51
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
52
|
Jenks JD, Spiess B, Buchheidt D, Hoenigl M. (New) Methods for Detection of Aspergillus fumigatus Resistance in Clinical Samples. CURRENT FUNGAL INFECTION REPORTS 2019; 13:129-136. [PMID: 31552129 PMCID: PMC6759225 DOI: 10.1007/s12281-019-00342-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW The incidence of invasive aspergillosis has increased substantially over the past few decades, accompanied by a change in susceptibility patterns of Aspergillus fumigatus with increasing resistance observed against triazole antifungals, including voriconazole and isavuconazole, the most commonly used antifungal agents for the disease. Culture-based methods for determining triazole resistance are still the gold standard but are time consuming and lack sensitivity. We sought to provide an update on non-culture-based methods for detecting resistance patterns to Aspergillus. RECENT FINDINGS New molecular-based approaches for detecting triazole resistance to Aspergillus, real-time polymerase chain reaction (PCR) to detect mutations to the Cyp51A protein, have been developed which are able to detect most triazole-resistant A. fumigatus strains in patients with invasive aspergillosis. SUMMARY Over the last few years, a number of non-culture-based methods for molecular detection of Aspergillus triazole resistance have been developed that may overcome some of the limitations of culture. These molecular methods are therefore of high epidemiological and clinical relevance, mainly in immunocompromised patients with hematological malignancies, where culture has particularly limited sensitivity. These assays are now able to detect most triazole-resistant Aspergillus fumigatus strains. Given that resistance rates vary, clinical utility for these assays still depends on regional resistance patterns.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA
| | - Birgit Spiess
- Department of Hematology and Oncology, Scientific Laboratory, University Hospital Mannheim, Heidelberg University, Pettenkoferstraße 22, 68169 Mannheim, Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Scientific Laboratory, University Hospital Mannheim, Heidelberg University, Pettenkoferstraße 22, 68169 Mannheim, Germany
| | - Martin Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
53
|
Rivero-Menendez O, Soto-Debran JC, Medina N, Lucio J, Mellado E, Alastruey-Izquierdo A. Molecular Identification, Antifungal Susceptibility Testing, and Mechanisms of Azole Resistance in Aspergillus Species Received within a Surveillance Program on Antifungal Resistance in Spain. Antimicrob Agents Chemother 2019; 63:e00865-19. [PMID: 31285229 PMCID: PMC6709457 DOI: 10.1128/aac.00865-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/30/2019] [Indexed: 12/24/2022] Open
Abstract
Antifungal resistance is one of the major causes of the increasing mortality rates for fungal infections, especially for those caused by Aspergillus spp. A surveillance program was established in 2014 in the Spanish National Center for Microbiology for tracking resistance in the most prevalent Aspergillus species. A total of 273 samples were included in the study and were initially classified as susceptible or resistant according to EUCAST breakpoints. Several Aspergillus cryptic species were found within the molecularly identified isolates. Cyp51 mutations were characterized for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavussensu stricto strains that were classified as resistant. Three A. fumigatus sensu stricto strains carried the TR34/L98H resistance mechanism, while two harbored G54R substitution and one harbored the TR46/Y121F/T289A mechanism. Seventeen strains had no mutations in cyp51A, with ten of them resistant only to isavuconazole. Three A. terreussensu stricto strains harbored D344N substitution in cyp51A, one of them combined with M217I, and another carried an A249G novel mutation. Itraconazole-resistant A. flavussensu stricto strains harbored P220L and H349R alterations in cyp51A and cyp51C, respectively, that need further investigation on their implication in azole resistance.
