51
|
Pittman-Polletta BR, Kocsis B, Vijayan S, Whittington MA, Kopell NJ. Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 2015; 77:1020-30. [PMID: 25850619 PMCID: PMC4444389 DOI: 10.1016/j.biopsych.2015.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings, we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive and perceptual disturbances observed in schizophrenia.
Collapse
Affiliation(s)
- Benjamin R. Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA,Corresponding author. Please send correspondence to: 111 Cummington Mall, Boston MA 02215. Phone: 617-353-2560. Fax: 617-353-8100., (Benjamin R. Pittman-Polletta)
| | - Bernat Kocsis
- Cognitive Rhythms Collaborative, Boston, MA,Department of Psychiatry, Beth Israel Medical Center, Harvard Medical School, Boston MA
| | - Sujith Vijayan
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| | - Miles A. Whittington
- Cognitive Rhythms Collaborative, Boston, MA,Department of Neuroscience, Hull York Medical School, York University, UK
| | - Nancy J. Kopell
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| |
Collapse
|
52
|
Venkatasubramanian G. Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2015; 13:36-47. [PMID: 25912536 PMCID: PMC4423156 DOI: 10.9758/cpn.2015.13.1.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022]
Abstract
From neurophenomenological perspectives, schizophrenia has been conceptualized as "a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness". While these theoretical constructs based on consciousness facilitate understanding the 'gestalt' of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of "perturbed consciousness" in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is "the orchestrated object reduction (Orch-OR) theory" which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared 'scaffold' of microtubules. The initial sections of this review focus on the compelling evidence to support the view that "schizophrenia is a disorder of consciousness" through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with 'Orch-OR theory' through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as "fundamental disturbances in consciousness".
Collapse
Affiliation(s)
- Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore,
India
| |
Collapse
|
53
|
Castelnovo A, Ferrarelli F, D'Agostino A. Schizophrenia: from neurophysiological abnormalities to clinical symptoms. Front Psychol 2015; 6:478. [PMID: 25941510 PMCID: PMC4403289 DOI: 10.3389/fpsyg.2015.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Anna Castelnovo
- Department of Health Sciences, Università degli Studi di Milano Milan, Italy ; Department of Psychiatry, University of Wisconsin-Madison Madison, WI, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Wisconsin-Madison Madison, WI, USA
| | - Armando D'Agostino
- Department of Health Sciences, Università degli Studi di Milano Milan, Italy
| |
Collapse
|
54
|
Relationship between somatostatin and death receptor expression in the orbital frontal cortex in schizophrenia: a postmortem brain mRNA study. NPJ SCHIZOPHRENIA 2015; 1:14004. [PMID: 27336026 PMCID: PMC4849439 DOI: 10.1038/npjschz.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022]
Abstract
Background: Recently, we provided evidence showing reductions in GAD67 and Dlx mRNAs in the orbital frontal cortex (OFC) in schizophrenia. It is unknown whether these reductions relate mainly to somatostatin (SST) or parvalbumin (PV) mRNA expression changes, and/or whether these reductions are related to decreased SST mRNA+ interneuron density. Aims: To determine whether inhibitory interneuron deficits in the OFC from people with schizophrenia are greatest for SST or PV mRNAs, and whether any such deficits relate to mRNAs encoding cell death signalling molecules. Methods: Inhibitory interneuron mRNAs (SST; PV: in situ hybridization, quantitative PCR (qPCR)) and death signaling mRNAs [FAS receptor (FASR); TNFSF13: qPCR] were measured in control and schizophrenia subjects (38/38). SST mRNA+ interneuron-like cells were quantified in layer II in the gyrus rectus. Gray matter SST and PV mRNAs were correlated with interstitial white matter neuron (IWMN) density (GAD65/67; NeuN) and death signaling mRNAs. Results: SST mRNA was reduced in OFC layers I–VI in schizophrenia (both in situ and qPCR), with greatest deficit in layer II (67%). Layer II SST mRNA+ neuron density was reduced in schizophrenia (~29%). PV mRNA was reduced in layers III (18%) and IV (31%) with no significant diagnostic difference in PV mRNA measured by qPCR. FASR mRNA was increased in schizophrenia (34%). SST, but not PV, expression correlated negatively with FASR and TNFSF13 expressions and with IWMN density. Conclusions: Our study demonstrates that SST interneurons are predominantly linked to the inhibitory interneuron pathology in the OFC in schizophrenia and that increased death receptor signaling mRNAs relate to prominent laminar deficits in SST mRNA in the OFC in schizophrenia. We suggest that SST interneurons may be more vulnerable to increased death receptor signaling than PV interneurons.
