tumor mutational burden status and programmed cell death ligand 1 expression to predict outcomes of checkpoint inhibitor treatment. Diagn Pathol 2020; 15:6. [PMID: 32000815 PMCID: PMC6990470 DOI: 10.1186/s13000-020-0927-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background To achieve optimal outcomes, an individual approach is needed in the treatment and care of patients. The potential value of tumor mutational burden (TMB) status and/or programmed cell death ligand 1 (PD-L1) expression as biomarkers to predict which patients are most likely to respond to checkpoint inhibitors has been explored in many studies. The goal of this targeted literature review is to identify data available for TMB status and/or PD-L1 expression that predict response to checkpoint inhibitors and/or anti–cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) antibodies. Methods Targeted literature searches were performed using electronic medical databases (MEDLINE, Embase, and BIOSIS) and internet searches of specified sites. Bibliographies of key systematic literature reviews and meta-analyses also were reviewed for studies of interest. Results The review identified 27 studies of non-small cell lung cancer (NSCLC), 40 studies of melanoma, 10 studies of urothelial cancer, and 5 studies of renal cell cancer indications. Studies also were identified in other cancer types, e.g., colorectal, breast, gastric, and Merkel cell cancer and squamous-cell carcinoma of the head and neck. Twelve trials, including six in NSCLC and four in melanoma, evaluated TMB as a predictor of outcomes. A TMB of ≥10 mutations per megabase was shown to be an effective biomarker in the CheckMate 227 study. PD-L1 expression was included in the majority of identified studies and was found to predict response in in melanoma and in all types of NSCLC. Prediction of response was not a prespecified analysis in some studies; others had small sample sizes and wide confidence intervals. A clear predictive trend for PD-L1 expression was not identified in renal, breast, gastric, or Merkel cell cancer. Conclusion Based on data contained in this review, assessment of TMB status and PD-L1 expression may help enhance the prediction of response to checkpoint inhibition in some tumors, such as NSCLC and melanoma. In this rapidly growing area of research, further exploratory biomarkers are being investigated including tumor-infiltrating lymphocytes, immune profiling (e.g., effector T cells or regulatory T cells), epigenetic signatures, T-cell receptor repertoire, proteomics, microbiome, and metabolomics.
Collapse
Affiliation(s)
- Tina Krieger
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK.
| | - Isobel Pearson
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| | - Judith Bell
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| | | | | |
Collapse
|