Collapse
Affiliation(s)
- Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Carlos Soto-Debran
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Narda Medina
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
54
|
Salah H, Lackner M, Houbraken J, Theelen B, Lass-Flörl C, Boekhout T, Almaslamani M, Taj-Aldeen SJ. The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles. Front Microbiol 2019; 10:1677. [PMID: 31447794 PMCID: PMC6697061 DOI: 10.3389/fmicb.2019.01677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Aspergillus are ubiquitous mold species that infect immunocompetent and immunocompromised patients. The symptoms are diverse and range from allergic reactions, bronchopulmonary infection, and bronchitis, to invasive aspergillosis. The aim of this study was to characterize 70 Aspergillus isolates recovered from clinical specimens of patients with various clinical conditions presented at Hamad general hospital in Doha, Qatar, by using molecular methods and to determine their in vitro antifungal susceptibility patterns using the Clinical and Laboratory Standards Institute (CLSI) M38-A2 reference method. Fourteen Aspergillus species were identified by sequencing β-tubulin and calmodulin genes, including 10 rare and cryptic species not commonly recovered from human clinical specimens. Aspergillus welwitschiae is reported in this study for the first time in patients with fungal rhinosinusitis (n = 6) and one patient with a lower respiratory infection. Moreover, Aspergillus pseudonomius is reported in a patient with fungal rhinosinusitis which is considered as the first report ever from clinical specimens. In addition, Aspergillus sublatus is reported for the first time in a patient with cystic fibrosis. In general, our Aspergillus strains exhibited low MIC values for most of the antifungal drugs tested. One strain of Aspergillus fumigatus showed high MECs for echinocandins and low MICs for the rest of the drugs tested. Another strain of A. fumigatus exhibited high MIC for itraconazole and categorized as non-wild type. These findings require further analysis of their molecular basis of resistance. In conclusion, reliable identification of Aspergillus species is achieved by using molecular sequencing, especially for the emerging rare and cryptic species. They are mostly indistinguishable by conventional methods and might exhibit variable antifungal susceptibility profiles. Moreover, investigation of the antifungal susceptibility patterns is necessary for improved antifungal therapy against aspergillosis.
Collapse
Affiliation(s)
- Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jos Houbraken
- Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teun Boekhout
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Muna Almaslamani
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands
| | - Saad J Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
55
|
Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect 2019; 25:799-806. [DOI: 10.1016/j.cmi.2018.11.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023]
|
56
|
Koehler P, Salmanton-García J, Gräfe SK, Koehler FC, Mellinghoff SC, Seidel D, Steinbach A, Cornely OA. Baseline predictors influencing the prognosis of invasive aspergillosis in adults. Mycoses 2019; 62:651-658. [PMID: 31066092 DOI: 10.1111/myc.12926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Invasive aspergillosis (IA) is a serious hazard to haematological and critical care patients. Impactful risk factors for developing IA have been characterised; however, systematic analysis of baseline prognostic factors for treatment course of IA is missing. To understand prognostic variables, we analysed original articles identifying baseline factors that predict treatment outcome in patients with IA. PubMed database was searched for publications since database inception until May 2018. Inclusion criteria were published baseline prognostic factors present at the diagnosis of IA. In total, 58 studies from 267 centres reported 7320 patients with IA and 40 different predictors. Unfavourable predictors in medical history were kidney (7.4%, 10/136) and liver failure (3.7%, 5/136), ICU admission (3.7%, 5/136) and uncontrolled underlying disease (3.7%, 5/136). Regarding state of immunosuppression, negative outcome predictors were prolonged neutropenia (12.5%, 17/136), corticosteroid treatment (8.1%, 11/136) and graft-vs-host disease (3.7%, 5/136). On the pathogen side, relevant predictors were galactomannan positivity (8.1%, 11/136), Aspergillus terreus infection (2.2%, 3/136) and lack of amphotericin B susceptibility (1.5%, 2/136). IA-specific predictors were disseminated disease (5.1%, 7/136) and CNS involvement (2.9%, 4/136). Imaging results associated with negative outcome were multiple consolidations (2.9%, 4/136), bipulmonary lesions (2.2%, 3/136) and pleural effusion (2.2%, 3/136). At diagnosis of IA, most frequently identified predictors of outcome were neutropenia, corticosteroid use, elevated galactomannan, renal failure and disseminated disease. The predictors may be used to identify patients at high risk for treatment failure and to stratify neglected patient groups for clinical trials.
