51
|
Abstract
Most currently used conventional influenza vaccines are based on 1940s technology. Advances in vaccine immunogen design and delivery emerging over the last decade promise new options for improving influenza vaccines. In addition, new technologies for immune profiling provide better-defined immune correlates of protection and precise surrogate biomarkers for vaccine evaluations. Major technological advances include single-cell analysis, high-throughput antibody discovery, next-generation sequencing of antibody gene transcripts, antibody ontogeny, structure-guided immunogen design, nanoparticle display, delivery and formulation options, and better adjuvants. In this review, we provide our prospective outlook for improved influenza vaccines in the foreseeable future.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
52
|
Cortese M, Sherman AC, Rouphael NG, Pulendran B. Systems Biological Analysis of Immune Response to Influenza Vaccination. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038596. [PMID: 32152245 DOI: 10.1101/cshperspect.a038596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has witnessed tremendous progress in immunology and vaccinology, owing to several scientific and technological breakthroughs. Systems vaccinology is a field that has emerged at the forefront of vaccine research and development and provides a unique way to probe immune responses to vaccination in humans. The goals of systems vaccinology are to use systems-based approaches to define signatures that can be used to predict vaccine immunogenicity and efficacy and to delineate the molecular mechanisms driving protective immunity. The application of systems biological approaches in influenza vaccination studies has enabled the discovery of early signatures that predict immunogenicity to vaccination and yielded novel mechanistic insights about vaccine-induced immunity. Here we review the contributions of systems vaccinology to influenza vaccine development and critically examine the potential of systems vaccinology toward enabling the development of a universal influenza vaccine that provides robust and durable immunity against diverse influenza viruses.
Collapse
Affiliation(s)
- Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Amy C Sherman
- Hope Clinic of the Emory Vaccine Center, Decatur, Georgia 30030, USA
| | - Nadine G Rouphael
- Hope Clinic of the Emory Vaccine Center, Decatur, Georgia 30030, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California 94305, USA.,Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA.,Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
53
|
Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021; 11:a038729. [PMID: 31871226 PMCID: PMC7919402 DOI: 10.1101/cshperspect.a038729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the human immune responses to influenza infection with some insights from studies using animal models, such as experimental infection of mice. Recent technological advances in the study of human immune responses have greatly added to our knowledge of the infection and immune responses, and therefore much of the focus is on recent studies that have moved the field forward. We consider the complexity of the adaptive response generated by many sequential encounters through infection and vaccination.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Marta L DeDiego
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnologia Agraria y Ailmentaria, 28040 Madrid, Spain
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
54
|
Harshbarger WD, Deming D, Lockbaum GJ, Attatippaholkun N, Kamkaew M, Hou S, Somasundaran M, Wang JP, Finberg RW, Zhu QK, Schiffer CA, Marasco WA. Unique structural solution from a V H3-30 antibody targeting the hemagglutinin stem of influenza A viruses. Nat Commun 2021; 12:559. [PMID: 33495478 PMCID: PMC7835374 DOI: 10.1038/s41467-020-20879-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) targeting conserved influenza A virus (IAV) hemagglutinin (HA) epitopes can provide valuable information for accelerating universal vaccine designs. Here, we report structural details for heterosubtypic recognition of HA from circulating and emerging IAVs by the human antibody 3I14. Somatic hypermutations play a critical role in shaping the HCDR3, which alone and uniquely among VH3-30 derived antibodies, forms contacts with five sub-pockets within the HA-stem hydrophobic groove. 3I14 light-chain interactions are also key for binding HA and contribute a large buried surface area spanning two HA protomers. Comparison of 3I14 to bnAbs from several defined classes provide insights to the bias selection of VH3-30 antibodies and reveals that 3I14 represents a novel structural solution within the VH3-30 repertoire. The structures reported here improve our understanding of cross-group heterosubtypic binding activity, providing the basis for advancing immunogen designs aimed at eliciting a broadly protective response to IAV.
Collapse
Affiliation(s)
- Wayne D Harshbarger
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Derrick Deming
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Maliwan Kamkaew
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Quan Karen Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Han J, Schmitz AJ, Richey ST, Dai YN, Turner HL, Mohammed BM, Fremont DH, Ellebedy AH, Ward AB. Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Rep 2021; 34:108682. [PMID: 33503432 PMCID: PMC7888560 DOI: 10.1016/j.celrep.2020.108682] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022] Open
Abstract
Novel influenza A virus (IAV) strains elicit recall immune responses to conserved epitopes, making them favorable antigenic choices for universal influenza virus vaccines. Evaluating these immunogens requires a thorough understanding of the antigenic sites targeted by the polyclonal antibody (pAb) response, which single-particle electron microscopy (EM) can sensitively detect. In this study, we employ EM polyclonal epitope mapping (EMPEM) to extensively characterize the pAb response to hemagglutinin (HA) after H5N1 immunization in humans. Cross-reactive pAbs originating from memory B cells immediately bound the stem of HA and persisted for more than a year after vaccination. In contrast, de novo pAb responses to multiple sites on the head of HA, targeting previously determined key neutralizing sites on H5 HA, expanded after the second immunization and waned quickly. Thus, EMPEM provides a robust tool for comprehensively tracking the specificity and durability of immune responses elicited by novel universal influenza vaccine candidates.
