51
|
Borda Bossana S, Verbist C, Giugliano M. Homogeneous and Narrow Bandwidth of Spike Initiation in Rat L1 Cortical Interneurons. Front Cell Neurosci 2020; 14:118. [PMID: 32625063 PMCID: PMC7313227 DOI: 10.3389/fncel.2020.00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 12/02/2022] Open
Abstract
The cortical layer 1 (L1) contains a population of GABAergic interneurons, considered a key component of information integration, processing, and relaying in neocortical networks. In fact, L1 interneurons combine top–down information with feed-forward sensory inputs in layer 2/3 and 5 pyramidal cells (PCs), while filtering their incoming signals. Despite the importance of L1 for network emerging phenomena, little is known on the dynamics of the spike initiation and the encoding properties of its neurons. Using acute brain tissue slices from the rat neocortex, combined with the analysis of an existing database of model neurons, we investigated the dynamical transfer properties of these cells by sampling an entire population of known “electrical classes” and comparing experiments and model predictions. We found the bandwidth of spike initiation to be significantly narrower than in L2/3 and 5 PCs, with values below 100 cycle/s, but without significant heterogeneity in the cell response properties across distinct electrical types. The upper limit of the neuronal bandwidth was significantly correlated to the mean firing rate, as anticipated from theoretical studies but not reported for PCs. At high spectral frequencies, the magnitude of the neuronal response attenuated as a power-law, with an exponent significantly smaller than what was reported for pyramidal neurons and reminiscent of the dynamics of a “leaky” integrate-and-fire model of spike initiation. Finally, most of our in vitro results matched quantitatively the numerical simulations of the models as a further contribution to independently validate the models against novel experimental data.
Collapse
Affiliation(s)
- Stefano Borda Bossana
- Molecular, Cellular, and Network Excitability Laboratory, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Institute Born-Bunge, Universiteit Antwerpen, Wilrijk, Belgium
| | - Christophe Verbist
- Molecular, Cellular, and Network Excitability Laboratory, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Institute Born-Bunge, Universiteit Antwerpen, Wilrijk, Belgium
| | - Michele Giugliano
- Molecular, Cellular, and Network Excitability Laboratory, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Institute Born-Bunge, Universiteit Antwerpen, Wilrijk, Belgium.,Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
52
|
|
53
|
An Unexpected Dependence of Cortical Depth in Shaping Neural Responsiveness and Selectivity in Mouse Visual Cortex. eNeuro 2020; 7:ENEURO.0497-19.2020. [PMID: 32051142 PMCID: PMC7092962 DOI: 10.1523/eneuro.0497-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/31/2020] [Indexed: 01/04/2023] Open
Abstract
Two-photon imaging studies in mouse primary visual cortex (V1) consistently report that around half of the neurons respond to oriented grating stimuli. However, in cats and primates, nearly all neurons respond to such stimuli. Here we show that mouse V1 responsiveness and selectivity strongly depends on neuronal depth. Moving from superficial layer 2 down to layer 4, the percentage of visually responsive neurons nearly doubled, ultimately reaching levels similar to what is seen in other species. Over this span, the amplitude of neuronal responses also doubled. Moreover, stimulus selectivity was also modulated, not only with depth but also with response amplitude. Specifically, we found that orientation and direction selectivity were greater in stronger responding neurons, but orientation selectivity decreased with depth whereas direction selectivity increased. Importantly, these depth-dependent trends were found not just between layer 2/3 and layer 4 but at different depths within layer 2/3 itself. Thus, neuronal depth is an important factor to consider when pooling neurons for population analyses. Furthermore, the inability to drive the majority of cells in superficial layer 2/3 of mouse V1 with grating stimuli indicates that there may be fundamental differences in the micro-circuitry and role of V1 between rodents and other mammals.
