51
|
Forssten SD, Ouwehand AC. Contribution of the Microbiota to Healthy Aging. COMPREHENSIVE GUT MICROBIOTA 2022:69-84. [DOI: 10.1016/b978-0-12-819265-8.00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
52
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|
53
|
Oemcke LA, Anderson RC, Altermann E, Roy NC, McNabb WC. The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning. Front Nutr 2021; 8:759137. [PMID: 34869529 PMCID: PMC8637878 DOI: 10.3389/fnut.2021.759137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.
Collapse
Affiliation(s)
- Linda A Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Rachel C Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Consumer Interface Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
54
|
Klüber P, Meurer SK, Lambertz J, Schwarz R, Zechel-Gran S, Braunschweig T, Hurka S, Domann E, Weiskirchen R. Depletion of Lipocalin 2 (LCN2) in Mice Leads to Dysbiosis and Persistent Colonization with Segmented Filamentous Bacteria. Int J Mol Sci 2021; 22:ijms222313156. [PMID: 34884961 PMCID: PMC8658549 DOI: 10.3390/ijms222313156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Lipocalin 2 (LCN2) mediates key roles in innate immune responses. It has affinity for many lipophilic ligands and binds various siderophores, thereby limiting bacterial growth by iron sequestration. Furthermore, LCN2 protects against obesity and metabolic syndrome by interfering with the composition of gut microbiota. Consequently, complete or hepatocyte-specific ablation of the Lcn2 gene is associated with higher susceptibility to bacterial infections. In the present study, we comparatively profiled microbiota in fecal samples of wild type and Lcn2 null mice and show, in contrast to previous reports, that the quantity of DNA in feces of Lcn2 null mice is significantly lower than that in wild type mice (p < 0.001). By using the hypervariable V4 region of the 16S rDNA gene and Next-Generation Sequencing methods, we found a statistically significant change in 16 taxonomic units in Lcn2-/- mice, including eight gender-specific deviations. In particular, members of Clostridium, Escherichia, Helicobacter, Lactococcus, Prevotellaceae_UCG-001 and Staphylococcus appeared to expand in the intestinal tract of knockout mice. Interestingly, the proportion of Escherichia (200-fold) and Staphylococcus (10-fold) as well as the abundance of intestinal bacteria encoding the LCN2-sensitive siderphore enterobactin (entA) was significantly increased in male Lcn2 null mice (743-fold, p < 0.001). This was accompanied by significant higher immune cell infiltration in the ileum as demonstrated by increased immunoreactivity against the pan-leukocyte protein CD45, the lymphocyte transcription factor MUM-1/IRF4, and the macrophage antigen CD68/Macrosialin. In addition, we found a higher expression of mucosal mast cell proteases indicating a higher number of those innate immune cells. Finally, the ileum of Lcn2 null mice displayed a high abundance of segmented filamentous bacteria, which are intimately associated with the mucosal cell layer, provoking epithelial antimicrobial responses and affecting T-helper cell polarization.
Collapse
Affiliation(s)
- Patrick Klüber
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
| | - Roman Schwarz
- Labor Mönchengladbach, Medical Care Centre, D-41169 Mönchengladbach, Germany;
| | - Silke Zechel-Gran
- German Centre for Infection Research, Institute of Medical Microbiology, Justus-Liebig-University, D-35392 Giessen, Germany; (P.K.); (S.Z.-G.)
| | - Till Braunschweig
- Institute of Pathology, RWTH Aachen University Hospital, D-52074 Aachen, Germany;
| | - Sabine Hurka
- Institute for Insect Biotechnology, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Eugen Domann
- German Centre for Infection Research, Institute of Hygiene and Environmental Medicine, Justus-Liebig-University, D-35392 Giessen, Germany
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074 Aachen, Germany; (S.K.M.); (J.L.)