Collapse
Affiliation(s)
- Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bassem M Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Alexander-Miller MA. Challenges for the Newborn Following Influenza Virus Infection and Prospects for an Effective Vaccine. Front Immunol 2020; 11:568651. [PMID: 33042150 PMCID: PMC7524958 DOI: 10.3389/fimmu.2020.568651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Newborns are at significantly increased risk of severe disease following infection with influenza virus. This is the collective result of their naïve status, altered immune responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous studies have revealed impairments in both the innate and adaptive arms of the immune system of newborns. The consequence of these alterations is a quantitative and qualitative decrease in both antibody and T cell responses. This review summarizes the hurdles newborns experience in mounting an effective response that can clear influenza virus and limit disease following infection. In addition, the challenges, as well as the opportunities, for developing vaccines that can elicit protective responses in these at risk individuals are discussed.
Collapse
Affiliation(s)
- Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
57
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
58
|
Loos C, Lauffenburger DA, Alter G. Dissecting the antibody-OME: past, present, and future. Curr Opin Immunol 2020; 65:89-96. [PMID: 32755751 DOI: 10.1016/j.coi.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Humoral immunity is key to protection for nearly all licensed vaccines. Yet, the design of vaccines has been more difficult for some of our most deadly killers (e.g. HIV, influenza, Dengue virus, etc.), likely due to our incomplete understanding of the precise immunological mechanisms associated with protection. Humoral immunity is governed both by B-cells and their bi-functional secreted antibodies, all of which have a unique capacity to evolve during an immune response. Current OMIC technologies capture individual features of the humoral immune response, providing a glimpse into humoral components (Fab/Fc/B-cell-omic), but fail to provide a wholistic view of the humoral response as a collective functional arm. Here, we dissect current OMIC strategies reviewing experimental and computational approaches, that if integrated could provide a true systems-level view of the humoral immune response.
Collapse
Affiliation(s)
- Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Galit Alter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
59
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
60
|
Wang SH, Chen J, Smith D, Cao Z, Acosta H, Fan Y, Ciotti S, Fattom A, Baker J. A novel combination of intramuscular vaccine adjuvants, nanoemulsion and CpG produces an effective immune response against influenza A virus. Vaccine 2020; 38:3537-3544. [PMID: 32245642 DOI: 10.1016/j.vaccine.2020.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value. METHODS A new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets. RESULTS I.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone. CONCLUSIONS The I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jesse Chen
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - Zhengyi Cao
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Hugo Acosta
- BlueWillow Biologic, Ann Arbor, MI, United States
| | - Yongyi Fan
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Susan Ciotti
- BlueWillow Biologic, Ann Arbor, MI, United States
| | - Ali Fattom
- BlueWillow Biologic, Ann Arbor, MI, United States
| | - James Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
61
|
Clemens E, Angeletti D, Holbrook BC, Kanekiyo M, Jorgensen MJ, Graham BS, Yewdell J, Alexander-Miller MA. Influenza-infected newborn and adult monkeys exhibit a strong primary antibody response to hemagglutinin stem. JCI Insight 2020; 5:135449. [PMID: 32078584 DOI: 10.1172/jci.insight.135449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023] Open
Abstract
The specificity of antibodies (Abs) generated against influenza A virus (IAV) infection can significantly alter protection and viral clearance. At present, the impact of age upon this process is relatively unexplored. Here, we evaluated the Ab response in newborn and adult African green monkeys following infection with IAV using a strain that enables us to determine the immunodominance (ID) hierarchy of the Ab response to hemagglutinin (HA), the principal target of protective Abs. This revealed altered ID patterns in the early IgM anti-HA response in newborns versus adults that converged over time. While the IgG ID profiles for HA in newborn and adult monkeys were similar, this was not the case for IgA. Importantly, HA stem-specific Abs were generated robustly and similarly in newborns and adults in terms of quality and quantity. Together, these results demonstrate that newborns and adults can differ in the Ab ID pattern established following infection and that the ID pattern can vary across isotypes. In addition, newborns have the ability to generate potent HA stem-specific Ab responses. Our findings further the understanding of the newborn response to IAV antigens and inform the development of improved vaccines for this at-risk population.
