51
|
Zhang M, Yu L, Sun Y, Hao L, Bai J, Yuan X, Wu R, Hong M, Liu P, Duan X, Wang C. Comprehensive Analysis of FASN in Tumor Immune Infiltration and Prognostic Value for Immunotherapy and Promoter DNA Methylation. Int J Mol Sci 2022; 23:15603. [PMID: 36555243 PMCID: PMC9779179 DOI: 10.3390/ijms232415603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fatty acid synthase (FASN) promotes tumor progression in multiple cancers. In this study, we comprehensively examined the expression, prognostic significance, and promoter methylation of FASN, and its correlation with immune cell infiltration in pan-cancer. Our results demonstrated that elevated FASN expression was significantly associated with an unfavorable prognosis in many cancer types. Furthermore, FASN promoter DNA methylation can be used as a tumor prognosis marker. Importantly, high levels of FASN were significantly negatively correlated with tumor immune infiltration in 35 different cancers. Additionally, FASN was significantly associated with tumor mutational burden (TMB) and microsatellite instability (MSI) in multiple malignancies, suggesting that it may be essential for tumor immunity. We also investigated the effects of FASN expression on immunotherapy efficacy and prognosis. In up to 15 tumors, it was significantly negatively correlated with immunotherapy-related genes, such as PD-1, PD-L1, and CTLA-4. Moreover, we found that tumors with high FASN expression may be more sensitive to immunotherapy and have a good prognosis with PD-L1 treatment. Finally, we confirmed the tumor-suppressive effect of mir-195-5p through FASN. Altogether, our results suggested that FASN may serve as a novel prognostic indicator and immunotherapeutic target in various malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
52
|
Wang Q, Tian N, Zhang W, Lin Z, Shi F, Kong Y, Ren Y, Lyu J, Qin H, Liu H. Fatty Acid Synthase Mutations Predict Favorable Immune Checkpoint Inhibitor Outcome and Response in Melanoma and Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14225638. [PMID: 36428733 PMCID: PMC9688165 DOI: 10.3390/cancers14225638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Fatty acid synthase (FASN) acts as the central member in fatty acid synthesis and metabolism processes, which regulate oncogenic signals and tumor immunogenicity. To date, no studies have reported the connection of FASN mutations with ICI efficacy. In this study, from 631 melanoma and 109 NSCLC patients who received ICI treatments, we retrospectively curated multiomics profiles and ICI treatment data. We also explored the potential molecular biological mechanisms behind FASN alterations. In melanoma patients, FASN mutations were observed to associate with a preferable immunotherapeutic prognosis and response rate (both p < 0.01). These connections were further corroborated by the NSCLC patients (both p < 0.01). Further analyses showed that a favorable tumor immunogenicity and immune microenvironment were involved in FASN mutations. This work confirms the clinical immunotherapy implications of FASN mutation-mediated fatty acid metabolism and provides a possible indicator for immunotherapy prognosis prediction.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.W.); (H.L.); Tel.: +86-8462426 (Q.W.); +86-8462250 (H.L.)
| | - Na Tian
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Basical Medicine, Weifang Medical University, Weifang 261053, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yanfeng Ren
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Juncheng Lyu
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Hao Qin
- Weifang Key Laboratory for Food Nutrition and Safety, School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Hongqing Liu
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.W.); (H.L.); Tel.: +86-8462426 (Q.W.); +86-8462250 (H.L.)
| |
Collapse
|
53
|
Bouzas A, Gómez de Cedrón M, Colmenarejo G, Laparra-Llopis JM, Moreno-Rubio J, Montoya JJ, Reglero G, Casado E, Tabares B, Sereno M, Ramírez de Molina A. Phenolic diterpenes from Rosemary supercritical extract inhibit non-small cell lung cancer lipid metabolism and synergise with therapeutic drugs in the clinic. Front Oncol 2022; 12:1046369. [PMID: 36439419 PMCID: PMC9682134 DOI: 10.3389/fonc.2022.1046369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 02/25/2024] Open
Abstract
UNLABELLED Lung cancer is one of the most deadly and common cancers in the world. The molecular features of patient's tumours dictate the different therapeutic decisions, which combines targeted therapy, chemotherapy, and immunotherapy. Altered cellular metabolism is one of the hallmarks of cancer. Tumour cells reprogram their metabolism to adapt to their novel requirements of growth, proliferation, and survival. Together with the Warburg effect, the role of lipid metabolism alterations in cancer development and prognosis has been highlighted. Several lipid related genes have been shown to promote transformation and progression of cancer cells and have been proposed as biomarkers for prognosis. Nevertheless, the exact mechanisms of the regulation of lipid metabolism and the biological consequences in non-small cell lung cancer (NSCLC) have not been elucidated yet. There is an urgent necessity to develop multidisciplinary and complementary strategies to improve NSCLC patients´ well-being and treatment response. Nutrients can directly affect fundamental cellular processes and some diet-derived ingredients, bioactive natural compounds and natural extracts have been shown to inhibit the tumour growth in preclinical and clinical trials. Previously, we described a supercritical extract of rosemary (SFRE) (12 - 16% composition of phenolic diterpenes carnosic acid and carnosol) as a potential antitumoral agent in colon and breast cancer due to its effects on the inhibition of lipid metabolism and DNA synthesis, and in the reduction of resistance to 5-FluoroUracil (5-FU). Herein, we demonstrate SFRE inhibits NSCLC cell bioenergetics identifying several lipid metabolism implicated targets. Moreover, SFRE synergises with standard therapeutic drugs used in the clinic, such as cisplatin, pemetrexed and pembrolizumab to inhibit of cell viability of NSCLC cells. Importantly, the clinical relevance of SFRE as a complement in the treatment of NSCLC patients is suggested based on the results of a pilot clinical trial where SFRE formulated with bioactive lipids (PCT/ES2017/070263) diminishes metabolic and inflammatory targets in peripheral-blood mononuclear cells (PBMC), such as MAPK (p=0.04), NLRP3 (p=0.044), and SREBF1 (p=0.047), which may augment the immune antitumour function. Based on these results, SFRE merits further investigation as a co-adjuvant in the treatment of NSCLC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT05080920.
Collapse
Affiliation(s)
- Adrián Bouzas
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- CANAAN Research & Investment Group, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | | | - Juan Moreno-Rubio
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Juan José Montoya
- CANAAN Research & Investment Group, Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Guillermo Reglero
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC.UAM), Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Beatriz Tabares
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| |
Collapse
|
54
|
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86:542-565. [PMID: 35151845 DOI: 10.1016/j.semcancer.2022.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/08/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1)-based immune checkpoint inhibitors (ICIs) have led to significant improvements in the overall survival of patients with certain cancers and are expected to benefit patients by achieving complete, long-lasting remissions and cure. However, some patients who receive ICIs either fail treatment or eventually develop immunotherapy resistance. The existence of such patients necessitates a deeper understanding of cancer progression, specifically nutrient regulation in the tumor microenvironment (TME), which includes both metabolic cross-talk between metabolites and tumor cells, and intracellular metabolism in immune and cancer cells. Here we review the features and behaviors of the TME and discuss the recently identified major immune checkpoints. We comprehensively and systematically summarize the metabolic modulation of tumor immunity and immune checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways, and further discuss the potential metabolism-based therapeutic strategies tested in preclinical and clinical settings. These findings will help to determine the existence of a link or crosstalk between tumor metabolism and immunotherapy, which will provide an important insight into cancer treatment and cancer research.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical Center, Chongqing, 400038, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, 43221, United States.