Collapse
|
55
|
Squarcina L, De Luca A, Bellani M, Brambilla P, Turkheimer FE, Bertoldo A. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder. Phys Med Biol 2015; 60:1697-716. [PMID: 25633275 DOI: 10.1088/0031-9155/60/4/1697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.
Collapse
Affiliation(s)
- Letizia Squarcina
- Department of Public Health and Community Medicine, Section of Psychiatry and Section of Clinical Psychology, InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
56
|
Huang H, Wang L, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Isolation Housing Exacerbates Alzheimer's Disease-Like Pathophysiology in Aged APP/PS1 Mice. Int J Neuropsychopharmacol 2015; 18:pyu116. [PMID: 25568286 PMCID: PMC4540096 DOI: 10.1093/ijnp/pyu116] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disease characterized by gradual declines in social, cognitive, and emotional functions, leading to a loss of expected social behavior. Social isolation has been shown to have adverse effects on individual development and growth as well as health and aging. Previous experiments have shown that social isolation causes an early onset of Alzheimer's disease-like phenotypes in young APP695/PS1-dE9 transgenic mice. However, the interactions between social isolation and Alzheimer's disease still remain unknown. METHODS Seventeen-month-old male APP695/PS1-dE9 transgenic mice were either singly housed or continued group housing for 3 months. Then, Alzheimer's disease-like pathophysiological changes were evaluated by using behavioral, biochemical, and pathological analyses. RESULTS Isolation housing further promoted cognitive dysfunction and Aβ plaque accumulation in the hippocampus of aged APP695/PS1-dE9 transgenic mice, associated with increased γ-secretase and decreased neprilysin expression. Furthermore, exacerbated hippocampal atrophy, synapse and myelin associated protein loss, and glial neuroinflammatory reactions were observed in the hippocampus of isolated aged APP695/PS1-dE9 transgenic mice. CONCLUSIONS The results demonstrate that social isolation exacerbates Alzheimer's disease-like pathophysiology in aged APP695/PS1-dE9 transgenic mice, highlighting the potential role of group life for delaying or counteracting the Alzheimer's disease process.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD).
| |
Collapse
|
57
|
Karl T, Arnold JC. Schizophrenia: a consequence of gene-environment interactions? Front Behav Neurosci 2014; 8:435. [PMID: 25566003 PMCID: PMC4274985 DOI: 10.3389/fnbeh.2014.00435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tim Karl
- Neuroscience Research Australia (NeuRA) Randwick, NSW, Australia ; Schizophrenia Research Institute Darlinghurst, NSW, Australia ; School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Jonathon C Arnold
- Department of Pharmacology, Bosch Institute, University of Sydney Sydney, NSW, Australia ; Brain and Mind Research Institute Camperdown, NSW, Australia
| |
Collapse
|
58
|
Turkheimer FE, Bodini B, Politis M, Pariante CM, Ciccarelli O, Yeo RA. The X-Linked Hypothesis of Brain Disorders. Neuroscientist 2014; 21:589-98. [DOI: 10.1177/1073858414545999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we propose an X-linked hypothesis of brain disorders that postulates a neuronal origin of those neurodegenerative and psychiatric disorders with a greater male prevalence. The hypothesis is based on the accumulated genetics and genomic evidence linking X chromosome genes and transcripts to neuronal cells. The behavioral genetics literature has long pointed to the link between postsynaptic protein complexes coded on chromosome X and mental retardation. More recently, novel genomic evidence has emerged of X-linked mRNA overexpression of neuronal source in the human brain. We review the evidence for this hypothesis and its consistency with the distribution across genders of brain disorders of known aetiology. We then provide examples of the utilization of this hypothesis in the investigation of the pathophysiology of complex brain disorders in both the stratification of disease cohorts and the development of realistic preclinical models. We conclude by providing a general framework for testing its validity, which will be exploited in future studies, and provide future directions for research.