Collapse
|
54
|
The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment? J Clin Med 2019; 8:jcm8122088. [PMID: 31805691 PMCID: PMC6947477 DOI: 10.3390/jcm8122088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
The first description of the Reeler mutation in mouse dates to more than fifty years ago, and later, its causative gene (reln) was discovered in mouse, and its human orthologue (RELN) was demonstrated to be causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral temporal epilepsy (ADLTE). In both human and mice, the gene encodes for a glycoprotein referred to as reelin (Reln) that plays a primary function in neuronal migration during development and synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for the proteins of the Reln intracellular cascade have been associated substantially to other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar hypoplasia, PAFAH1B1-associated lissencephaly, autism, and schizophrenia. According to their modalities of inheritances and with significant differences among each other, these neuropsychiatric disorders can be modeled in the homozygous (reln−/−) or heterozygous (reln+/−) Reeler mouse. The worth of these mice as translational models is discussed, with focus on their construct and face validity. Description of face validity, i.e., the resemblance of phenotypes between the two species, centers onto the histological, neurochemical, and functional observations in the cerebral cortex, hippocampus, and cerebellum of Reeler mice and their human counterparts.
Collapse
|
55
|
Ogi M, Yamagishi T, Tsukano H, Nishio N, Hishida R, Takahashi K, Horii A, Shibuki K. Associative responses to visual shape stimuli in the mouse auditory cortex. PLoS One 2019; 14:e0223242. [PMID: 31581242 PMCID: PMC6776301 DOI: 10.1371/journal.pone.0223242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
Humans can recall various aspects of a characteristic sound as a whole when they see a visual shape stimulus that has been intimately associated with the sound. In subjects with audio-visual associative memory, auditory responses that code the associated sound may be induced in the auditory cortex in response to presentation of the associated visual shape stimulus. To test this possibility, mice were pre-exposed to a combination of an artificial sound mimicking a cat’s “meow” and a visual shape stimulus of concentric circles or stars for more than two weeks, since such passive exposure is known to be sufficient for inducing audio-visual associative memory in mice. After the exposure, we anesthetized the mice, and presented them with the associated visual shape stimulus. We found that associative responses in the auditory cortex were induced in response to the visual stimulus. The associative auditory responses were observed when complex sounds such as “meow” were used for formation of audio-visual associative memory, but not when a pure tone was used. These results suggest that associative auditory responses in the auditory cortex represent the characteristics of the complex sound stimulus as a whole.
Collapse
Affiliation(s)
- Manabu Ogi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Tatsuya Yamagishi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Nana Nishio
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Arata Horii
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- * E-mail:
| |
Collapse
|
56
|
Adesnik H, Naka A. Cracking the Function of Layers in the Sensory Cortex. Neuron 2019; 100:1028-1043. [PMID: 30521778 DOI: 10.1016/j.neuron.2018.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted solidly in each layer's component cell types and fine circuit architecture and produces predictions that can be validated by specific perturbations. Here we briefly review the progress toward such a theory and suggest an experimental road map toward this goal. We discuss new methods for the all-optical interrogation of cortical layers, for correlating in vivo function with precise identification of transcriptional cell type, and for mapping local and long-range activity in vivo with synaptic resolution. The new technologies that can crack the function of cortical layers are finally on the immediate horizon.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Alexander Naka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
57
|
Cell-Type Specificity of Callosally Evoked Excitation and Feedforward Inhibition in the Prefrontal Cortex. Cell Rep 2019; 22:679-692. [PMID: 29346766 PMCID: PMC5828174 DOI: 10.1016/j.celrep.2017.12.073] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/16/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Excitation and inhibition are highly specific in the cortex, with distinct synaptic connections made onto subtypes of projection neurons. The functional consequences of this selective connectivity depend on both synaptic strength and the intrinsic properties of targeted neurons but remain poorly understood. Here, we examine responses to callosal inputs at cortico-cortical (CC) and cortico-thalamic (CT) neurons in layer 5 of mouse prelimbic prefrontal cortex (PFC). We find callosally evoked excitation and feedforward inhibition are much stronger at CT neurons compared to neighboring CC neurons. Elevated inhibition at CT neurons reflects biased synaptic inputs from parvalbumin and somatostatin positive interneurons. The intrinsic properties of postsynaptic targets equalize excitatory and inhibitory response amplitudes but selectively accelerate decays at CT neurons. Feedforward inhibition further reduces response amplitude and balances action potential firing across these projection neurons. Our findings highlight the synaptic and cellular mechanisms regulating callosal recruitment of layer 5 microcircuits in PFC.