| |
Collapse
|
55
|
Zheng M, Zhang W, Chen X, Guo H, Wu H, Xu Y, He Q, Ding L, Yang B. The impact of lipids on the cancer–immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy. Acta Pharm Sin B 2022; 13:1488-1497. [PMID: 37139414 PMCID: PMC10149904 DOI: 10.1016/j.apsb.2022.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023] Open
Abstract
Lipids have been found to modulate tumor biology, including proliferation, survival, and metastasis. With the new understanding of tumor immune escape that has developed in recent years, the influence of lipids on the cancer-immunity cycle has also been gradually discovered. First, regarding antigen presentation, cholesterol prevents tumor antigens from being identified by antigen presenting cells. Fatty acids reduce the expression of major histocompatibility complex class I and costimulatory factors in dendritic cells, impairing antigen presentation to T cells. Prostaglandin E2 (PGE2) reduce the accumulation of tumor-infiltrating dendritic cells. Regarding T-cell priming and activation, cholesterol destroys the structure of the T-cell receptor and reduces immunodetection. In contrast, cholesterol also promotes T-cell receptor clustering and relative signal transduction. PGE2 represses T-cell proliferation. Finally, regarding T-cell killing of cancer cells, PGE2 and cholesterol weaken granule-dependent cytotoxicity. Moreover, fatty acids, cholesterol, and PGE2 can improve the activity of immunosuppressive cells, increase the expression of immune checkpoints and promote the secretion of immunosuppressive cytokines. Given the regulatory role of lipids in the cancer-immunity cycle, drugs that modulate fatty acids, cholesterol and PGE2 have been envisioned as effective way in restoring antitumor immunity and synergizing with immunotherapy. These strategies have been studied in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, the Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Tel./fax: +86 571 88208400.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- Corresponding authors. Tel./fax: +86 571 88208400.
| |
Collapse
|
56
|
Metabolic guidance and stress in tumors modulate antigen-presenting cells. Oncogenesis 2022; 11:62. [PMID: 36244976 PMCID: PMC9573874 DOI: 10.1038/s41389-022-00438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Successful antitumor immunity largely relies on efficient T cell priming by antigen-presenting cells (APCs); however, the capacity of APCs is found to be defective in many cancers. Metabolically reprogrammed cancer cells support the energetic and biosynthetic demands of their high proliferation rates by exploiting nutrients available in the tumor microenvironment (TME), which in turn limits proper metabolic reprogramming of APCs during recruitment, differentiation, activation and antigen presentation. Furthermore, some metabolites generated by the TME are unfavorable to antitumor immunity. This review summarizes recent studies on the metabolic features of APCs and their functionality in the TME. Particularly, we will describe how APCs respond to altered TME and how metabolic byproducts from cancer and immunomodulatory cells affect APCs. Finally, we introduce the current status of APC-oriented research and clinical trials targeting metabolic features to boost efficient immunotherapy.
Collapse
|
57
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
58
|
Zhang M, Wei T, Zhang X, Guo D. Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy. Front Immunol 2022; 13:937406. [PMID: 36131916 PMCID: PMC9483093 DOI: 10.3389/fimmu.2022.937406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
The tumor microenvironment (TME) has become a major research focus in recent years. The TME differs from the normal extracellular environment in parameters such as nutrient supply, pH value, oxygen content, and metabolite abundance. Such changes may promote the initiation, growth, invasion, and metastasis of tumor cells, in addition to causing the malfunction of tumor-infiltrating immunocytes. As the neoplasm develops and nutrients become scarce, tumor cells transform their metabolic patterns by reprogramming glucose, lipid, and amino acid metabolism in response to various environmental stressors. Research on carcinoma metabolism reprogramming suggests that like tumor cells, immunocytes also switch their metabolic pathways, named “immunometabolism”, a phenomenon that has drawn increasing attention in the academic community. In this review, we focus on the recent progress in the study of lipid metabolism reprogramming in immunocytes within the TME and highlight the potential target molecules, pathways, and genes implicated. In addition, we discuss hypoxia, one of the vital altered components of the TME that partially contribute to the initiation of abnormal lipid metabolism in immune cells. Finally, we present the current immunotherapies that orchestrate a potent antitumor immune response by mediating the lipid metabolism of immunocytes, highlight the lipid metabolism reprogramming capacity of various immunocytes in the TME, and propose promising new strategies for use in cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- *Correspondence: Danfeng Guo,
| |
Collapse
|
59
|
Zhang Z, Liang Z, Gao W, Yu S, Hou Z, Li K, Zeng P. Identification of circadian clock genes as regulators of immune infiltration in Hepatocellular Carcinoma. J Cancer 2022; 13:3199-3208. [PMID: 36118525 PMCID: PMC9475357 DOI: 10.7150/jca.71925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Multiple studies have reported that the immune system is under the control of a circadian clock, especially in cancers, but how circadian clock genes shape tumor immune cell infiltration in hepatocellular carcinoma (HCC) remains unclear. Methods: The rhythmicity of circadian clock genes was investigated using the GETx database. The expression and methylation level of circadian clock genes in HCC and paracancerous was evaluated using the GETx and TCGA databases. The differential expression of circadian clock genes in HCC was analyzed using the "limma" package of the R 4.0.4 software. The prognosis of each circadian clock gene was accessed by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. Quantitative real-time PCR and immunohistochemistry (IHC) was carried out to confirm the results. The relationship between circadian rhythm and immune infiltration in HCC was evaluated using the TIMER database and the CIBERSORT algorithm. Results: In addition to RORA, RORB, and ARNTL2, there was a rhythmic expression of other circadian clock genes in liver tissue. The correlation between the expression of circadian clock genes differed when comparing HCC and liver tissue. HCC patients who express low levels of PER-1and CRY2 had a poor overall survival (OS). In contrast, patients with higher expression of NPAS2 had a poor prognosis. In HCC, the expression of the PER-1, CRY2, and NPAS2 genes was closely related to immune infiltration. Conclusion: Our study indicated the disruption of the expression of circadian clock-regulated genes in HCC and identified PER-1, CRY2, and NPAS2 as independent predictors of survival. These genes may be applied as candidate molecular targets for diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Zicheng Liang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wenhui Gao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, P.R. China
| | - Shuxian Yu
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Zongwei Hou
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Kexin Li
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Puhua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| |
Collapse
|
60
|
Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai Y, Zhao Z, Yoo SH, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J 2022; 36:e22482. [PMID: 35947136 PMCID: PMC10062014 DOI: 10.1096/fj.202101398r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rachel Van Drunen
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rafael Bravo Santos
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Samay Shivshankar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
61
|
Dual role of pseudogene TMEM198B in promoting lipid metabolism and immune escape of glioma cells. Oncogene 2022; 41:4512-4523. [PMID: 36038663 DOI: 10.1038/s41388-022-02445-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Dysregulation of pseudogenes, enhancement of fatty acid synthesis and formation of immunosuppressive microenvironment are important factors that promote the malignant progression of glioma. It is of great significance to search for the molecular mechanism of interaction between the three and then perform targeted interference for improving the treatment of glioma. In this study, we found that pseudogene transmembrane protein 198B (TMEM198B) was highly expressed in glioma tissues and cell lines, and it could promote malignant progression of glioma by regulating lipid metabolism reprogramming and remodeling immune microenvironment. Applying the experimental methods of gene interference, lipidomics and immunology, we further confirmed that TMEM198B promoted PLAG1 like zinc finger 2 (PLAGL2) expression by mediating tri-methylation of histone H3 on lysine 4 (H3K4me3) of PLAGL2 through binding to SET domain containing 1B (SETD1B). Increased PLAGL2 could transcriptional activate ATP citrate lyase (ACLY) and ELOVL fatty acid elongase 6 (ELOVL6) expression, and then influenced the biological behaviors of glioma cells via enhancing the de novo lipogenesis and fatty acid acyl chain elongation. At the same time, TMEM198B promoted macrophages lipid accumulation and intensification of fatty acid oxidation (FAO) through glioma-derived exosomes (GDEs), further induced macrophages to M2 polarization, which subsequently facilitated immune escape of glioma cells. In conclusion, our present study clarifies that the TMEM198B/PLAGL2/ACLY/ELOVL6 pathway conducts crucial regulatory effects on the malignant progression of glioma, which provides novel targets and new ideas for molecular targeted therapy and immunotherapy of glioma.
