51
|
Krug L, Morauf C, Donat C, Müller H, Cernava T, Berg G. Plant Growth-Promoting Methylobacteria Selectively Increase the Biomass of Biotechnologically Relevant Microalgae. Front Microbiol 2020; 11:427. [PMID: 32256478 PMCID: PMC7093331 DOI: 10.3389/fmicb.2020.00427] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Microalgae, a diverse group of single-celled organisms exhibiting versatile traits, find broad applications in industry. However, high production costs require further efforts to optimize their production and to enhance biomass yields. In the present study, co-occurrence of algae and methylobacteria was observed when naturally occurring microalgae biofilms were subjected to 16S rRNA gene fragment amplicon sequencing. This bacterial group is so far less explored than other microalgae-associated bacteria in terms of mutualistic relationships that might be exploitable for biotechnological applications. In order to assess the potential of four plant growth-promoting strains from the genus Methylobacterium for increased algae biomass production, co-cultivation experiments were conducted with three industrially relevant microalgae (Chlorella vulgaris, Scenedesmus vacuolatus, and Haematococcus lacustris). For S. vacuolatus and H. lacustris, a significant increase in algal biomass formation of 1.3-fold to up to 14-fold was observed after 7 days of co-incubation. Visualization of mixed cultures using confocal laser scanning microscopy revealed a high abundance of methylobacteria in the phycosphere of H. lacustris and S. vacuolatus, visually attached to the algae’s surface forming a biofilm-like assemblage. Genome analyses revealed that features attributable to enhanced algal growth include genes involved in the synthesis of vitamins, siderophores and plant hormones. Our results provide evidence for the constructability of novel symbiotic algae-bacteria relationships with inter-kingdom supportive capacities, underlining the potential of microbial consortia as promising tool for sustainable biotechnology and agriculture.
Collapse
Affiliation(s)
- Lisa Krug
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.,acib GmbH, Graz, Austria
| | | | | | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
52
|
Paquette AJ, Sharp CE, Schnurr PJ, Allen DG, Short SM, Espie GS. Dynamic changes in community composition of Scenedesmus-seeded artificial, engineered microalgal biofilms. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Oliva G, Ángeles R, Rodríguez E, Turiel S, Naddeo V, Zarra T, Belgiorno V, Muñoz R, Lebrero R. Comparative evaluation of a biotrickling filter and a tubular photobioreactor for the continuous abatement of toluene. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120860. [PMID: 31302359 DOI: 10.1016/j.jhazmat.2019.120860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/20/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The negative effects of volatile organic compounds (VOCs) on humans' health and the environment have boosted the enforcement of regulations, resulting in the need of effective and environmentally friendly off-gas treatment technologies. In this work, the synergism between microalgae and bacteria was investigated as a sustainable platform to enhance the biological degradation of toluene, herein selected as a model VOC. An innovative algal-bacterial tubular photobioreactor (TPBR) was systematically compared with a conventional biotrickling filter (BTF). The BTF supported average removal efficiencies close to those obtained in the TPBR (86 ± 9% and 88 ± 4%, respectively) at the highest inlet load (∼23 g m3 h-1) and lowest gas residence time (0.75 min). However, the BTF was more sensitive towards the accumulation of secondary metabolites. In this regard, photosynthetic O2 supplementation (resulting in dissolved oxygen concentrations of ∼7.3 mg O2 L-1) and CO2 consumption by microalgae (which reduced the impact of acidification) enhanced toluene abatement performance and process stability.
Collapse
Affiliation(s)
- Giuseppina Oliva
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Roxana Ángeles
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Elisa Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Sara Turiel
- Department of Biodiversity and Environmental Management, University of León, 24071 León, Spain
| | - Vincenzo Naddeo
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Tiziano Zarra
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
54
|
Biological contamination and its chemical control in microalgal mass cultures. Appl Microbiol Biotechnol 2019; 103:9345-9358. [PMID: 31720774 DOI: 10.1007/s00253-019-10193-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
Microalgae are versatile sources of bioproducts, a solution for many environmental problems. However, and despite its importance, one of the main problems in large-scale cultures-the presence of contaminants-is rarely systematically approached. Contamination, or the presence of undesirable organisms in a culture, is deleterious for the culture and frequently leads to culture crashes. To avoid contamination, closed systems can be used; however, for very large-scale open systems, contamination is unavoidable and remediation procedures are necessary-ranging from physicochemical treatment to addition of biocidal substances. In all cases, early detection and culture monitoring are paramount. This article describes the biological contaminants, contamination mechanisms, and control systems used in open and closed cultures, discussing the latest advances and techniques in the area. It also discusses the complex interactions of algae with other microorganisms that can be expected in cultivation systems.