Collapse
Affiliation(s)
- Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew J Jorgensen
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jonathan Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
62
|
Yan LM, Lau SPN, Poh CM, Chan VSF, Chan MCW, Peiris M, Poon LLM. Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-α-1,3-Galactose Epitopes in Infected Cells. mBio 2020; 11:e00027-20. [PMID: 32127444 PMCID: PMC7064743 DOI: 10.1128/mbio.00027-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Anti-galactose-α-1,3-galactose (anti-α-Gal) antibody is naturally expressed at a high level in humans. It constitutes about 1% of immunoglobulins found in human blood. Here, we designed a live attenuated influenza virus vaccine that can generate α-Gal epitopes in infected cells in order to facilitate opsonization of infected cells, thereby enhancing vaccine-induced immune responses. In the presence of normal human sera, cells infected with this mutant can enhance phagocytosis of human macrophages and cytotoxicity of NK cells in vitro Using a knockout mouse strain that allows expression of anti-α-Gal antibody in vivo, we showed that this strategy can increase vaccine immunogenicity and the breadth of protection. This vaccine can induce 100% protection against a lethal heterosubtypic group 1 (H5) or group 2 (mouse-adapted H3) influenza virus challenge in the mouse model. In contrast, its heterosubtypic protective effect in wild-type or knockout mice that do not have anti-α-Gal antibody expression is only partial, demonstrating that the enhanced vaccine-induced protection requires anti-α-Gal antibody upon vaccination. Anti-α-Gal-expressing knockout mice immunized with this vaccine produce robust humoral and cell-mediated responses upon a lethal virus challenge. This vaccine can stimulate CD11blo/- pulmonary dendritic cells, which are known to be crucial for clearance of influenza virus. Our approach provides a novel strategy for developing next-generation influenza virus vaccines.IMPORTANCE Influenza A viruses have multiple HA subtypes that are antigenically diverse. Classical influenza virus vaccines are subtype specific, and they cannot induce satisfactory heterosubtypic immunity against multiple influenza virus subtypes. Here, we developed a live attenuated H1N1 influenza virus vaccine that allows the expression of α-Gal epitopes by infected cells. Anti-α-Gal antibody is naturally produced by humans. In the presence of this antibody, human cells infected with this experimental vaccine virus can enhance several antibody-mediated immune responses in vitro Importantly, mice expressing anti-α-Gal antibody in vivo can be fully protected by this H1N1 vaccine against a lethal H5 or H3 virus challenge. Our work demonstrates a new strategy for using a single influenza virus strain to induce broadly cross-reactive immune responses against different influenza virus subtypes.
Collapse
Affiliation(s)
- Li-Meng Yan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Sylvia P N Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chek Meng Poh
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vera S F Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Michael C W Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
63
|
Vanderven HA, Kent SJ. The protective potential of Fc-mediated antibody functions against influenza virus and other viral pathogens. Immunol Cell Biol 2020; 98:253-263. [PMID: 31914207 DOI: 10.1111/imcb.12312] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
In recent years, there has been a renewed interest in utilizing antibody fragment crystallizable (Fc) functions to prevent and control viral infections. The protective and therapeutic potential of Fc-mediated antibody functions have been assessed for some clinically important human viruses, including HIV, hemorrhagic fever viruses and influenza virus. There is mounting evidence that influenza-specific antibodies with Fc-mediated functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis, can aid in the clearance of influenza virus infection. Recent influenza challenge studies and intravenous immunoglobulin G therapy studies in humans suggest a protective role for Fc effector functions in vivo. Broadly reactive influenza antibodies with Fc-mediated functions are prevalent in the human population and could inform the development of a universally protective influenza vaccine or therapy. In this review, we explore the utility of antibodies with Fc-mediated effector functions against viral infections with a focus on influenza virus.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Clayton, VIC, Australia
| |
Collapse
|
64
|
Grodeland G, Fossum E, Bogen B. Targeting of HA to chemokine receptors induces strong and cross-reactive T cell responses after DNA vaccination in pigs. Vaccine 2019; 38:1280-1285. [PMID: 31836256 DOI: 10.1016/j.vaccine.2019.11.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Efficient influenza vaccination of pigs can reduce disease burdens for the swine industry, but also represents an important measure for reducing the risk from novel viral reassortments that pose pandemic threats to the human population. Here, we have vaccinated pigs with a DNA vaccine encoding influenza virus hemagglutinin (HA) linked to the chemokine MIP1α that bind chemokine receptors 1, 3, and 5 expressed on antigen presenting cells (APC). Such MIP1α targeting of HA to APC enhanced induction of HA reactive antibodies, particularly IgG2. In addition, the MIP1α- HA vaccine induced strong T cell responses that could cross-react with different influenza subtypes. Thus, the strategy of targeting HA to chemokine receptors could be important for inducing broad protection against antigenically diverse influenza strains in pigs.
