51
|
Xiao Y, Driedonks T, Witwer KW, Wang Q, Yin H. How does an RNA selfie work? EV-associated RNA in innate immunity as self or danger. J Extracell Vesicles 2020; 9:1793515. [PMID: 32944182 PMCID: PMC7480420 DOI: 10.1080/20013078.2020.1793515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Innate immunity is a first line of defence against danger. Exogenous pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) trigger innate immune responses through well-understood cellular pathways. In contrast, endogenous damage-associated molecular patterns (DAMPs) convey “danger signals” via their (mis)localization or modification. Both MAMPs and DAMPs are often communicated on or within extracellular vesicles (EVs). Despite growing evidence for the importance of EVs and their cargo in modulating innate immune responses, in some cases, it is unclear how EV-transported molecules are sensed as abnormal. In particular, EVs constitutively carry RNA, which is also abundant in the cytoplasm. How, then, would RNA convey a danger signal as a cargo of EVs? In this Perspective, we offer some thoughts on how EV-associated RNAs might raise the alarm for innate immune responses – or silence them.
Collapse
Affiliation(s)
- Yu Xiao
- Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Tom Driedonks
- Department of Molecular and Comparative Pathobiology, Baltimore, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Baltimore, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Qian Wang
- Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Yin
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
52
|
Driedonks TA, Mol S, de Bruin S, Peters AL, Zhang X, Lindenbergh MF, Beuger BM, van Stalborch AMD, Spaan T, de Jong EC, van der Vries E, Margadant C, van Bruggen R, Vlaar AP, Groot Kormelink T, Nolte-‘T Hoen EN. Y-RNA subtype ratios in plasma extracellular vesicles are cell type- specific and are candidate biomarkers for inflammatory diseases. J Extracell Vesicles 2020; 9:1764213. [PMID: 32944168 PMCID: PMC7448942 DOI: 10.1080/20013078.2020.1764213] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Major efforts are made to characterize the presence of microRNA (miRNA) and messenger RNA in blood plasma to discover novel disease-associated biomarkers. MiRNAs in plasma are associated to several types of macromolecular structures, including extracellular vesicles (EV), lipoprotein particles (LPP) and ribonucleoprotein particles (RNP). RNAs in these complexes are recovered at variable efficiency by commonly used EV- and RNA isolation methods, which causes biases and inconsistencies in miRNA quantitation. Besides miRNAs, various other non-coding RNA species are contained in EV and present within the pool of plasma extracellular RNA. Members of the Y-RNA family have been detected in EV from various cell types and are among the most abundant non-coding RNA types in plasma. We previously showed that shuttling of full-length Y-RNA into EV released by immune cells is modulated by microbial stimulation. This indicated that Y-RNAs could contribute to the functional properties of EV in immune cell communication and that EV-associated Y-RNAs could have biomarker potential in immune-related diseases. Here, we investigated which macromolecular structures in plasma contain full length Y-RNA and whether the levels of three Y-RNA subtypes in plasma (Y1, Y3 and Y4) change during systemic inflammation. Our data indicate that the majority of full length Y-RNA in plasma is stably associated to EV. Moreover, we discovered that EV from different blood-related cell types contain cell-type-specific Y-RNA subtype ratios. Using a human model for systemic inflammation, we show that the neutrophil-specific Y4/Y3 ratios and PBMC-specific Y3/Y1 ratios were significantly altered after induction of inflammation. The plasma Y-RNA ratios strongly correlated with the number and type of immune cells during systemic inflammation. Cell-type-specific "Y-RNA signatures" in plasma EV can be determined without prior enrichment for EV, and may be further explored as simple and fast test for diagnosis of inflammatory responses or other immune-related diseases.