Collapse
|
58
|
Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, Radin EA, Lubin N, Bonner ER, Popratiloff A, Rothblat LA, Maynard TM, LaMantia AS. Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron 2019; 102:1127-1142.e3. [PMID: 31079872 PMCID: PMC6668992 DOI: 10.1016/j.neuron.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alejandra Fernandez
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA; GW Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Daniel W Meechan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Beverly A Karpinski
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth M Paronett
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Corey A Bryan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Hanna L Rutz
- Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Eric A Radin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Noah Lubin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Erin R Bonner
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anastas Popratiloff
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - Lawrence A Rothblat
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Thomas M Maynard
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anthony-Samuel LaMantia
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
59
|
Kawaguchi Y, Otsuka T, Morishima M, Ushimaru M, Kubota Y. Control of excitatory hierarchical circuits by parvalbumin-FS basket cells in layer 5 of the frontal cortex: insights for cortical oscillations. J Neurophysiol 2019; 121:2222-2236. [PMID: 30995139 PMCID: PMC6620693 DOI: 10.1152/jn.00778.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cortex contains multiple neuron types with specific connectivity and functions. Recent progress has provided a better understanding of the interactions of these neuron types as well as their output organization particularly for the frontal cortex, with implications for the circuit mechanisms underlying cortical oscillations that have cognitive functions. Layer 5 pyramidal cells (PCs) in the frontal cortex comprise two major subtypes: crossed-corticostriatal (CCS) and corticopontine (CPn) cells. Functionally, CCS and CPn cells exhibit similar phase-dependent firing during gamma waves but participate in two distinct subnetworks that are linked unidirectionally from CCS to CPn cells. GABAergic parvalbumin-expressing fast-spiking (PV-FS) cells, necessary for gamma oscillation, innervate PCs, with stronger and global inhibition to somata and weaker and localized inhibitions to dendritic shafts/spines. While PV-FS cells form reciprocal connections with both CCS and CPn cells, the excitation from CPn to PV-FS cells exhibits short-term synaptic dynamics conducive for oscillation induction. The electrical coupling between PV-FS cells facilitates spike synchronization among PV-FS cells receiving common excitatory inputs from local PCs and inhibits other PV-FS cells via electrically communicated spike afterhyperpolarizations. These connectivity characteristics can promote synchronous firing in the local networks of CPn cells and firing of some CCS cells by anode-break excitation. Thus subsets of L5 CCS and CPn cells within different levels of connection hierarchy exhibit coordinated activity via their common connections with PV-FS cells, and the resulting PC output drives diverse neuronal targets in cortical layer 1 and the striatum with specific temporal precision, expanding the computational power of the cortical network.