- Correspondence: (E.D.); (R.W.); Tel.: +49-(0)641-99-41280 (E.D.); +49-(0)241-80-88683 (R.W.)
| |
Collapse
|
55
|
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2021. [DOI: 10.1111/sji.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Limin Han
- Department of Pathophysiology Zunyi Medical University Zunyi China
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Qiang Fu
- Organ Transplantation Center Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Chuan Deng
- Department of Neurology People’s Hospital of Changshou Chongqing Chongqing China
| | - Li Luo
- Department of Forensic Medicine Zunyi Medical University Zunyi China
| | - Tengxiao Xiang
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Hailong Zhao
- Department of Pathophysiology Zunyi Medical University Zunyi China
| |
Collapse
|
56
|
Cao RR, He P, Lei SF. Novel microbiota-related gene set enrichment analysis identified osteoporosis associated gut microbiota from autoimmune diseases. J Bone Miner Metab 2021; 39:984-996. [PMID: 34338852 DOI: 10.1007/s00774-021-01247-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Gut microbiota is now considered to be a hidden organ that interacts bidirectionally with cellular responses in numerous organs belonged to the immune, bone, and nervous systems. Here, we aimed to investigate the relationships between gut microbiota and complex diseases by utilizing multiple publicly available genome-wide association. MATERIALS AND METHODS We applied a novel microbiota-related gene set enrichment analysis approach to detect the associations between gut microbiota and complex diseases by processing genome-wide association studies (GWASs) data sets of six autoimmune diseases (including celiac disease (CeD), inflammatory bowel diseases (IBD), multiple sclerosis (MS), primary biliary cirrhosis (PBC), type 1 diabetes (T1D) and primary sclerosing cholangitis (PSC)) and osteoporosis (OP). RESULTS The family Oxalobacteraceae and genus Candidatus_Soleaferrea were found to be correlated with all of the six autoimmune diseases (FDR adjusted P < 0.05). Moreover, we observed that the six autoimmune diseases except PBC shared 3 overlapping features (including family Peptostreptococcaceae, order Gastranaerophilales and genus Romboutsia). For all of the six autoimmune diseases and BMDs (LS-BMD and TB-BMD), an association signal was observed for genus Candidatus_Soleaferrea (FDR adjusted P < 0.05). Notably, FA / FN-BMD shared the maximum number of overlapping microbial features (e.g., genus Ruminococcaceae_UCG009, Erysipelatoclostridium and Ruminococcaceae_UCG013). CONCLUSION Our study found that part of the gut microbiota could be novel regulators of BMDs and autoimmune diseases via the effects of its metabolites and may lead to a better understanding of the role played by gut microbiota in the communication of the microbiota-skeletal/immune-gut axis.
Collapse
Affiliation(s)
- Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
57
|
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22:10545. [PMID: 34638886 PMCID: PMC8508635 DOI: 10.3390/ijms221910545] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor α is a potent regulator of systemic and cellular metabolism and energy homeostasis, but it also suppresses various inflammatory reactions. In this review, we focus on its role in the regulation of innate immunity; in particular, we discuss the PPARα interplay with inflammatory transcription factor signaling, pattern-recognition receptor signaling, and the endocannabinoid system. We also present examples of the PPARα-specific immunomodulatory functions during parasitic, bacterial, and viral infections, as well as approach several issues associated with innate immunity processes, such as the production of reactive nitrogen and oxygen species, phagocytosis, and the effector functions of macrophages, innate lymphoid cells, and mast cells. The described phenomena encourage the application of endogenous and pharmacological PPARα agonists to alleviate the disorders of immunological background and the development of new solutions that engage PPARα activation or suppression.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland;
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Cracow, Poland;
| |
Collapse
|
58
|