Collapse
Affiliation(s)
- Philipp Koehler
- Department I of Internal Medicine, Faculty of Medicine, ECMM Excellence Centre for Medical Mycology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Department I of Internal Medicine, Faculty of Medicine, ECMM Excellence Centre for Medical Mycology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Stefanie K Gräfe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Felix C Koehler
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sibylle C Mellinghoff
- Department I of Internal Medicine, Faculty of Medicine, ECMM Excellence Centre for Medical Mycology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Danila Seidel
- Department I of Internal Medicine, Faculty of Medicine, ECMM Excellence Centre for Medical Mycology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Angela Steinbach
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine, ECMM Excellence Centre for Medical Mycology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.,Clinical Trials Centre Cologne, ZKS Köln, Cologne, Germany
| |
Collapse
|
57
|
Girmenia C, Busca A, Candoni A, Cesaro S, Luppi M, Nosari AM, Pagano L, Rossi G, Venditti A, Aversa F. Breakthrough invasive fungal diseases in acute myeloid leukemia patients receiving mould active triazole primary prophylaxis after intensive chemotherapy: An Italian consensus agreement on definitions and management. Med Mycol 2019; 57:S127-S137. [PMID: 30816979 DOI: 10.1093/mmy/myy091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
In the attempt to establish definitions and provide shared approaches to breakthrough invasive fungal diseases (br-IFD) in acute myeloid leukemia (AML) patients submitted to intensive chemotherapy and receiving triazoles as mould active primary antifungal prophylaxis (MA-PAP), literature on br-IFD in AML patients receiving triazoles MA-PAP was reviewed and a Consensus Development Conference Project was convened. The following four candidate key-questions were generated and formed the set of questions of the present document: "definition of br-IFD," "diagnostic strategy during MA-PAP to detect br-IFD," "possible causes of MA-PAP failure," "management of br-IFD."
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia, e Dermatologia, Azienda Policlinico Umberto I, Rome
| | - Alessandro Busca
- A.O.U. Città della Salute e della Scienza, Dipartimento di Oncologia, SSD Trapianto allogenico di cellule staminali, Turin, Italy
| | - Anna Candoni
- Clinica Ematologica-Centro trapianti e Terapie Cellulari, Azienda Ospedaliero-Universitaria di Udine
| | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaliera Universitaria Integrata, Verona
| | - Mario Luppi
- Cattedra ed UO Ematologia. Dipartimento di Scienze Mediche e Chirurgiche Materno Infantile e dell' Adulto. AOU Modena. UNIMORE. Modena
| | - Anna Maria Nosari
- Divisione di Ematologia e Centro Trapianti Midollo ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Livio Pagano
- Istituto di Ematologia, Fondazione Policlinico A. Gemelli- IRCCS - Università Cattolica del Sacro Cuore, Rome
| | - Giuseppe Rossi
- S.C. Ematologia e Dipartimento Oncologia Medica Spedali Civili, Brescia
| | | | - Franco Aversa
- Haematology and BMT Unit, University of Parma, Parma, Italy
| |
Collapse
|
58
|
Lass-Flörl C. How to make a fast diagnosis in invasive aspergillosis. Med Mycol 2019; 57:S155-S160. [DOI: 10.1093/mmy/myy103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck/Austria
| |
Collapse
|
59
|
Shishodia SK, Tiwari S, Shankar J. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology 2019; 10:151-165. [PMID: 31448149 PMCID: PMC6691784 DOI: 10.1080/21501203.2019.1574927] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Aspergillus species contain pathogenic and opportunistic fungal pathogens which have the potential
to cause mycosis (invasive aspergillosis) in humans. The existing antifungal drugs have
limitation largely due to the development of drug-resistant isolates. To gain insight
into the mechanism of action and antifungal drug resistance in Aspergillus species including biofilm formation, we have reviewed protein
data of Aspergillus species during interaction with
antifungals drugs (polynes, azoles and echinocandin) and phytochemicals (artemisinin,
coumarin and quercetin). Our analyses provided a list of Aspergillus proteins (72 proteins) that were abundant during interaction
with different antifungal agents. On the other hand, there are 26 proteins, expression
level of which is affected by more than two antifungal agents, suggesting the more
general response to the stress induced by the antifungal agents. Our analysis showed
enzymes from cell wall remodelling, oxidative stress response and energy metabolism are
the responsible factors for providing resistance against antifungal drugs in Aspergillus species and could be explored further in clinical
isolates. Also, these findings have clinical importance since the effect of drug