Collapse
Affiliation(s)
- Gunnveig Grodeland
- K.G. Jebsen Centre of Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway.
| | - Even Fossum
- K.G. Jebsen Centre of Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre of Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, N-0027 Oslo, Norway
| |
Collapse
|
65
|
Florek K, Mutschler J, McLean HQ, King JP, Flannery B, Belongia EA, Friedrich TC. Antibody-dependent cell-mediated cytotoxicity antibody responses to inactivated and live-attenuated influenza vaccination in children during 2014-15. Vaccine 2019; 38:2088-2094. [PMID: 31753674 DOI: 10.1016/j.vaccine.2019.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Seasonal influenza vaccines aim to induce strain-specific neutralizing antibodies. Non-neutralizing antibodies may be more broadly cross-reactive and still protect through mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC). Influenza vaccines may stimulate ADCC antibodies in adults, but whether they do so in children is unknown. Here we examined how vaccination affects cross-reactive ADCC antibody responses in children after receipt of inactivated trivalent vaccine (IIV3) or quadrivalent live-attenuated vaccine (LAIV4). METHODS Children aged 5-17 were recruited in fall 2014 to provide pre- and post-vaccination serum samples. Children aged 5-9 received LAIV4 based on then-current recommendation, and older children were randomly assigned to IIV3 or LAIV4. We used microtiter-plate-based flow cytometry with an NK cell line to examine ADCC antibody responses to the 2014-15 H3N2 vaccine component (A/Texas/50/2012 [TX12]) and a drifted strain, A/Switzerland/9715293/2013 (SW13). Responses were stratified by two-season (2013-14 and 2014-15) vaccine sequence. RESULTS Eighty-five children received LAIV4 and 45 received IIV3. Prevaccination ADCC activity was highest in children who had received any vaccine in the prior season. Increase in ADCC antibody responses against the vaccine strain TX12 following vaccination was greatest for participants who received IIV3 in 2014-15 and LAIV4 in the prior season (geometric mean fold rise [MFR] = 1.6, 95% CI. 1.23-2.11). This group also had a detectable ADCC response to the drifted SW13 strain. There was a modest ADCC response against SW13 in LAIV4 recipients who were unvaccinated in the previous season (MFR = 1.18, 95% CI 1.10-1.25). There were no significant changes in 2014-15 ADCC response to vaccination among children who had received IIV3 in 2013-14. CONCLUSIONS Vaccinating children with IIV3 after prior receipt of LAIV4 generated a modest increase in ADCC antibodies, including some cross-reactivity with an emerging drift variant. Other vaccine-induced ADCC responses were minimal and not affected by vaccine type or sequence.
Collapse
Affiliation(s)
- Kelsey Florek
- Wisconsin State Laboratory of Hygiene, Madison, WI 53714, USA
| | - James Mutschler
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA
| | - Jennifer P King
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA
| | - Brendan Flannery
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta 30333, GA, USA
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA.
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA; Wisconsin National Primate Research Center, Madison, WI 53715, USA.
| |
Collapse
|
66
|
Sedova ES, Scherbinin DN, Lysenko AA, Alekseeva SV, Artemova EA, Shmarov MM. Non-neutralizing Antibodies Directed at Conservative Influenza Antigens. Acta Naturae 2019; 11:22-32. [PMID: 31993232 PMCID: PMC6977952 DOI: 10.32607/20758251-2019-11-4-22-32] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/21/2019] [Indexed: 11/20/2022] Open
Abstract
At the moment, developing new broad-spectrum influenza vaccines which would help avoid annual changes in a vaccine's strain set is urgency. In addition, developing new vaccines based on highly conserved influenza virus proteins could allow us to better prepare for potential pandemics and significantly reduce the damage they cause. Evaluation of the humoral response to vaccine administration is a key aspect of the characterization of the effectiveness of influenza vaccines. In the development of new broad-spectrum influenza vaccines, it is important to study the mechanisms of action of various antibodies, including non-neutralizing ones, as well as to be in the possession of methods for quantifying these antibodies after immunization with new vaccines against influenza. In this review, we focused on the mechanisms of anti-influenza action of non-neutralizing antibodies, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-mediated complement-dependent cytotoxicity (CDC). The influenza virus antigens that trigger these reactions are hemagglutinin (HA) and neuraminidase (NA), as well as highly conserved antigens, such as M2 (ion channel), M1 (matrix protein), and NP (nucleoprotein). In addition, the mechanisms of action and methods for detecting antibodies to neuraminidase (NA) and to the stem domain of hemagglutinin (HA) of the influenza virus are considered.
Collapse
Affiliation(s)
- E. S. Sedova
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - D. N. Scherbinin
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - A. A. Lysenko
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - S. V. Alekseeva
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - E. A. Artemova
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - M. M. Shmarov
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| |
Collapse
|