51
|
Peyvan K, Karouia F, Cooper JJ, Chamberlain J, Suciu D, Slota M, Pohorille A. Gene Expression Measurement Module (GEMM) for space application: Design and validation. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:55-67. [PMID: 31421849 DOI: 10.1016/j.lssr.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
In order to facilitate studies on the impact of the space environment on biological systems, we have developed a prototype of GEMM (Gene Expression Measurement Module) - an automated, miniaturized, integrated fluidic system for in-situ measurements of gene expression in microbial samples. The GEMM instrument is capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA to probes attached to a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. To function on small, uncrewed spacecraft, the conventional, laboratory protocols for both sample preparation and hybridization required significant modifications. Biological validation of the instrument was carried out on Synechococcus elongatus, a photosynthetic cyanobacterium known for its metabolic diversity and resilience to adverse conditions. It was demonstrated that GEMM yielded reliable, reproducible gene expression profiles. GEMM is the only high throughput instrument that can be deployed in near future on space platforms other than the ISS to advance biological research in space. It can also prove useful for numerous terrestrial applications in the field.
Collapse
Affiliation(s)
| | - Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA 94035, USA; NASA Ames Research Center, Exobiology Branch, MS 239-4, Moffett Field, CA 94035, USA.
| | | | | | | | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS 239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
52
|
Alteration of Proteomes in First-Generation Cultures of Bacillus pumilus Spores Exposed to Outer Space. mSystems 2019; 4:4/4/e00195-19. [PMID: 31186338 PMCID: PMC6561321 DOI: 10.1128/msystems.00195-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus pumilus SAFR-032 was originally isolated from the Jet Propulsion Lab Spacecraft Assembly Facility and thoroughly characterized for its enhanced resistance to UV irradiation and oxidative stress. This unusual resistance of SAFR-032 is of particular concern in the context of planetary protection and calls for development of novel disinfection techniques to prevent extraterrestrial contamination. Previously, spores of SAFR-032 were exposed for 18 months to a variety of space conditions on board the International Space Station to investigate their resistance to Mars-like conditions and space travel. Here, proteomic characterization of vegetative SAFR-032 cells from space-surviving spores is presented in comparison to a ground control. Vegetative cells of the first passage were processed and subjected to quantitative proteomics using tandem mass tags. Approximately 60% of all proteins encoded by SAFR-032 were identified, and 301 proteins were differentially expressed among the strains. We found that proteins predicted to be involved in carbohydrate transport/metabolism and energy production/conversion had lower abundance than those of the ground control. For three proteins, we showed that the expected metabolic activities were decreased, as expected with direct enzymatic assays. This was consistent with a decrease of ATP production in the space-surviving strains. The same space-surviving strains showed increased abundance of proteins related to survival, growth advantage, and stress response. Such alterations in the proteomes provide insights into possible molecular mechanisms of B. pumilus SAFR-032 to adapt to and resist extreme extraterrestrial environments.IMPORTANCE Spore-forming bacteria are well known for their resistance to harsh environments and are of concern for spreading contamination to extraterrestrial bodies during future life detection missions. Bacillus pumilus has been regularly isolated from spacecraft-associated surfaces and exhibited unusual resistance to ultraviolet light and other sterilization techniques. A better understanding of the mechanisms of microbial survival and enhanced resistance is essential for developing novel disinfection protocols for the purpose of planetary protection. While genomic analyses did not reveal the unique characteristics that explain elevated UV resistance of space-exposed B. pumilus, the proteomics study presented here provided intriguing insight on key metabolic changes. The observed proteomics aberrations reveal a complex biological phenomenon that plays a role in bacterial survival and adaptation under long-term exposure to outer space. This adaptive ability of microorganisms needs to be considered by those tasked with eliminating forward contamination.