Bódi N, Chandrakumar L, al Doghmi A, Mezei D, Szalai Z, Barta BP, Balázs J, Bagyánszki M. Intestinal Region-Specific and Layer-Dependent Induction of TNFα in Rats with Streptozotocin-Induced Diabetes and after Insulin Replacement. Cells 2021; 10:cells10092410. [PMID: 34572059 PMCID: PMC8466257 DOI: 10.3390/cells10092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) is essential in neuroinflammatory modulation. Therefore, the goal of this study is to reveal the effects of chronic hyperglycaemia and insulin treatment on TNFα expression in different gut segments and intestinal wall layers. TNFα expression was mapped by fluorescent immunohistochemistry and quantitative immunogold electron microscopy in myenteric ganglia of duodenum, ileum and colon. Tissue TNFα levels were measured by enzyme-linked immunosorbent assays in muscle/myenteric plexus-containing (MUSCLE-MP) and mucosa/submucosa/submucous plexus-containing (MUC-SUBMUC-SP) homogenates. Increasing density of TNFα-labelling gold particles is observed in myenteric ganglia from proximal to distal segments and TNFα tissue levels are much more elevated in MUSCLE-MP homogenates than in MUC-SUBMUC-SP samples in healthy controls. In the diabetics, the number of TNFα gold labels is significantly increased in the duodenum, decreased in the colon and remained unchanged in the ileal ganglia, while insulin does not prevent these diabetes-related TNFα changes. TNFα tissue concentration is also increased in MUSCLE-MP homogenates of diabetic duodenum, while decreased in MUC-SUBMUC-SP samples of diabetic ileum and colon. These findings support that type 1 diabetes has region-specific and intestinal layer-dependent effects on TNFα expression, contributing to the regional damage of myenteric neurons and their intestinal milieu.
Collapse
|
59
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
60
|
Kim SH, Lim YJ. The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res 2021; 20:31-42. [PMID: 34015206 PMCID: PMC8831768 DOI: 10.5217/ir.2021.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
The role of gut microbiome-intestinal immune complex in the development of colorectal cancer and its progression is well recognized. Accordingly, certain microbial strains tend to colonize or vanish in patients with colorectal cancer. Probiotics, prebiotics, and synbiotics are expected to exhibit both anti-tumor effects and chemopreventive effects during cancer treatment through mechanisms such as xenometabolism, immune interactions, and altered eco-community. Microbial modulation can also be safely used to prevent complications during peri-operational periods of colorectal surgery. A deeper understanding of the role of intestinal microbiota as a target for colorectal cancer treatment will lead the way to a better prognosis for colorectal cancer patients.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
61
|
Zhang C, Franklin CL, Ericsson AC. Consideration of Gut Microbiome in Murine Models of Diseases. Microorganisms 2021; 9:microorganisms9051062. [PMID: 34068994 PMCID: PMC8156714 DOI: 10.3390/microorganisms9051062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| |
Collapse
|
62
|
Yang J, Chun J. Taxonomic composition and variation in the gut microbiota of laboratory mice. Mamm Genome 2021; 32:297-310. [PMID: 33893864 DOI: 10.1007/s00335-021-09871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiota can affect host health, including humans. Mouse models have been used extensively to study the relationships between the host and the gut microbiota. With the development of cost-effective high-throughput DNA sequencing, several methods have been used to identify members of the gut microbiota of laboratory mice. In recent years, the amount of research and knowledge about the mouse gut microbiota has exploded, leading to significant breakthroughs in understanding of the taxonomic composition of and variation in this community. In addition, the rapidly increasing volume of data has allowed the development of public resources for exploring the mouse gut microbiota. In this review, we describe the concepts and pros and cons of basic methodologies that can be used to determine the gut bacterial profile in laboratory mice. We also present the key bacterial components of the mouse gut microbiota from the phylum to the species level and then compare them with those identified in other references. Additionally, we discuss variations in the mouse gut microbiota and their association with experiments using mice. Finally, we summarize the properties and functions of currently available public resources for exploring the mouse gut microbiota.