Collapse
Affiliation(s)
- Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences , Okazaki , Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies) , Okazaki , Japan
| | - Takeshi Otsuka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences , Okazaki , Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies) , Okazaki , Japan
| | - Mieko Morishima
- Division of Cerebral Circuitry, National Institute for Physiological Sciences , Okazaki , Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies) , Okazaki , Japan
| | - Mika Ushimaru
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital , Kyoto , Japan
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences , Okazaki , Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies) , Okazaki , Japan
| |
Collapse
|
60
|
Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathol Commun 2019; 7:40. [PMID: 30867066 PMCID: PMC6417186 DOI: 10.1186/s40478-019-0684-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental connectivity disorder characterized by cortical network disorganization and imbalance in excitation/inhibition. However, little is known about the development of autism pathology and the disruption of laminar-specific excitatory and inhibitory cortical circuits. To begin to address these issues, we examined layer 1 of the lateral prefrontal cortex (LPFC), an area with prolonged development and maturation that is affected in autism. We focused on layer 1 because it contains a distinctive, diverse population of interneurons and glia, receives input from feedback and neuromodulatory pathways, and plays a critical role in the development, maturation, and function of the cortex. We used unbiased quantitative methods at high resolution to study the morphology, neurochemistry, distribution, and density of neurons and myelinated axons in post-mortem brain tissue from children and adults with and without autism. We cross-validated our findings through comparisons with neighboring anterior cingulate cortices and optimally-fixed non-human primate tissue. In neurotypical controls we found an increase in the density of myelinated axons from childhood to adulthood. Neuron density overall declined with age, paralleled by decreased density of inhibitory interneurons labeled by calretinin (CR), calbindin (CB), and parvalbumin (PV). Importantly, we found PV neurons in layer 1 of typically developing children, previously detected only perinatally. In autism there was disorganization of cortical networks within layer 1: children with autism had increased variability in the trajectories and thickness of myelinated axons in layer 1, while adults with autism had a reduction in the relative proportion of thin axons. Neurotypical postnatal changes in layer 1 of LPFC likely underlie refinement of cortical activity during maturation of cortical networks involved in cognition. Our findings suggest that disruption of the maturation of feedback pathways, rather than interneurons in layer 1, has a key role in the development of imbalance between excitation and inhibition in autism.
Collapse
|
61
|
Abstract
The primate cerebral cortex displays a hierarchy that extends from primary sensorimotor to association areas, supporting increasingly integrated function underpinned by a gradient of heterogeneity in the brain's microcircuits. The extent to which these hierarchical gradients are unique to primate or may reflect a conserved mammalian principle of brain organization remains unknown. Here we report the topographic similarity of large-scale gradients in cytoarchitecture, gene expression, interneuron cell densities, and long-range axonal connectivity, which vary from primary sensory to prefrontal areas of mouse cortex, highlighting an underappreciated spatial dimension of mouse cortical specialization. Using the T1-weighted:T2-weighted (T1w:T2w) magnetic resonance imaging map as a common spatial reference for comparison across species, we report interspecies agreement in a range of large-scale cortical gradients, including a significant correspondence between gene transcriptional maps in mouse cortex with their human orthologs in human cortex, as well as notable interspecies differences. Our results support the view of systematic structural variation across cortical areas as a core organizational principle that may underlie hierarchical specialization in mammalian brains.
Collapse
Affiliation(s)
- Ben D Fulcher
- School of Physics, Sydney University, Sydney, NSW 2006, Australia;
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Valerio Zerbi
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, 8057 Zürich, Switzerland
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003;
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
62
|
Lam YW, Sherman SM. Convergent synaptic inputs to layer 1 cells of mouse cortex. Eur J Neurosci 2019; 49:1388-1399. [PMID: 30585669 DOI: 10.1111/ejn.14324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Abstract
We used whole cell recordings from slice preparations of mouse cortex to identify various inputs to neurons of layer 1. Two sensory cortical areas were targeted: a primary somatosensory area, namely, the barrel cortex of S1, and a higher order visual area, namely, V2M. Results were similar from both areas. By activating local inputs using photostimulation with caged glutamate, we also identified glutamatergic (and possibly GABAergic) inputs from all lower layers plus GABAergic inputs from nearby layer 1 neurons. However, the patterns of such inputs to layer 1 neurons showed great variation among cells. In separate experiments, we found that electrical stimulation of axons running parallel to the cortical surface in layer 1 also evoked a variety of convergent input types to layer 1 neurons, including glutamatergic "drivers" and "modulators" plus classic modulatory inputs, including serotonergic, nicotinic, α- and β-adrenergic, from subcortical sites. Given that these layer 1 cells significantly affect the responses of other cortical neurons, especially via affecting the apical dendrites of pyramidal cells so important to cortical functioning, their role in cortical processing is significant. We believe that the data presented here lead to better understanding of the functioning of layer 1 neurons in their role of influencing cortical processing.