Collapse
|
62
|
Liu C, Tao Y, Lin H, Lou X, Wu S, Chen L. Classification of stomach adenocarcinoma based on fatty acid metabolism-related genes frofiling. Front Mol Biosci 2022; 9:962435. [PMID: 36090054 PMCID: PMC9461144 DOI: 10.3389/fmolb.2022.962435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM)-related genes play a key role in the development of stomach adenocarcinoma (STAD). Although immunotherapy has led to a paradigm shift in STAD treatment, the overall response rate of immunotherapy for STAD is low due to heterogeneity of the tumor immune microenvironment (TIME). How FAM-related genes affect TIME in STAD remains unclear.Methods: The univariate Cox regression analysis was performed to screen prognostic FAM-related genes using transcriptomic profiles of the Cancer Genome Atlas (TCGA)-STAD cohort. Next, the consensus clustering analysis was performed to divide the STAD cohort into two groups based on the 13 identified prognostic genes. Then, gene set enrichment analysis (GSEA) was carried out to identify enriched pathways in the two groups. Furthermore, we developed a prognostic signature model based on 7 selected prognostic genes, which was validated to be capable in predicting the overall survival (OS) of STAD patients using the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses. Finally, the “Estimation of STromal and Immune cells in MAlignant Tumours using Expression data” (ESTIMATE) algorithm was used to evaluate the stromal, immune, and ESTIMATE scores, and tumor purity of each STAD sample.Results: A total of 13 FAM-related genes were identified to be significantly associated with OS in STAD patients. Two molecular subtypes, which we named Group 1 and Group 2, were identified based on these FAM-related prognostic genes using the consensus clustering analysis. We showed that Group 2 was significantly correlated with poor prognosis and displayed higher programmed cell death ligand 1 (PD-L1) expressions and distinct immune cell infiltration patterns. Furthermore, using GSEA, we showed that apoptosis and HCM signaling pathways were significantly enriched in Group 2. We constructed a prognostic signature model using 7 selected FAM-related prognostic genes, which was proven to be effective for prediction of STAD (HR = 1.717, 95% CI = 1.105–1.240, p < 0.001). After classifying the patients into the high- and low-risk groups based on our model, we found that patients in the high-risk group tend to have more advanced T stages and higher tumor grades, as well as higher immune scores. We also found that the risk scores were positively correlated with the infiltration of certain immune cells, including resting dendritic cells (DCs), and M2 macrophages. We also demonstrated that elevated expression of gamma-glutamyltransferase 5 (GGT5) is significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and increased immune cell infiltration, suggesting that STAD patients with high GGT5 expression in the tumor tissues might have a better response to immunotherapy.Conclusion: FAM-related genes play critical roles in STAD prognosis by shaping the TIME. These genes can regulate the infiltration of various immune cells and thus are potential therapeutic targets worthy of further investigation. Furthermore, GGT5 was a promising marker for predicting immunotherapeutic response in STAD patients.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Yongjun Tao
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Huajian Lin
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Xiqiang Lou
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Simin Wu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Liping Chen
- Research Center of Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Liping Chen,
| |
Collapse
|
63
|
Caro AA, Deschoemaeker S, Allonsius L, Coosemans A, Laoui D. Dendritic Cell Vaccines: A Promising Approach in the Fight against Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14164037. [PMID: 36011029 PMCID: PMC9406463 DOI: 10.3390/cancers14164037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary With an overall 5-year survival of only 20% for advanced-stage ovarian cancer patients, enduring and effective therapies are a highly unmet clinical need. Current standard-of-care therapies are able to improve progression-free survival; however, patients still relapse. Moreover, immunotherapy has not resulted in clear patient benefits so far. In this situation, dendritic cell vaccines can serve as a potential therapeutic addition against ovarian cancer. In the current review, we provide an overview of the different dendritic cell subsets and the roles they play in ovarian cancer. We focus on the advancements in dendritic cell vaccination against ovarian cancer and highlight the key outcomes and pitfalls associated with currently used strategies. Finally, we address future directions that could be taken to improve the dendritic cell vaccination outcomes in ovarian cancer. Abstract Ovarian cancer (OC) is the deadliest gynecological malignancy in developed countries and is the seventh-highest cause of death in women diagnosed with cancer worldwide. Currently, several therapies are in use against OC, including debulking surgery, chemotherapy, as well as targeted therapies. Even though the current standard-of-care therapies improve survival, a vast majority of OC patients relapse. Additionally, immunotherapies have only resulted in meager patient outcomes, potentially owing to the intricate immunosuppressive nexus within the tumor microenvironment. In this scenario, dendritic cell (DC) vaccination could serve as a potential addition to the therapeutic options available against OC. In this review, we provide an overview of current therapies in OC, focusing on immunotherapies. Next, we highlight the potential of using DC vaccines in OC by underscoring the different DC subsets and their functions in OC. Finally, we provide an overview of the advances and pitfalls of current DC vaccine strategies in OC while providing future perspectives that could improve patient outcomes.
Collapse
Affiliation(s)
- Aarushi Audhut Caro
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lize Allonsius
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-6291969
| |
Collapse
|
64
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
65
|
Hypomethylated gene RAC3 induces cell proliferation and invasion by increasing FASN expression in endometrial cancer. Int J Biochem Cell Biol 2022; 150:106274. [PMID: 35917927 DOI: 10.1016/j.biocel.2022.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most prevalent gynecological cancers with a 5-year survival rate of 20-60%. Feasible prognostic molecular biomarkers of EC are necessary for accurate prediction of EC prognosis. METHODS RAC3 is a member of the Rho GTPases. Public databases including Gene Expression Profiling Interactive Analysis (GEPIA2), Tumor Immune Estimation Resource (TIMER), LinkedOmics, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), TISIDB and cBioPortal were employed to analyze the differential expression, clinicopathologic characteristics, functional networks, immune cell infiltrates and genetic alteration of RAC3 in EC patients. RESULTS RAC3 expression was elevated in EC patients analyzed by TIMER and GEPIA. Overexpression of RAC3 was obviously correlated with clinical stage, histological type, histological grade and DNA hypomethylation. Patients with high RAC3 expression displayed poor overall survival. Functional enrichment analysis showed that RAC3 was involved in translational initiation, DNA replication and mRNA processing. RAC3 expression was negatively associated with infiltrating levels of B cells, CD8+ T cells, macrophages and dendritic cells in EC. Experiments in vitro showed that RAC3 was upregulated in EC tissues and cell lines, and RAC3 induced cell proliferation and invasion by increasing fatty acid synthase (FASN) expression. CONCLUSION High expression of RAC3iscorrelated with poor prognosis and low infiltration of immune cells in EC. RAC3 promotes cell proliferation and invasion via FASN. These results demonstrate thatRAC3 functions as an EC oncogene and reveal its underlying mechanism in EC progression, suggesting that RAC3 may serve as a potential therapeutic target in EC.