Collapse
|
53
|
Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019; 8:e00833. [PMID: 30912318 PMCID: PMC6741137 DOI: 10.1002/mbo3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
China launched the Tiangong-2 space laboratory in 2016 and will eventually build a basic space station by the early 2020s. These spaceflight missions require astronauts to stay on the space station for more than 6 months, and they inevitably carry microbes into the space environment. It is known that the space environment affects microbial behavior, including growth rate, biofilm formation, virulence, drug resistance, and metabolism. However, the mechanisms of these alternations have not been fully elucidated. Therefore, it is beneficial to monitor microorganisms for preventing infections among astronauts in a space environment. Salmonella enteritidis is a Gram-negative bacterial pathogen that commonly causes acute gastroenteritis in humans. In this study, to better understand the effects of the space environment on S. enteritidis, a S. enteritidis strain was taken into space by the Shenzhou-11 spacecraft from 17 October 2016 to 18 November 2016, and a ground simulation with similar temperature conditions was simultaneously performed as a control. It was found that the flight strain displayed an increased growth rate, enhanced amikacin resistance, and some metabolism alterations compared with the ground strain. Enrichment analysis of proteome revealed that the increased growth rate might be associated with differentially expressed proteins involved in transmembrane transport and energy production and conversion assembly. A combined transcriptome and proteome analysis showed that the amikacin resistance was due to the downregulation of the oppA gene and oligopeptide transporter protein OppA. In conclusion, this study is the first systematic analysis of the phenotypic, genomic, transcriptomic, and proteomic variations in S. enteritidis during spaceflight and will provide beneficial insights for future studies on space microbiology.
Collapse
Affiliation(s)
- Bin Zhang
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xian Zhao
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
54
|
Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. mBio 2019; 10:mBio.02637-18. [PMID: 30647159 PMCID: PMC6336426 DOI: 10.1128/mbio.02637-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences. The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity.
Collapse
|
55
|
Zea L, Nisar Z, Rubin P, Cortesão M, Luo J, McBride SA, Moeller R, Klaus D, Müller D, Varanasi KK, Muecklich F, Stodieck L. Design of a spaceflight biofilm experiment. ACTA ASTRONAUTICA 2018; 148:294-300. [PMID: 30449911 PMCID: PMC6235448 DOI: 10.1016/j.actaastro.2018.04.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biofilm growth has been observed in Soviet/Russian (Salyuts and Mir), American (Skylab), and International (ISS) Space Stations, sometimes jeopardizing key equipment like spacesuits, water recycling units, radiators, and navigation windows. Biofilm formation also increases the risk of human illnesses and therefore needs to be well understood to enable safe, long-duration, human space missions. Here, the design of a NASA-supported biofilm in space project is reported. This new project aims to characterize biofilm inside the International Space Station in a controlled fashion, assessing changes in mass, thickness, and morphology. The space-based experiment also aims at elucidating the biomechanical and transcriptomic mechanisms involved in the formation of a "column-and-canopy" biofilm architecture that has previously been observed in space. To search for potential solutions, different materials and surface topologies will be used as the substrata for microbial growth. The adhesion of bacteria to surfaces and therefore the initial biofilm formation is strongly governed by topographical surface features of about the bacterial scale. Thus, using Direct Laser-Interference Patterning, some material coupons will have surface patterns with periodicities equal, above or below the size of bacteria. Additionally, a novel lubricant-impregnated surface will be assessed for potential Earth and spaceflight anti-biofilm applications. This paper describes the current experiment design including microbial strains and substrata materials and nanotopographies being considered, constraints and limitations that arise from performing experiments in space, and the next steps needed to mature the design to be spaceflight-ready.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, 80309, USA
- Corresponding author. (L. Zea)
| | - Zeena Nisar
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, 80309, USA
| | - Phil Rubin
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, 80309, USA
| | - Marta Cortesão
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, 51147, Germany
| | - Jiaqi Luo
- Functional Materials, Department of Materials Science and Engineering, Saarland University, 66123, Germany
| | - Samantha A. McBride
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, 51147, Germany
| | - David Klaus
- Aerospace Engineering Sciences Department, University of Colorado, Boulder, 80309, USA
| | - Daniel Müller
- Functional Materials, Department of Materials Science and Engineering, Saarland University, 66123, Germany
| | - Kripa K. Varanasi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Frank Muecklich
- Functional Materials, Department of Materials Science and Engineering, Saarland University, 66123, Germany
| | - Louis Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, 80309, USA
| |
Collapse
|