Collapse
Affiliation(s)
- Ying-Wan Lam
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
63
|
Layer 3 Dynamically Coordinates Columnar Activity According to Spatial Context. J Neurosci 2019; 39:281-294. [PMID: 30459226 DOI: 10.1523/jneurosci.1568-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To reduce statistical redundancy of natural inputs and increase the sparseness of coding, neurons in primary visual cortex (V1) show tuning for stimulus size and surround suppression. This integration of spatial information is a fundamental, context-dependent neural operation involving extensive neural circuits that span across all cortical layers of a V1 column, and reflects both feedforward and feedback processing. However, how spatial integration is dynamically coordinated across cortical layers remains poorly understood. We recorded single- and multiunit activity and local field potentials across V1 layers of awake mice (both sexes) while they viewed stimuli of varying size and used dynamic Bayesian model comparisons to identify when laminar activity and interlaminar functional interactions showed surround suppression, the hallmark of spatial integration. We found that surround suppression is strongest in layer 3 (L3) and L4 activity, where suppression is established within ∼10 ms after response onset, and receptive fields dynamically sharpen while suppression strength increases. Importantly, we also found that specific directed functional connections were strongest for intermediate stimulus sizes and suppressed for larger ones, particularly for connections from L3 targeting L5 and L1. Together, the results shed light on the different functional roles of cortical layers in spatial integration and on how L3 dynamically coordinates activity across a cortical column depending on spatial context.SIGNIFICANCE STATEMENT Neurons in primary visual cortex (V1) show tuning for stimulus size, where responses to stimuli exceeding the receptive field can be suppressed (surround suppression). We demonstrate that functional connectivity between V1 layers can also have a surround-suppressed profile. A particularly prominent role seems to have layer 3, the functional connections to layers 5 and 1 of which are strongest for stimuli of optimal size and decreased for large stimuli. Our results therefore point toward a key role of layer 3 in coordinating activity across the cortical column according to spatial context.
Collapse
|
64
|
Affiliation(s)
- WA Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
65
|
Four Unique Interneuron Populations Reside in Neocortical Layer 1. J Neurosci 2018; 39:125-139. [PMID: 30413647 DOI: 10.1523/jneurosci.1613-18.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Sensory perception depends on neocortical computations that contextually adjust sensory signals in different internal and environmental contexts. Neocortical layer 1 (L1) is the main target of cortical and subcortical inputs that provide "top-down" information for context-dependent sensory processing. Although L1 is devoid of excitatory cells, it contains the distal "tuft" dendrites of pyramidal cells (PCs) located in deeper layers. L1 also contains a poorly characterized population of GABAergic interneurons (INs), which regulate the impact that different top-down inputs have on PCs. A poor comprehension of L1 IN subtypes and how they affect PC activity has hampered our understanding of the mechanisms that underlie contextual modulation of sensory processing. We used novel genetic strategies in male and female mice combined with electrophysiological and morphological methods to help resolve differences that were unclear when using only electrophysiological and/or morphological approaches. We discovered that L1 contains four distinct populations of INs, each with a unique molecular profile, morphology, and electrophysiology, including a previously overlooked IN population (named here "canopy cells") representing 40% of L1 INs. In contrast to what is observed in other layers, most L1 neurons appear to be unique to the layer, highlighting the specialized character of the signal processing that takes place in L1. This new understanding of INs in L1, as well as the application of genetic methods based on the markers described here, will enable investigation of the cellular and circuit mechanisms of top-down processing in L1 with unprecedented detail.SIGNIFICANCE STATEMENT Neocortical layer 1 (L1) is the main target of corticocortical and subcortical projections that mediate top-down or context-dependent sensory perception. However, this unique layer is often referred to as "enigmatic" because its neuronal composition has been difficult to determine. Using a combination of genetic, electrophysiological, and morphological approaches that helped to resolve differences that were unclear when using a single approach, we were able to decipher the neuronal composition of L1. We identified markers that distinguish L1 neurons and found that the layer contains four populations of GABAergic interneurons, each with unique molecular profiles, morphologies, and electrophysiological properties. These findings provide a new framework for studying the circuit mechanisms underlying the processing of top-down inputs in neocortical L1.