targeting different proteins can be potentiated by combination therapy. We have also
discussed the opportunities ahead to study the functional role of proteins from
environmental and clinical isolates of Aspergillus during
its interaction with the antifungal drugs. Abbreviations IPA: invasive pulmonary aspergillosis; IA: invasive aspergillosis; AmB: Amphotericin B;
CAS: Caspofungin; VRC: Voriconazole; ITC: Itraconazole; POS: Posaconazole; ART:
Artemisinin; QRT: Quercetin; CMR: Coumarin; MIC: minimal inhibitory concentration
Collapse
Affiliation(s)
- Sonia Kumari Shishodia
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
60
|
Zhang J, Li L, Lv Q, Yan L, Wang Y, Jiang Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front Microbiol 2019; 10:691. [PMID: 31068906 PMCID: PMC6491756 DOI: 10.3389/fmicb.2019.00691] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
CYP51 (Erg11) belongs to the cytochrome P450 monooxygenase (CYP) superfamily and mediates a crucial step of the synthesis of ergosterol, which is a fungal-specific sterol. It is also the target of azole drugs in clinical practice. In recent years, researches on fungal CYP51 have stepped into a new stage attributing to the discovery of crystal structures of the homologs in Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. This review summarizes the functions, structures of fungal CYP51 proteins, and the inhibitors targeting these homologs. In particular, several drug-resistant mechanisms associated with the fungal CYP51s are introduced. The sequences and crystal structures of CYP51 proteins in different fungal species are also compared. These will provide new insights for the advancement of research on antifungal agents.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liping Li
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Quanzhen Lv
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yan Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| |
Collapse
|
61
|
Lackner M, Birch M, Naschberger V, Grässle D, Beckmann N, Warn P, Gould J, Law D, Lass-Flörl C, Binder U. Dihydroorotate dehydrogenase inhibitor olorofim exhibits promising activity against all clinically relevant species within Aspergillus section Terrei. J Antimicrob Chemother 2018; 73:3068-3073. [DOI: 10.1093/jac/dky329] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Michaela Lackner
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Verena Naschberger
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Denise Grässle
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
62
|
Jenks JD, Hoenigl M. Treatment of Aspergillosis. J Fungi (Basel) 2018; 4:jof4030098. [PMID: 30126229 PMCID: PMC6162797 DOI: 10.3390/jof4030098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Aspergillus spp. remain associated with high morbidity and mortality. While mold-active antifungal prophylaxis has led to a decrease of occurrence of invasive aspergillosis (IA) in those patients most at risk for infection, breakthrough IA does occur and remains difficult to diagnose due to low sensitivities of mycological tests for IA. IA is also increasingly observed in other non-neutropenic patient groups, where clinical presentation is atypical and diagnosis remains challenging. Early and targeted systemic antifungal treatment remains the most important predictive factor for a successful outcome in immunocompromised individuals. Recent guidelines recommend voriconazole and/or isavuconazole for the primary treatment of IA, with liposomal amphotericin B being the first alternative, and posaconazole, as well as echinocandins, primarily recommended for salvage treatment. Few studies have evaluated treatment options for chronic pulmonary aspergillosis (CPA), where long-term oral itraconazole or voriconazole remain the treatment of choice.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
- Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
63
|
Lass-Flörl C. Treatment of Infections Due to Aspergillus terreus Species Complex. J Fungi (Basel) 2018; 4:jof4030083. [PMID: 29987241 PMCID: PMC6162764 DOI: 10.3390/jof4030083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
The Aspergillus terreus species complex is found in a wide variety of habitats, and the spectrum of diseases caused covers allergic bronchopulmonary aspergillosis, Aspergillus bronchitis and/or tracheobronchitis, and invasive and disseminated aspergillosis. Invasive infections are a significant cause of morbidity and mortality mainly in patients with hematological malignancy. The section Terrei covers a total of 16 accepted species of which most are amphotericin B resistant. Triazoles are the preferred agents for treatment and prevention of invasive aspergillosis. Poor prognosis in patients with invasive A. terreus infections seems to be independent of anti-Aspergillus azole-based treatment.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria.
| |
Collapse
|