Collapse
|
66
|
Kang H, Seo MK, Park B, Yoon SO, Koh YW, Kim D, Kim S. Characterizing intrinsic molecular features of the immune subtypes of salivary mucoepidermoid carcinoma. Transl Oncol 2022; 24:101496. [PMID: 35917642 PMCID: PMC9352547 DOI: 10.1016/j.tranon.2022.101496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Characterizing the tumor microenvironment (TME) and immune landscape of cancer has been a promising step towards discovering new therapeutic biomarkers and guiding precision medicine; however, its application in mucoepidermoid carcinoma (MEC) has been sparse. Here, we conducted a comprehensive study to understand the properties of the TME and immune profiles of MEC. METHOD 20 patients with MEC were collected from Yonsei Head and Neck Cancer Centre, Yonsei University, South Korea. Total RNA sequencing was conducted to determine gene expression profiles. Bioinformatic and immunoinformatic analyses were applied to characterize the TME and identify immunophenotypic subgroups, and to investigate the molecular features that explain the distinct phenotypes. RESULTS The MEC samples were subdivided into two groups, immune hot and immune cold, based on the heterogenous immune cell-infiltration and activation level. The immune-hot subgroup exhibited a higher level of immune activity, including T cell infiltration, cytolytic score, IFN-γ, antigen-presenting machinery, and immune modulator genes. Further characterizing molecular features of two subgroups, downregulation of lipid metabolic regulators, including MLXIPL and FASN, and the migration of chemokines and leukocytes were observed, respectively. And, Group-specific expression of immune checkpoint molecules, such as TIGIT, PD-L2, and CTLA-4, was observed in the immune-hot group, which can be exploited as a potential immunotherapeutic biomarker. CONCLUSIONS Immunophenotypically heterogeneous MEC subgroups analysis has shown distinctive molecular characteristics and provided potential treatment options. These findings yield new insights into TME of MEC and may help next step to study this uncharted cancer.
Collapse
Affiliation(s)
- Hyundeok Kang
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - BeumJin Park
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dahee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
67
|
Marelli G, Morina N, Portale F, Pandini M, Iovino M, Di Conza G, Ho PC, Di Mitri D. Lipid-loaded macrophages as new therapeutic target in cancer. J Immunother Cancer 2022; 10:jitc-2022-004584. [PMID: 35798535 PMCID: PMC9263925 DOI: 10.1136/jitc-2022-004584] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophages are main players of the innate immune system. They show great heterogeneity and play diverse functions that include support to development, sustenance of tissue homeostasis and defense against infections. Dysfunctional macrophages have been described in multiple pathologies including cancer. Indeed tumor-associated macrophages (TAMs) are abundant in most tumors and sustain cancer growth, promote invasion and mediate immune evasion. Importantly, lipid metabolism influences macrophage activation and lipid accumulation confers pathogenic features on macrophages. Notably, a subset of lipid-loaded macrophages has been recently identified in many tumor types. Lipid-loaded TAMs support tumor growth and progression and exert immune-suppressive activities. In this review, we describe the role of lipid metabolism in macrophage activation in physiology and pathology and we discuss the impact of lipid accumulation in macrophages in the context of cancer.
Collapse
Affiliation(s)
- Giulia Marelli
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Nicolò Morina
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy.,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| | - Federica Portale
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Marta Pandini
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy.,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| | - Marta Iovino
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Giusy Di Conza
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Diletta Di Mitri
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy .,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| |
Collapse
|
68
|
Li L, Xu H, Qu L, Xu K, Liu X. Daidzin inhibits hepatocellular carcinoma survival by interfering with the glycolytic/gluconeogenic pathway through downregulation of TPI1. Biofactors 2022; 48:883-896. [PMID: 35118741 DOI: 10.1002/biof.1826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023]
Abstract
Daidzin (DDZ) is a natural brassin-like compound extracted from the soybean, and has been found to have therapeutic potential against tumors in recent years. This study investigates the therapeutic effect of DDZ on hepatocellular carcinoma cells and elucidates the possible mechanisms of action. The viability of HCCLM3 and Hep3B cells was detected by MTT assay. Western blots and qPCR were used to detect the protein and mRNA levels of proliferation and apoptosis related genes. Gas chromatography-mass spectrometry (GC-MS) was used for metabolome analysis. In vivo antitumor effects were assessed in nude mice engrafted with HCC cell lines. Our results show that DDZ treatment dose-dependently inhibited cell viability, migration, and survival. The expressions of CDK1, BCL2, MYC, and survivin were reduced, while the expressions of BAX and PARP were increased in DDZ treated cells. The differentially expressed metabolites detected in DDZ treated cultures are associated with glycolysis/gluconeogenesis pathways. Bioinformatic analysis identified TPI1, a gene in the glycolysis pathway with prognostic value for hepatocellular carcinoma (HCC), and DDZ treatment downregulated this gene. In vivo experiments show that DDZ significantly reduced the tumor volume and weight, and inhibited Ki67 expression within tumors. This study shows that DDZ interfered with the survival and migration of hepatocellular carcinoma cells, likely via TPI1 and the gluconeogenesis pathway.
Collapse
Affiliation(s)
- Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
69
|
Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget 2022; 13:768-783. [PMID: 35634242 PMCID: PMC9132258 DOI: 10.18632/oncotarget.28241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.
Collapse
|
70
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
71
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
72
|
Xiong Q, Feng D, Wang Z, Ying Y, Xu C, Wei Q, Zeng S, Yang L. Fatty Acid Synthase Is the Key Regulator of Fatty Acid Metabolism and Is Related to Immunotherapy in Bladder Cancer. Front Immunol 2022; 13:836939. [PMID: 35392075 PMCID: PMC8982515 DOI: 10.3389/fimmu.2022.836939] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Fatty acid metabolism (FAM) genes are potentially useful for predicting prognosis and immunotherapy response in bladder cancer (BC). To examine this, we constructed a prognostic model and identified key FAM genes in BC. Using transcriptional expression profiles and clinical data of BC patients from public datasets and Changhai (CH) hospital, we built and validated a risk-score model based on 13 prognostic FAM genes. Differential gene expression identified fatty acid synthase (FASN) as central to fatty acid metabolism in BC. FASN was differentially expressed between normal and tumor tissue, and was related to survival. In the CH dataset, FASN independently predicted muscle-invasive BC. FASN differential expression was significantly related to immune-cell infiltration and patients with low FASN expression responded better to immune checkpoint inhibitor (ICI) treatment. SREBF1 was predicted as the most significant transcription factor for FASN. Competing endogenous RNA network analysis suggested that lncRNA AC107027.3 may upregulate FASN by competitively binding miR-27A-3p, thereby regulating the immunotherapy response in BC. Dasatinib and temsirolimus are potential FASN-targeting drugs. Our model efficiently predicted prognosis in BC. FASN is central to fatty acid metabolism, and a potential indicator and regulator of ICI treatment.