Collapse
Affiliation(s)
- Junwon Yang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea.,Institute of Molecular Biology & Genetics, Seoul National University, Seoul, 08826, Korea.,Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jongsik Chun
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea. .,Institute of Molecular Biology & Genetics, Seoul National University, Seoul, 08826, Korea. .,Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
63
|
Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive Immunity: The Role of Fucosylated Glycans in Human Host-Microbiome Interactions. Int J Mol Sci 2021; 22:ijms22083854. [PMID: 33917768 PMCID: PMC8068183 DOI: 10.3390/ijms22083854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The growth in the number of chronic non-communicable diseases in the second half of the past century and in the first two decades of the new century is largely due to the disruption of the relationship between the human body and its symbiotic microbiota, and not pathogens. The interaction of the human immune system with symbionts is not accompanied by inflammation, but is a physiological norm. This is achieved via microbiota control by the immune system through a complex balance of pro-inflammatory and suppressive responses, and only a disturbance of this balance can trigger pathophysiological mechanisms. This review discusses the establishment of homeostatic relationships during immune system development and intestinal bacterial colonization through the interaction of milk glycans, mucins, and secretory immunoglobulins. In particular, the role of fucose and fucosylated glycans in the mechanism of interactions between host epithelial and immune cells is discussed.
Collapse
Affiliation(s)
- Svetlana Kononova
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| | - Ekaterina Litvinova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
- Siberian Federal Scientific Center of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk, 633501 Novosibirsk, Russia
| | - Timur Vakhitov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
| | - Maria Skalinskaya
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Stanislav Sitkin
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
64
|
Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J 2020; 19:134-144. [PMID: 33425246 PMCID: PMC7773683 DOI: 10.1016/j.csbj.2020.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and the host are intimately connected. The host physiology dictates the intestinal environment through regulation of pH, ion concentration, mucus production, etc., all of which exerts a selective pressure on the gut microbiota. Since different regions of the gastrointestinal tract are characterized by their own physicochemical conditions, distinct microbial communities are present in these locations. While it is widely accepted that the intestinal microbiome influences the host (tight junctions, cytokine/immune responses, diarrhea, etc.), the reciprocal interaction of the host on the microbiome is under-explored. This review aims to address these gaps in knowledge by focusing on how the host intestinal ion transport influences the luminal environment and thereby modulates the gut microbiota composition.
Collapse
Key Words
- CFTR
- CFTR, cystic fibrosis transmembrane regulator
- ClC, chloride channel
- DRA
- DRA, down-regulated in adenoma
- ENaC, epithelial Na+ channel
- GI, gastrointestinal
- GLUT2
- GLUT2, glucose transporter 2
- Gastrointestinal
- Ion transport
- Microbiome
- Microbiota
- NHE2
- NHE2, sodium-hydrogen exchanger isoform 2
- NHE3
- NHE3, sodium-hydrogen exchanger isoform 3
- NKCC1, Na+-K+-2Cl− co-transporter
- OTUs, operational taxonomic units
- SGLT1, sodium glucose co-transporter 1
Collapse
|
65
|
Sasaki T, Tome S, Takei Y. Intraventricular IL-17A administration activates microglia and alters their localization in the mouse embryo cerebral cortex. Mol Brain 2020; 13:93. [PMID: 32546246 PMCID: PMC7298827 DOI: 10.1186/s13041-020-00635-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Viral infection during pregnancy has been suggested to increase the probability of autism spectrum disorder (ASD) in offspring via the phenomenon of maternal immune activation (MIA). This has been modeled in rodents. Maternal T helper 17 cells and the effector cytokine, interleukin 17A (IL-17A), play a central role in MIA-induced behavioral abnormalities and cortical dysgenesis, termed cortical patch. However, it is unclear how IL-17A acts on fetal brain cells to cause ASD pathologies. To assess the effect of IL-17A on cortical development, we directly administered IL-17A into the lateral ventricles of the fetal mouse brain. We analyzed injected brains focusing on microglia, which express IL-17A receptors. We found that IL-17A activated microglia and altered their localization in the cerebral cortex. Our data indicate that IL-17A activates cortical microglia, which leads to a cascade of ASD-related brain pathologies, including excessive phagocytosis of neural progenitor cells in the ventricular zone.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,PhD Program of Neurosciences, Degree Program of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Saki Tome
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,PhD Program of Neurosciences, Degree Program of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|