Collapse
|
55
|
Fajardo C, Amil-Ruiz F, Fuentes-Almagro C, De Donato M, Martinez-Rodriguez G, Escobar-Niño A, Carrasco R, Mancera JM, Fernandez-Acero FJ. An “omic” approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. J Proteomics 2019; 209:103502. [DOI: 10.1016/j.jprot.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
56
|
Schweitzer-Natan O, Ofek-Lalzar M, Sher D, Sukenik A. Particle-Associated Microbial Community in a Subtropical Lake During Thermal Mixing and Phytoplankton Succession. Front Microbiol 2019; 10:2142. [PMID: 31572346 PMCID: PMC6753980 DOI: 10.3389/fmicb.2019.02142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ecosystem dynamics in monomictic lakes are characterized by seasonal thermal mixing and stratification. These physical processes bring about seasonal variations in nutrients and organic matter fluxes, affecting the biogeochemical processes that occur in the water column. Physical and chemical dynamics are generally reflected in seasonal structural changes in the phytoplankton and bacterio-plankton community. In this study, we analyzed, using 16S rRNA amplicon sequencing, the structure of the bacterial community associated with large particles (>20 μm) in Lake Kinneret (Sea of Galilee, Israel), and its associations to phytoplankton populations. The study was carried out during late winter and early spring, a highly dynamic period in terms of thermal mixing, nutrient availability, and shifts in phytoplankton composition. Structural changes in the bacterioplankton population corresponded with limnological variations in the lake. In terms of the entire heterotrophic community, the structural patterns of particle-associated bacteria were mainly correlated with abiotic factors such as pH, ammonia, water temperature and nitrate. However, analysis of microbial taxon-specific correlations with phytoplankton species revealed a strong potential link between specific bacterial populations and the presence of different phytoplankton species, such as the cyanobacterium Microcystis, as well as the dinoflagellates Peridinium and Peridiniopsis. We found that Brevundimonas, a common freshwater genus, and Bdellovibrio, a well-known Gram-negative bacteria predator, were positively associated to Microcystis, suggesting a potentially important role of these three taxa in the microbial ecology of the lake. Our results show that the dynamics of environmental abiotic conditions, rather than specific phytoplankton assemblages, are the main factors positively correlated with changes in the community structure as a whole. Nevertheless, some specific bacteria may interact and be linked with specific phytoplankton, which may potentially control the dynamic patterns of the microbial community.
Collapse
Affiliation(s)
- Orna Schweitzer-Natan
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Assaf Sukenik
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Haifa, Israel
| |
Collapse
|
57
|
Cirri E, Pohnert G. Algae-bacteria interactions that balance the planktonic microbiome. THE NEW PHYTOLOGIST 2019; 223:100-106. [PMID: 30825329 DOI: 10.1111/nph.15765] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 05/10/2023]
Abstract
Phytoplankton communities within the photic zones of the oceans and lakes are characterised by highly complex assemblages of unicellular microalgae and associated bacteria. The interconnected evolutionary history of algae and bacteria allowed the formation of a wide spectrum of associations defined by orchestrated nutrient exchange, mutual support with growth factors, quorum sensing mediation, and episodic killing of the partners to obtain more resources. In this review, we discuss how these cross-kingdom interactions shape plankton communities that undergo annual, seasonal switching between alternative states with balanced multispecies consortia. We illustrate how these microscopic interactions can have consequences that scale up to influence global element cycling.
Collapse
Affiliation(s)
- Emilio Cirri
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstr. 8, D-07743, Jena, Germany
| | - Georg Pohnert
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstr. 8, D-07743, Jena, Germany
- Microverse Cluster Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| |
Collapse
|
58
|
Wang W, Sheng Y. Pseudomonas sp. strain WJ04 enhances current generation of Synechocystis sp. PCC6803 in photomicrobial fuel cells. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
59
|
Corcoll N, Yang J, Backhaus T, Zhang X, Eriksson KM. Copper Affects Composition and Functioning of Microbial Communities in Marine Biofilms at Environmentally Relevant Concentrations. Front Microbiol 2019; 9:3248. [PMID: 30671047 PMCID: PMC6331542 DOI: 10.3389/fmicb.2018.03248] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/14/2018] [Indexed: 02/01/2023] Open
Abstract
Copper (Cu) pollution in coastal areas is a worldwide threat for aquatic communities. This study aims to demonstrate the usefulness of the DNA metabarcoding analysis in order to describe the ecotoxicological effect of Cu at environmental concentrations on marine periphyton. Additionally, the study investigates if Cu-induced changes in community structure co-occurs with changes in community functioning (i.e., photosynthesis and community tolerance to Cu). Periphyton was exposed for 18 days to five Cu concentrations, between 0.01 and 10 μM, in a semi-static test. Diversity and community structure of prokaryotic and eukaryotic organisms were assessed by 16S and 18S amplicon sequencing, respectively. Community function was studied as impacts on algal biomass and photosynthetic activity. Additionally, we studied Pollution-Induced Community Tolerance (PICT) using photosynthesis as the endpoint. Sequencing results detected an average of 9,504 and 1,242 OTUs for 16S and 18S, respectively, reflecting the high biodiversity of marine periphytic biofilms. Eukaryotes represent the most Cu-sensitive kingdom, where effects were seen already at concentrations as low as 0.01 μM. The structure of the prokaryotic part of the community was impacted at slightly higher concentrations (0.06 μM), which is still in the range of the Cu concentrations observed in the area (0.08 μM). The current environmental quality standard for Cu of 0.07 μM therefore does not seem to be sufficiently protective for periphyton. Cu exposure resulted in a more Cu-tolerant community, which was accompanied by a reduced total algal biomass, increased relative abundance of diatoms and a reduction of photosynthetic activity. Cu exposure changed the network of associations between taxa in the communities. A total of 23 taxa, including taxa within Proteobacteria, Bacteroidetes, Stramenopiles, and Hacrobia, were identified as being particularly sensitive to Cu. DNA metabarcoding is presented as a sensitive tool for community-level ecotoxicological studies that allows to observe impacts simultaneously on a multitude of pro- and eukaryotic taxa, and therefore to identify particularly sensitive, non-cultivable taxa.
Collapse
Affiliation(s)
- Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jianghua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Karl Martin Eriksson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|