Collapse
Affiliation(s)
- Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China.,Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Ziwei Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yidie Ying
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
73
|
Saponin-based adjuvant-induced dendritic cell cross-presentation is dependent on PERK activation. Cell Mol Life Sci 2022; 79:231. [PMID: 35396971 PMCID: PMC8994093 DOI: 10.1007/s00018-022-04253-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
Saponin-based adjuvants (SBAs) are promising new adjuvants that stand out as they not only enforce CD4 + T cell-mediated immunity and antibody responses, but also induce an unprecedented level of antigen cross-presentation by dendritic cells (DC) and subsequent CD8 + T cell activation. We discovered that SBA’s ability to boost cross-presentation depends on the induction of lipid bodies (LBs). Moreover, the MHCIIloCD11bhi DC subset was identified to be most responsive to SBA-induced cross-presentation. The aim is to further unravel the mechanisms behind the induction of DC cross-presentation by SBAs. Here we show that SBAs specifically induce the PKR-like Endoplasmic Reticulum kinase (PERK) pathway and that SBA-induced DC cross-presentation is dependent on activation of the PERK pathway. PERK activation and LB formation are both crucial for SBA-induced cross-presentation and PERK inhibition has little or no effect on SBA-induced LB formation. SBA’s responsiveness, LB formation and PERK activation are specific for the MHCIIloCD11bhi DCs. These findings contribute to understanding the pathways involved in SBA-induced cross-presentation and immune activation which will ultimately lead to the development of vaccines with improved efficiency and safety.
Collapse
|
74
|
Impact of Lipid Metabolism on Antitumor Immune Response. Cancers (Basel) 2022; 14:cancers14071850. [PMID: 35406621 PMCID: PMC8997602 DOI: 10.3390/cancers14071850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary One of the causes of failure of anticancer therapies is the reprogramming of lipid metabolism. Cells of innate and adaptive immunity present in the tumor microenvironment can be affected by this metabolic switch and thus present changes in their anti- or protumor phenotype. In this review, modifications induced by lipid metabolism will be described for innate immune cells, such as macrophages, dendritic cells and MDSCs, and also for adaptive immune cells, such as CD4+ and CD8+ T cells and B cells. Finally, antitumor therapeutic strategies targeting lipid metabolism will be presented. Abstract Over the past decade, metabolic reprogramming has been defined as a hallmark of cancer. More recently, a large number of studies have demonstrated that metabolic reprogramming can modulate the differentiation and functions of immune cells, and thus modify the antitumor response. Increasing evidence suggests that modified energy metabolism could be responsible for the failure of antitumor immunity. Indeed, tumor-infiltrating immune cells play a key role in cancer, and metabolic switching in these cells has been shown to help determine their phenotype: tumor suppressive or immune suppressive. Recent studies in the field of immunometabolism focus on metabolic reprogramming in the tumor microenvironment (TME) by targeting innate and adaptive immune cells and their associated anti- or protumor phenotypes. In this review, we discuss the lipid metabolism of immune cells in the TME as well as the effects of lipids; finally, we expose the link between therapies and lipid metabolism.
Collapse
|
75
|
Fatty Acid Metabolism in Ovarian Cancer: Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23042170. [PMID: 35216285 PMCID: PMC8874779 DOI: 10.3390/ijms23042170] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most malignant gynecological tumor. Previous studies have reported that metabolic alterations resulting from deregulated lipid metabolism promote ovarian cancer aggressiveness. Lipid metabolism involves the oxidation of fatty acids, which leads to energy generation or new lipid metabolite synthesis. The upregulation of fatty acid synthesis and related signaling promote tumor cell proliferation and migration, and, consequently, lead to poor prognosis. Fatty acid-mediated lipid metabolism in the tumor microenvironment (TME) modulates tumor cell immunity by regulating immune cells, including T cells, B cells, macrophages, and natural killer cells, which play essential roles in ovarian cancer cell survival. Here, the types and sources of fatty acids and their interactions with the TME of ovarian cancer have been reviewed. Additionally, this review focuses on the role of fatty acid metabolism in tumor immunity and suggests that fatty acid and related lipid metabolic pathways are potential therapeutic targets for ovarian cancer.
Collapse
|
76
|
Li M, Wang X, Wang Y, Bao S, Chang Q, Liu L, Zhang S, Sun L. Strategies for Remodeling the Tumor Microenvironment Using Active Ingredients of Ginseng-A Promising Approach for Cancer Therapy. Front Pharmacol 2022; 12:797634. [PMID: 35002732 PMCID: PMC8727883 DOI: 10.3389/fphar.2021.797634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting the initiation and progression of tumors, leading to chemoradiotherapy resistance and immunotherapy failure. Targeting of the TME is a novel anti-tumor therapeutic approach and is currently a focus of anti-tumor research. Panax ginseng C. A. Meyer (ginseng), an ingredient of well-known traditional Asia medicines, exerts beneficial anti-tumor effects and can regulate the TME. Here, we present a systematic review that describes the current status of research efforts to elucidate the functions and mechanisms of ginseng active components (including ginsenosides and ginseng polysaccharides) for achieving TME regulation. Ginsenosides have variety effects on TME, such as Rg3, Rd and Rk3 can inhibit tumor angiogenesis; Rg3, Rh2 and M4 can regulate the function of immune cells; Rg3, Rd and Rg5 can restrain the stemness of cancer stem cells. Ginseng polysaccharides (such as red ginseng acidic polysaccharides and polysaccharides extracted from ginseng berry and ginseng leaves) can regulate TME mainly by stimulating immune cells. In addition, we propose a potential mechanistic link between ginseng-associated restoration of gut microbiota and the tumor immune microenvironment. Finally, we describe recent advances for improving ginseng efficacy, including the development of a nano-drug delivery system. Taken together, this review provides novel perspectives on potential applications for ginseng active ingredients as anti-cancer adjuvants that achieve anti-cancer effects by reshaping the tumor microenvironment.
Collapse
Affiliation(s)
- Mo Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China.,Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shunchao Bao
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Qing Chang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
77
|
Li J, Bolyard C, Xin G, Li Z. Targeting Metabolic Pathways of Myeloid Cells Improves Cancer Immunotherapy. Front Cell Dev Biol 2022; 9:747863. [PMID: 34988072 PMCID: PMC8721007 DOI: 10.3389/fcell.2021.747863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Tumor-infiltrating myeloid cells are a prominent pro-tumorigenic immune cell population that limit host anti-tumor immunity and present a significant obstacle for many cancer immunotherapies. Targeting the mechanisms regulating myeloid cell function within the tumor microenvironment may overcome immunotherapy resistance in some cancers. Recent discoveries in the emerging field of immunometabolism reveal that the metabolic profiles of intratumoral myeloid cells are rewired to adapt to the nutrition-limited tumor microenvironment, and this shapes their pro-tumor phenotypes. Interestingly, metabolic modulation can shift these myeloid cells toward the immune-stimulating anti-tumor phenotype. In this review, we will highlight the roles of specific metabolic pathways in the activation and function of myeloid cells, and discuss the therapeutic value of metabolically reprogramming myeloid cells to augment and improve outcomes with cancer immunotherapy.