Collapse
Affiliation(s)
- Tom A.P. Driedonks
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sanne Mol
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne de Bruin
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna-Linda Peters
- Department Of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xiaogang Zhang
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marthe F.S. Lindenbergh
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Boukje M. Beuger
- Department Of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anne-Marieke D. van Stalborch
- Molecular Cell Biology Laboratory, Department Of Molecular and Cellular Hemostasis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Thom Spaan
- Department Of Infectious Diseases & Immunity, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther C. de Jong
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erhard van der Vries
- Department Of Infectious Diseases & Immunity, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Coert Margadant
- Molecular Cell Biology Laboratory, Department Of Molecular and Cellular Hemostasis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department Of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Groot Kormelink
- Department Of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther N.M. Nolte-‘T Hoen
- Department Of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
53
|
Foroni C, Zarovni N, Bianciardi L, Bernardi S, Triggiani L, Zocco D, Venturella M, Chiesi A, Valcamonico F, Berruti A. When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients. Biomedicines 2020; 8:biomedicines8050131. [PMID: 32455948 PMCID: PMC7277361 DOI: 10.3390/biomedicines8050131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/28/2023] Open
Abstract
We evaluated the advantages and the reliability of novel protocols for the enrichment of tumor extracellular vesicles (EVs), enabling a blood-based test for the noninvasive parallel profiling of multiple androgen receptor (AR) gene alterations. Three clinically relevant AR variants related to response/resistance to standard-of-care treatments (AR-V7 transcript, AR T878A point mutation and AR gene amplification) were evaluated by digital PCR in 15 samples from patients affected by Castration-Resistant Prostate Cancer (CRPC). Plasma was processed to obtain circulating RNA and DNA using protocols based on tumor EVs enrichment through immuno-affinity and peptide-affinity compared to generic extraction kits. Our results showed that immuno-affinity enrichment prior to RNA extraction clearly outperforms the generic isolation method in the detection of AR-V7, also allowing for a distinction between responder (R) and non-responder (NR) patients. The T878A mutation was detected, overall, in nine out of 15 samples and no approach alone was able to reveal mutations in all harboring samples, showing that the employed methods complement each other. AR amplification was detected in the majority of CRPC samples analysed using either cell-free DNA (cfDNA) or exosome isolation kits (80%). We demonstrated that selective isolation of a subset of circulating exosomes enriched for tumor origin, rather than analysis of total plasma exosomes, or total plasma nucleic acids, increases sensitivity and specificity for the detection of specific alterations.
Collapse
Affiliation(s)
- Chiara Foroni
- CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
- Correspondence: (C.F.); (N.Z.)
| | - Natasa Zarovni
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
- Correspondence: (C.F.); (N.Z.)
| | - Laura Bianciardi
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Simona Bernardi
- CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Davide Zocco
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Marta Venturella
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Antonio Chiesi
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Francesca Valcamonico
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
| |
Collapse
|
54
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Lovisa F, Di Battista P, Gaffo E, Damanti CC, Garbin A, Gallingani I, Carraro E, Pillon M, Biffi A, Bortoluzzi S, Mussolin L. RNY4 in Circulating Exosomes of Patients With Pediatric Anaplastic Large Cell Lymphoma: An Active Player? Front Oncol 2020; 10:238. [PMID: 32175280 PMCID: PMC7056873 DOI: 10.3389/fonc.2020.00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence indicates that extracellular vesicles, particularly exosomes, play a role in several biological processes and actively contribute to cancer development and progression, by carrying and delivering proteins, transcripts and small RNAs (sRNAs). There is high interest in studying exosomes of cancer patients both to develop non-invasive liquid biopsy tests for risk stratification and to elucidate their possible involvement in disease mechanisms. We profiled by RNA-seq the sRNA content of circulating exosomes of 20 pediatric patients with Anaplastic Large Cell Lymphoma (ALCL) and five healthy controls. Our analysis disclosed that non-miRNA derived sRNAs constitute the prominent fraction of sRNA loaded in exosomes and identified 180 sRNAs significantly more abundant in exosomes of ALCL patients compared to controls. YRNA fragments, accounting for most of exosomal content and being significantly increased in ALCL patients, were prioritized for further investigation by qRT-PCR. Quantification of RNY4 fragments and full-length sequences disclosed that the latter are massively loaded into exosomes of ALCL patients with more advanced and aggressive disease. These results are discussed in light of recent findings on the role of RNY4 in the modulation of tumor microenvironment.
Collapse
Affiliation(s)
- Federica Lovisa
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Piero Di Battista
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Carlotta C Damanti
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Anna Garbin
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Ilaria Gallingani
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elisa Carraro
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Marta Pillon
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Alessandra Biffi
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Gene Therapy Program, Dana Farber/Boston Children's Cancer and Blood Disorders Centers, Boston, MA, United States
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy.,CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, Padova, Italy
| | - Lara Mussolin
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