Collapse
|
66
|
Impaired Organization of GABAergic Neurons Following Prenatal Hypoxia. Neuroscience 2018; 384:300-313. [DOI: 10.1016/j.neuroscience.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
|
67
|
Watakabe A, Hirokawa J. Cortical networks of the mouse brain elaborate within the gray matter. Brain Struct Funct 2018; 223:3633-3652. [DOI: 10.1007/s00429-018-1710-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
|
68
|
Phillips WA, Bachmann T, Storm JF. Apical Function in Neocortical Pyramidal Cells: A Common Pathway by Which General Anesthetics Can Affect Mental State. Front Neural Circuits 2018; 12:50. [PMID: 30013465 PMCID: PMC6036169 DOI: 10.3389/fncir.2018.00050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/05/2018] [Indexed: 11/27/2022] Open
Abstract
It has been argued that general anesthetics suppress the level of consciousness, or the contents of consciousness, or both. The distinction between level and content is important because, in addition to clarifying the mechanisms of anesthesia, it may help clarify the neural bases of consciousness. We assess these arguments in the light of evidence that both the level and the content of consciousness depend upon the contribution of apical input to the information processing capabilities of neocortical pyramidal cells which selectively amplify relevant signals. We summarize research suggesting that what neocortical pyramidal cells transmit information about can be distinguished from levels of arousal controlled by sub-cortical nuclei and from levels of prioritization specified by interactions within the thalamocortical system. Put simply, on the basis of the observations reviewed, we hypothesize that when conscious we have particular, directly experienced, percepts, thoughts, feelings and intentions, and that general anesthetics affect consciousness by interfering with the subcellular processes by which particular activities are selectively amplified when relevant to the current context.
Collapse
Affiliation(s)
- William A. Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom
| | - Talis Bachmann
- Department of Penal Law, University of Tartu, Tartu, Estonia
| | - Johan F. Storm
- IBMS Department of Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
69
|
Feese BD, Pafundo DE, Schmehl MN, Kuhlman SJ. Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties. J Neurophysiol 2017; 119:738-751. [PMID: 29118195 DOI: 10.1152/jn.00386.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity of cortical inhibitory interneurons is rapidly reduced in response to monocular deprivation during the critical period for ocular dominance plasticity and in response to salient events encountered during learning. In the case of primary sensory cortex, a decrease in mean evoked firing rate of parvalbumin-positive (PV) inhibitory neurons is causally linked to a reorganization of excitatory networks following sensory perturbation. Converging evidence indicates that it is deprivation, and not an imbalance between open- and closed-eye inputs, that triggers rapid plasticity in PV neurons. However, this has not been directly tested in vivo. Using two-photon guided cell-attached recording, we examined the impact of closing both eyes for 24 h on PV neuron response properties in mouse primary visual cortex. We found that binocular deprivation induces a 30% reduction in stimulus-evoked mean firing rate and that this reduction is specific to critical period-aged mice. The number of PV neurons showing detectable tuning to orientation increased after 24 h of deprivation, and this effect was also specific to critical period-aged mice. In contrast to evoked mean firing rate and orientation tuning, measurements of trial-to-trial variability revealed that stimulus-driven decreases in variability are significantly dampened by deprivation during both the critical period and the postcritical period. These data establish that open-eye inputs are not required to drive deprivation-induced weakening of PV neuron evoked activity and that other aspects of in vivo PV neuron activity are malleable throughout life. NEW & NOTEWORTHY Parvalbumin-positive (PV) neurons in sensory cortex are generally considered to be mediators of experience-dependent plasticity, and their plasticity is restricted to the critical period. However, in regions outside of sensory cortex, accumulating evidence demonstrates that PV neurons are plastic in adults, raising the possibility that aspects of PV response properties may be plastic throughout life. Here we identify a feature of in vivo PV neuron activity that remains plastic past the critical period.
Collapse
Affiliation(s)
- Berquin D Feese
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Diego E Pafundo
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Meredith N Schmehl
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Sandra J Kuhlman
- Department of Biological Sciences and the Center for the Neural Basis of Cognition, Carnegie Mellon University , Pittsburgh, Pennsylvania
| |
Collapse
|