Collapse
Affiliation(s)
- Jianying Li
- Pelotonia Institute of Immuno-Oncology, the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| | - Chelsea Bolyard
- Pelotonia Institute of Immuno-Oncology, the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| | - Gang Xin
- Pelotonia Institute of Immuno-Oncology, the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States.,Department of Microbial Infection and Immunity, the Ohio State University College of Medicine, Columbus, OH, United States
| | - Zihai Li
- Pelotonia Institute of Immuno-Oncology, the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States.,Department of Medical Oncology, the Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
78
|
Siddiqui S, Glauben R. Fatty Acid Metabolism in Myeloid-Derived Suppressor Cells and Tumor-Associated Macrophages: Key Factor in Cancer Immune Evasion. Cancers (Basel) 2022; 14:250. [PMID: 35008414 PMCID: PMC8750448 DOI: 10.3390/cancers14010250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment (TME) comprises various cell types, soluble factors, viz, metabolites or cytokines, which together play in promoting tumor metastasis. Tumor infiltrating immune cells play an important role against cancer, and metabolic switching in immune cells has been shown to affect activation, differentiation, and polarization from tumor suppressive into immune suppressive phenotypes. Macrophages represent one of the major immune infiltrates into TME. Blood monocyte-derived macrophages and myeloid derived suppressor cells (MDSCs) infiltrating into the TME potentiate hostile tumor progression by polarizing into immunosuppressive tumor-associated macrophages (TAMs). Recent studies in the field of immunometabolism focus on metabolic reprogramming at the TME in polarizing tumor-associated macrophages (TAMs). Lipid droplets (LD), detected in almost every eukaryotic cell type, represent the major source for intra-cellular fatty acids. Previously, LDs were mainly described as storage sites for fatty acids. However, LDs are now recognized to play an integral role in cellular signaling and consequently in inflammation and metabolism-mediated phenotypical changes in immune cells. In recent years, the role of LD dependent metabolism in macrophage functionality and phenotype has been being investigated. In this review article, we discuss fatty acids stored in LDs, their role in modulating metabolism of tumor-infiltrating immune cells and, therefore, in shaping the cancer progression.
Collapse
Affiliation(s)
| | - Rainer Glauben
- Medical Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| |
Collapse
|
79
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
80
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
81
|
Pei Y, Zhu Y, Wang X, Xu L. The expression and clinical value of tumor infiltrating dendritic cells in tumor tissues of patients with esophageal cancer. J Gastrointest Oncol 2021; 12:1996-2003. [PMID: 34790367 DOI: 10.21037/jgo-21-578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/06/2022] Open
Abstract
Background As dendritic cells (DCs) are the major antigen-presenting cells of the immune system, understanding their role in esophageal cancer is essential for the development of preventative and treatment strategies. This study investigated the expression level and clinical value of tumor infiltrating dendritic cells (TIDCs) in tumor tissues of patients with esophageal cancer. Methods From January 2019 to January 2021, 184 patients with esophageal cancer treated were prospectively enrolled as the observation group and 184 patients with benign esophageal tumors were selected as the control group. Tumor tissue samples were obtained and the expression level and phenotypes of the TIDCs were analyzed. The correlation between TIDC expression and clinical characteristics of patients with esophageal cancer was investigated. Results The density of the TIDCs in the observation group was lower than that in the control group (8.76±2.25 vs. 9.97±2.19; P=0.000). Furthermore, the percentage of major histocompatibility complex-II (MHC-II) positive DCs and the percentage of CD54 positive DCs were relatively lower in the observation group compared to the control group (6.60%±2.12% vs. 9.34%±2.41%; P=0.000 and 7.41%±2.36% vs. 9.98%±2.47%; P=0.000, respectively). Esophageal cancer patients with lymph node metastasis had lower TIDC density, lower percentage of MHC-II positive DCs, and lower percentage of CD54 positive DCs compared to patients without node metastasis (P<0.05). Patients with stage III esophageal cancer also showed significantly lower TIDC density, lower percentage of MHC-II positive DCs, and lower percentage of CD54 positive DCs compared to patients with stage I/II esophageal cancer (P<0.05). Esophageal cancer patients with tumor diameter ≥4 cm presented with decreased TIDC density, decreased percentage of MHC-II positive DCs, and decreased percentage of CD54 positive DCs compared to patients with tumor diameter <4 cm (P<0.05). In addition, the density of TIDCs, the percentage of MHC-II positive DCs, and the percentage of CD54 positive DCs were significantly negatively correlated with the percentage of CD4+ T-lymphocytes and positively correlated with the percentage of CD8+ T-lymphocytes (P<0.05). Conclusions Patients with esophageal cancer had low expression and function of TIDCs, and this was related to the imbalance of T-lymphocyte subsets, lymph node metastasis, TNM stage, and lesion size.
Collapse
Affiliation(s)
- Yanzhi Pei
- Department of Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yanzhi Zhu
- Hepatobiliary and Pancreatic Surgery, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, China
| | - Xiaolin Wang
- Department of Pathology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lin Xu
- Department of Gastroenterology, Xuzhou Cancer Hospital, Xuzhou, China
| |
Collapse
|
82
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune‐associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV Ludwig-Maximilian-University (LMU) Munich Germany
| | - Jiahui Li
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Chao Wu
- Department of General Surgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| |
Collapse
|
83
|
Yu Y, Gao L, Wang Y, Xu B, Maswikiti EP, Li H, Zheng P, Tao P, Xiang L, Gu B, Lucas A, Chen H. A Forgotten Corner in Cancer Immunotherapy: The Role of Lipids. Front Oncol 2021; 11:751086. [PMID: 34722305 PMCID: PMC8551635 DOI: 10.3389/fonc.2021.751086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, cancer immunotherapy has achieved great success owing to the unravelling of unknown molecular forces in cancer immunity. However, it is critical that we address the limitations of current immunotherapy, including immune-related adverse events and drug resistance, and further enhance current immunotherapy. Lipids are reported to play important roles in modulating immune responses in cancer. Cancer cells use lipids to support their aggressive behaviour and allow immune evasion. Metabolic reprogramming of cancer cells destroys the equilibrium between lipid anabolism and catabolism, resulting in lipid accumulation within the tumour microenvironment (TME). Consequently, ubiquitous lipids, mainly fatty acids, within the TME can impact the function and phenotype of infiltrating immune cells. Determining the complex roles of lipids and their interactions with the TME will provide new insight for improving anti-tumour immune responses by targeting lipids. Herein, we present a review of recent literature that has demonstrated how lipid metabolism reprogramming occurs in cancer cells and influences cancer immunity. We also summarise the potential for lipid-based clinical translation to modify immune treatment.
Collapse
Affiliation(s)
- Yang Yu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunpeng Wang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ewetse Paul Maswikiti
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Haiyuan Li
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Peng Zheng
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengxian Tao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Xiang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Baohong Gu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Hao Chen
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
84
|
Cheng T, Zhang J, Liu D, Lai G, Wen X. Prognosis of Non-small-cell Lung Cancer Patients With Lipid Metabolism Pathway Alternations to Immunotherapy. Front Genet 2021; 12:646362. [PMID: 34335679 PMCID: PMC8317604 DOI: 10.3389/fgene.2021.646362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) significantly improve the survival of patients with non-small-cell lung cancer (NSCLC), but only some patients obtain clinical benefits. Predictive biomarkers for ICIs can accurately identify people who will benefit from immunotherapy. Lipid metabolism signaling plays a key role in the tumor microenvironment (TME) and immunotherapy. Hence, we aimed to explore the association between the mutation status of the lipid metabolism pathway and the prognosis of patients with NSCLC treated with ICIs. We downloaded the mutation data and clinical data of a cohort of patients with NSCLC who received ICIs. Univariate and multivariate Cox regression models were used to analyze the association between the mutation status of the lipid metabolism signaling and the prognosis of NSCLC receiving ICIs. Additionally, The Cancer Genome Atlas (TCGA)–NSCLC cohort was used to explore the relationships between the different mutation statuses of lipid metabolism pathways and the TME. Additionally, we found that patients with high numbers of mutations in the lipid metabolism pathway had significantly enriched macrophages (M0- and M1-type), CD4 + T cells (activated memory), CD8 + T cells, Tfh cells and gamma delta T cells, significantly increased expression of inflammatory genes [interferon-γ (IFNG), CD8A, GZMA, GZMB, CXCL9, and CXCL10] and enhanced immunogenic factors [neoantigen loads (NALs), tumor mutation burden (TMB), and DNA damage repair pathways]. In the local-NSCLC cohort, we found that the group with a high number of mutations had a significantly higher tumor mutation burden (TMB) and PD-L1 expression. High mutation status in the lipid metabolism pathway is associated with significantly prolonged progression-free survival (PFS) in NSCLC, indicating that this marker can be used as a predictive indicator for patients with NSCLC receiving ICIs.