56
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
57
|
Hardy MP, Audemard É, Migneault F, Feghaly A, Brochu S, Gendron P, Boilard É, Major F, Dieudé M, Hébert MJ, Perreault C. Apoptotic endothelial cells release small extracellular vesicles loaded with immunostimulatory viral-like RNAs. Sci Rep 2019; 9:7203. [PMID: 31076589 PMCID: PMC6510763 DOI: 10.1038/s41598-019-43591-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells have multifaceted interactions with the immune system, both as initiators and targets of immune responses. In vivo, apoptotic endothelial cells release two types of extracellular vesicles upon caspase-3 activation: apoptotic bodies and exosome-like nanovesicles (ApoExos). Only ApoExos are immunogenic: their injection causes inflammation and autoimmunity in mice. Based on deep sequencing of total RNA, we report that apoptotic bodies and ApoExos are loaded with divergent RNA cargos that are not released by healthy endothelial cells. Apoptotic bodies, like endothelial cells, contain mainly ribosomal RNA whereas ApoExos essentially contain non-ribosomal non-coding RNAs. Endogenous retroelements, bearing viral-like features, represented half of total ApoExos RNA content. ApoExos also contained several copies of unedited Alu repeats and large amounts of non-coding RNAs with a demonstrated role in autoimmunity such as U1 RNA and Y RNA. Moreover, ApoExos RNAs had a unique nucleotide composition and secondary structure characterized by strong enrichment in U-rich motifs and unstably folded RNAs. Globally, ApoExos were therefore loaded with RNAs that can stimulate a variety of RIG-I-like receptors and endosomal TLRs. Hence, apoptotic endothelial cells selectively sort in ApoExos a diversified repertoire of immunostimulatory "self RNAs" that are tailor-made for initiation of innate immune responses and autoimmunity.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Francis Migneault
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Éric Boilard
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mélanie Dieudé
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
| | - Marie-Josée Hébert
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
58
|
The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers (Basel) 2019; 11:cancers11050605. [PMID: 31052265 PMCID: PMC6563001 DOI: 10.3390/cancers11050605] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most prevalent and deadliest cancer worldwide. A significant part of lung cancer studies is dedicated to the expression alterations of non-coding RNAs. The non-coding RNAs are transcripts that cannot be translated into proteins. While the study of microRNAs and siRNAs in lung cancer received a lot of attention over the last decade, highly efficient therapeutic option or the diagnostic methods based on non-coding RNAs are still lacking. Because of this, it is of utmost importance to direct future research on lung cancer towards analyzing other RNA types for which the currently available data indicates that are essential at modulating lung tumorigenesis. Through our review of studies on this subject, we identify the following non-coding RNAs as tumor suppressors: ts-46, ts-47, ts-101, ts-53, ts-3676, ts-4521 (tRNA fragments), SNORD116-26, HBII-420, SNORD15A, SNORA42 (snoRNAs), piRNA-like-163, piR-35127, the piR-46545 (piRNAs), CHIAP2, LOC100420907, RPL13AP17 (pseudogenes), and uc.454 (T-UCR). We also found non-coding RNAs with tumor-promoting function: tRF-Leu-CAG, tRNA-Leu, tRNA-Val (tRNA fragments), circ-RAD23B, circRNA 100146, circPVT1, circFGFR3, circ_0004015, circPUM1, circFLI1, circABCB10, circHIPK3 (circRNAs), SNORA42, SNORA3, SNORD46, SNORA21, SNORD28, SNORA47, SNORD66, SNORA68, SNORA78 (snoRNAs), piR-65, piR-34871, piR-52200, piR651 (piRNAs), hY4 5’ fragments (YRNAs), FAM83A-AS1, WRAP53, NKX2-1-AS1 (NATs), DUXAP8, SFTA1P (pseudogene transcripts), uc.338, uc.339 (T-UCRs), and hTERC.
Collapse
|
59
|
Wei Z, Kale S, El Fatimy R, Rabinovsky R, Krichevsky AM. Co-cultures of Glioma Stem Cells and Primary Neurons, Astrocytes, Microglia, and Endothelial Cells for Investigation of Intercellular Communication in the Brain. Front Neurosci 2019; 13:361. [PMID: 31057356 PMCID: PMC6482299 DOI: 10.3389/fnins.2019.00361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Intercellular communication within complex biological and pathological systems via extracellular vesicles (EVs) and secreted factors is a highly attractive area of research. However, cell models enabling investigation of such communication in vitro are limited. Commonly utilized is the supplementation of hyper-concentrated EVs or other extracellular factors to the recipient cell cultures. This approach requires purification of the secreted complexes and is confounded by the contamination of media components. Two-chamber co-cultures of donor and recipient cells separated by a pore membrane may represent a more physiological and better-controlled system for the investigation of intercellular communication. Yet, distinct culture conditions for different neural cell types often make them incompatible for co-culturing. Here we optimized short-term co-cultures of patient-derived low-passage glioma-initiating stem cells with normal cells of the brain microenvironment, such as primary neurons, astrocytes, microglia, and brain endothelial cells. We demonstrate the culture compatibility of these cell types and internalization of glioma-derived extracellular RNA by the normal recipient cells. The presented protocols are valuable for the investigation of intercellular communication between glioma brain tumor and cells of its microenvironment, including but not limited to the EVs-mediated communication. RESEARCH IN CONTEXT Cell-to-cell communication is essential in normal physiology and implicated in disease; however, experimental systems for its modeling in vitro are limited. Particularly, the investigation of communication between brain tumors and normal cells of the brain microenvironment has been challenged by the lack of adequate culture models. Here we developed co-cultures of glioma stem cells with various types of normal brain cells, including primary neurons, astrocytes, microglia, and brain endothelial cells, and demonstrated their utility for the study of intercellular communication. Detection of proposed markers in the recipient cells confirmed RNA transfer in these co-cultures.
Collapse
Affiliation(s)
- Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shubham Kale
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|