Collapse
Affiliation(s)
- Tianli Cheng
- Thoracic Medicine Department I, Hunan Cancer Hospital, Changsha, China.,Thoracic Medicine Department I, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | | | - Danni Liu
- HaploX Biotechnology, Shenzhen, China
| | | | - Xiaoping Wen
- Thoracic Medicine Department I, Hunan Cancer Hospital, Changsha, China.,Thoracic Medicine Department I, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| |
Collapse
|
85
|
Antitumor immune responses induced by photodynamic and sonodynamic therapy: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
86
|
Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis. Front Med 2021; 15:649-656. [PMID: 33973101 DOI: 10.1007/s11684-021-0830-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Tumorigenesis involves metabolic reprogramming and abnormal lipid metabolism, which is manifested by increased endogenous fat mobilization, hypertriglyceridemia, and increased fatty acid synthesis. Fatty acid synthase (FASN) is a key enzyme for the de novo synthesis of fatty acids, and monoacylglycerol esterase (MGLL) is an important metabolic enzyme that converts triglycerides into free fatty acids. Both enzymes play an important role in lipid metabolism and are associated with tumor-related signaling pathways, the most common of which is the PI3K-AKT signaling pathway. They can also regulate the immune microenvironment, participate in epithelial-mesenchymal transition, and then regulate tumor invasion and metastasis. Current literature have shown that these two genes are abnormally expressed in many types of tumors and are highly correlated with tumor migration and invasion. This article introduces the structures and functions of FASN and MGLL, their relationship with abnormal lipid metabolism, and the mechanism of the regulation of tumor invasion and metastasis and reviews the research progress of the relationship of FASN and MGLL with tumor invasion and metastasis.
Collapse
|
87
|
Zhang Z, Zeng P, Gao W, Zhou Q, Feng T, Tian X. Circadian clock: a regulator of the immunity in cancer. Cell Commun Signal 2021; 19:37. [PMID: 33752691 PMCID: PMC7986390 DOI: 10.1186/s12964-021-00721-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The circadian clock is an endogenous timekeeper system that controls and optimizes biological processes, which are consistent with a master circadian clock and peripheral clocks and are controlled by various genes. Notably, the disruption of circadian clock genes has been identified to affect a wide range of ailments, including cancers. The cancer-immunity cycle is composed of seven major steps, namely cancer cell antigen release and presentation, priming and activation of effector immunity cells, trafficking, and infiltration of immunity to tumors, and elimination of cancer cells. Existing evidence indicates that the circadian clock functions as a gate that govern many aspects of the cancer-immunity cycle. In this review, we highlight the importance of the circadian clock during tumorigenesis, and discuss the potential role of the circadian clock in the cancer-immunity cycle. A comprehensive understanding of the regulatory function of the circadian clock in the cancer-immunity cycle holds promise in developing new strategies for the treatment of cancer. Video Abstract
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410007, Hunan, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Puhua Zeng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, People's Republic of China
| | - Wenhui Gao
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Ting Feng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410007, Hunan, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410007, Hunan, People's Republic of China. .,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China.
| |
Collapse
|
88
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
89
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
90
|
Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, Zhu J, Zhang F. Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep 2021; 45:846-856. [PMID: 33650671 PMCID: PMC7859921 DOI: 10.3892/or.2021.7946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women and is characterized by active immunogenicity. Immune cell infiltration plays an important role in the development of breast cancer. The degree of infiltration influences both the response to and effect of treatment. However, immune infiltration is a complex process. Differences in oxygen partial pressure, blood perfusion and nutrients in the tumor microenvironment (TME) suggest that infiltrating immune cells in different sites experience different microenvironments with corresponding changes in the metabolic mode, that is, immune cell metabolism is heterogenous in the TME. Furthermore, the present review found that lipid metabolism can support the immunosuppressive microenvironment in breast cancer based on a review of published literature. Research in this field is still ongoing; however, it is vital to understand the metabolic patterns and effects of different microenvironments for antitumor therapy. Therefore, this review discusses the metabolic responses of various immune cells to different microenvironments in breast cancer and provides potentially meaningful insights for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Mi Tang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| |
Collapse
|
91
|
Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021; 697:108659. [PMID: 33144083 PMCID: PMC8638212 DOI: 10.1016/j.abb.2020.108659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming confers cancer cells plasticity and viability under harsh conditions. Such active alterations lead to cell metabolic dependency, which can be exploited as an attractive target in development of effective antitumor therapies. Similar to cancer cells, activated T cells also execute global metabolic reprogramming for their proliferation and effector functions when recruited to the tumor microenvironment (TME). However, the high metabolic activity of rapidly proliferating cancer cells can compete for nutrients with immune cells in the TME, and consequently, suppressing their anti-tumor functions. Thus, therapeutic strategies could aim to restore T cell metabolism and anti-tumor responses in the TME by targeting the metabolic dependence of cancer cells. In this review, we highlight current research progress on metabolic reprogramming and the interplay between cancer cells and immune cells. We also discuss potential therapeutic intervention strategies for targeting metabolic pathways to improve cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tianhan Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiyu Wang
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
92
|
Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther 2020; 5:242. [PMID: 33077737 PMCID: PMC7572387 DOI: 10.1038/s41392-020-00359-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.
Collapse
Affiliation(s)
- Enli Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Miao Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| |
Collapse
|
93
|
Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cell Mol Immunol 2020; 18:829-841. [PMID: 33077904 PMCID: PMC7570408 DOI: 10.1038/s41423-020-00556-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Immune homeostasis is maintained by an adequate balance of myeloid and lymphoid responses. In chronic inflammatory states, including cancer, this balance is lost due to dramatic expansion of myeloid progenitors that fail to mature to functional inflammatory neutrophils, macrophages, and dendritic cells (DCs), thus giving rise to a decline in the antitumor effector lymphoid response. Cancer-related inflammation orchestrates the production of hematopoietic growth factors and cytokines that perpetuate recruitment and activation of myeloid precursors, resulting in unresolved and chronic inflammation. This pathologic inflammation creates profound alterations in the intrinsic cellular metabolism of the myeloid progenitor pool, which is amplified by competition for essential nutrients and by hypoxia-induced metabolic rewiring at the tumor site. Therefore, persistent myelopoiesis and metabolic dysfunctions contribute to the development of cancer, as well as to the severity of a broad range of diseases, including metabolic syndrome and autoimmune and infectious diseases. The aims of this review are to (1) define the metabolic networks implicated in aberrant myelopoiesis observed in cancer patients, (2) discuss the mechanisms underlying these clinical manifestations and the impact of metabolic perturbations on clinical outcomes, and (3) explore new biomarkers and therapeutic strategies to restore immunometabolism and differentiation of myeloid cells towards an effector phenotype to increase host antitumor immunity. We propose that the profound metabolic alterations and associated transcriptional changes triggered by chronic and overactivated immune responses in myeloid cells represent critical factors influencing the balance between therapeutic efficacy and immune-related adverse effects (irAEs) for current therapeutic strategies, including immune checkpoint inhibitor (ICI) therapy.
Collapse
|
94
|
Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, Zhang X, Yang G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front Oncol 2020; 10:593017. [PMID: 33194756 PMCID: PMC7604390 DOI: 10.3389/fonc.2020.593017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is one of the most malignant gynecological cancers around the world. In spite of multiple treatment options, the five-year survival rate is still very low. Several metabolism alterations are described as a hallmark in cancers, but alterations of lipid metabolism in ovarian cancer have been paid less attention. To explore new markers/targets for accurate diagnosis, prognosis, and therapeutic treatments based on metabolic enzyme inhibitors, here, we reviewed available literature and summarized several key metabolic enzymes in lipid metabolism of ovarian cancer. In this review, the rate limiting enzymes associated with fatty acid synthesis (FASN, ACC, ACLY, SCD), the lipid degradation related enzymes (MAGL, CPT, 5-LO, COX2), and the receptors related to lipid uptake (FABP4, CD36, LDLR), which promote the development of ovarian cancer, were analyzed and evaluated. We also focused on the review of application of current metabolic enzyme inhibitors for the treatment of ovarian cancer through which the potential therapeutic agents may be developed for ovarian cancer therapy.
Collapse
Affiliation(s)
- Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shen
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| |
Collapse
|
95
|
Wu F, Cheng Y, Wu L, Zhang W, Zheng W, Wang Q, Cao H, Pan X, Tang W. Emerging Landscapes of Tumor Immunity and Metabolism. Front Oncol 2020; 10:575037. [PMID: 33117713 PMCID: PMC7575711 DOI: 10.3389/fonc.2020.575037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic reprogramming of cancer tissue has higher metabolic activity than surrounding tissues. At the same time, the local infiltration of immunosuppressive cells is also significantly increased, resulting in a significant decrease in tumor immunity. During the progression of cancer cells, immunosuppressive tumor microenvironment is formed around the tumor due to their metabolic reprogramming. In addition, it is the changes in metabolic patterns that make tumor cells resistant to certain drugs, impeding cancer treatment. This article reviews the mechanisms of immune escape caused by metabolic reprogramming, and aims to provide new ideas for clinical tumor immunotherapy combined with metabolic intervention for tumor treatment.
Collapse
Affiliation(s)
- Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wubing Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
96
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
97
|
Martin-Lluesma S, Graciotti M, Grimm AJ, Boudousquié C, Chiang CL, Kandalaft LE. Are dendritic cells the most appropriate therapeutic vaccine for patients with ovarian cancer? Curr Opin Biotechnol 2020; 65:190-196. [DOI: 10.1016/j.copbio.2020.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
|
98
|
Zhu Z, Wang D, Shen Y. Loss of ACSM3 confers worsened prognosis and immune exclusion to cutaneous melanoma. J Cancer 2020; 11:6582-6590. [PMID: 33046979 PMCID: PMC7545663 DOI: 10.7150/jca.48354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Aim: Malignant melanoma (MM) is a highly aggressive cutaneous cancer with undetermined underlying genetic disposition. We aim to evaluate prognostic and mechanistic role of ACSM3 in MM. Methods: In silico reproduction of TCGA MM dataset, GEO dataset, GDSC dataset and human protein atlas was performed to establish differential expression of ACSM3. In vitro and in vivo validation using A375 and SKMEL1 MM cells were performed to profile tumorigenic role and functional attribution of the gene. Results: ACSM3 expression was significantly downregulated in MM. Lower expression of ACSM3 conferred worsened prognosis of MM. Lower ACSM3 was observed in Asian ethnicity. Knock-down (KD) and overexpression (OE) of ACSM3 resulted in significant increased and decreased proliferation, invasion and colony formation in MM cells, respectively. Pathway annotation revealed significantly active immune response invoked by ACSM3. Lower ACSM3 expression was associated with decreased CD8+, macrophage and dendritic cell infiltration. Cox regression revealed loss of survival contribution of ACSM3 in the presence of immune infiltrates supporting immune regulatory role of ACSM3. Drug sensitivity analysis revealed BRAF inhibitor PLX-4720 was sensitive in both MM cells. ACSM3 expression showed no correlation with immune checkpoint molecules. Combined ACSM3-OE and PLX-4720 in MM cells showed synergistic inhibition in MM cells and xenograft murine models with no significant toxicity. Conclusion: Loss of ACSM3 was associated with poor prognosis in MM. Overexpression of ACSM3 synergistically inhibited MM with PLX-4720. ACSM3 was potentially associated with immune exclusion in MM. Further validation was warranted in future studies.
Collapse
Affiliation(s)
- Zhidong Zhu
- Department of Cardiology, Huashan Hospital, Fudan University, PR, China
| | - Duoqin Wang
- Department of Dermatology, Huashan Hospital, Fudan University, PR, China
| | - Yanyun Shen
- Department of Dermatology, Huashan Hospital, Fudan University, PR, China
| |
Collapse
|
99
|
Khodavandi A, Alizadeh F, Razis AFA. Association between dietary intake and risk of ovarian cancer: a systematic review and meta-analysis. Eur J Nutr 2020; 60:1707-1736. [PMID: 32661683 DOI: 10.1007/s00394-020-02332-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE It is unclear how dietary intake influences the ovarian cancer. The present paper sets out to systematically review and meta-analyze research on dietary intake to identify cases having high- or low-risk ovarian cancer. METHODS Scopus, PubMed, and Wiley Online Libraries were searched up to the date November 24, 2019. Two reviewers were requested to independently extract study characteristics and to assess the bias and applicability risks with reference to the study inclusion criteria. Meta-analyses were performed to specify the relationship between dietary intake and the risk of ovarian cancer identifying 97 cohort studies. RESULTS No significant association was found between dietary intake and risk of ovarian cancer. The results of subgroup analyses indicated that green leafy vegetables (RR = 0.91, 95%, 0.85-0.98), allium vegetables (RR = 0.79, 95% CI 0.64-0.96), fiber (RR = 0.89, 95% CI 0.81-0.98), flavonoids (RR = 0.83, 95% CI 0.78-0.89) and green tea (RR = 0.61, 95% CI 0.49-0.76) intake could significantly reduce ovarian cancer risk. Total fat (RR = 1.10, 95% CI 1.02-1.18), saturated fat (RR = 1.11, 95% CI 1.01-1.22), saturated fatty acid (RR = 1.19, 95% CI 1.04-1.36), cholesterol (RR = 1.13, 95% CI 1.04-1.22) and retinol (RR = 1.14, 95% CI 1.00-1.30) intake could significantly increase ovarian cancer risk. In addition, acrylamide, nitrate, water disinfectants and polychlorinated biphenyls were significantly associated with an increased risk of ovarian cancer. CONCLUSION These results could support recommendations to green leafy vegetables, allium vegetables, fiber, flavonoids and green tea intake for ovarian cancer prevention.
Collapse
Affiliation(s)
- Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Fahimeh Alizadeh
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
100
|
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020; 78:1019-1033. [PMID: 32559423 PMCID: PMC7339967 DOI: 10.1016/j.molcel.2020.05.034] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The growing field of immune metabolism has revealed promising indications for metabolic targets to modulate anti-cancer immunity. Combination therapies involving metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy, radiation, and/or diet now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment (TME). Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. These changes also reveal opportunities to reshape the TME by targeting metabolic pathways to favor immunity. Here we explore current strategies that shift immune cell metabolism to pro-inflammatory states in the TME and highlight a need to better replicate physiologic conditions to select targets, clarify mechanisms, and optimize metabolic inhibitors. Unifying our understanding of these pathways and interactions within the heterogenous TME will be instrumental to advance this promising field and enhance immunotherapy.
Collapse
Affiliation(s)
- Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|