Collapse
Affiliation(s)
| | - Benedetta Bodini
- Institute of Psychiatry, King’s College London, UK
- Institut du Cerveau et de la Moelle épinière, Hôpital Pitié-Salpêtrière, UPMC, Paris, France
| | - Marios Politis
- Department of Clinical Neuroscience, King’s College London, UK
| | | | | | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
59
|
Abstract
The etiopathogenesis of schizophrenia is poorly understood. Within the proposed "neurodegeneration paradigm", observations have been put forth for "accelerated aging" in this disorder. This proposition is largely based on the neuroscience research that demonstrates progressive changes in brain as well as other systemic abnormalities supportive of faster aging process in patients with this disorder. In this review, we have summarized the literature related to the concept of early aging in schizophrenia. These studies include P300 abnormalities & visual motion discrimination, neuroimaging findings, telomere dynamics as well as neuropathology of related brain regions. We also propose a role of vitamin D, neuroimmunological changes and elevated oxidative stress as well as mitochondrial dysfunction in addition to the above factors with 'vitamin-D deficiency' as the central paradox. Put together, the evidence supporting early aging in schizophrenia is compelling and this requires further systematic studies.
Collapse
|
60
|
Lin H, Hsu FC, Baumann BH, Coulter DA, Anderson SA, Lynch DR. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Mol Cell Neurosci 2014; 61:163-75. [PMID: 24983521 DOI: 10.1016/j.mcn.2014.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Dysfunction of cortical parvalbumin (PV)-containing GABAergic interneurons has been implicated in cognitive deficits of schizophrenia. In humans microdeletion of the CHRNA7 (α7 nicotinic acetylcholine receptor, nAChR) gene is associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia while in mice similar deletion causes analogous abnormalities including impaired attention, working-memory and learning. However, the pathophysiological roles of α7 nAChRs in cortical PV GABAergic development remain largely uncharacterized. In both in vivo and in vitro models, we identify here that deletion of the α7 nAChR gene in mice impairs cortical PV GABAergic development and recapitulates many of the characteristic neurochemical deficits in PV-positive GABAergic interneurons found in schizophrenia. α7 nAChR null mice had decreased cortical levels of GABAergic markers including PV, glutamic acid decarboxylase 65/67 (GAD65/67) and the α1 subunit of GABAA receptors, particularly reductions of PV and GAD67 levels in cortical PV-positive interneurons during late postnatal life and adulthood. Cortical GABAergic synaptic deficits were identified in the prefrontal cortex of α7 nAChR null mice and α7 nAChR null cortical cultures. Similar disruptions in development of PV-positive GABAergic interneurons and perisomatic synapses were found in cortical cultures lacking α7 nAChRs. Moreover, NMDA receptor expression was reduced in GABAergic interneurons, implicating NMDA receptor hypofunction in GABAergic deficits in α7 nAChR null mice. Our findings thus demonstrate impaired cortical PV GABAergic development and multiple characteristic neurochemical deficits reminiscent of schizophrenia in cortical PV-positive interneurons in α7 nAChR gene deletion models. This implicates crucial roles of α7 nAChRs in cortical PV GABAergic development and dysfunction in schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Fu-Chun Hsu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Bailey H Baumann
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Douglas A Coulter
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Stewart A Anderson
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Child Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David R Lynch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
61
|
Dougherty SE, Bartley AF, Lucas EK, Hablitz JJ, Dobrunz LE, Cowell RM. Mice lacking the transcriptional coactivator PGC-1α exhibit alterations in inhibitory synaptic transmission in the motor cortex. Neuroscience 2014; 271:137-48. [PMID: 24769433 DOI: 10.1016/j.neuroscience.2014.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 11/17/2022]
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator known to regulate gene programs in a cell-specific manner in energy-demanding tissues, and its dysfunction has been implicated in numerous neurological and psychiatric disorders. Previous work from the Cowell laboratory indicates that PGC-1α is concentrated in inhibitory interneurons and is required for the expression of the calcium buffer parvalbumin (PV) in the cortex; however, the impact of PGC-1α deficiency on inhibitory neurotransmission in the motor cortex is not known. Here, we show that mice lacking PGC-1α exhibit increased amplitudes and decreased frequency of spontaneous inhibitory postsynaptic currents in layer V pyramidal neurons. Upon repetitive train stimulation at the gamma frequency, decreased GABA release is observed. Furthermore, PV-positive interneurons in PGC-1α -/- mice display reductions in intrinsic excitability and excitatory input without changes in gross interneuron morphology. Taken together, these data show that PGC-1α is required for normal inhibitory neurotransmission and cortical PV-positive interneuron function. Given the pronounced motor dysfunction in PGC-1α -/- mice and the essential role of PV-positive interneurons in maintenance of cortical excitatory:inhibitory balance, it is possible that deficiencies in PGC-1α expression could contribute to cortical hyperexcitability and motor abnormalities in multiple neurological disorders.
Collapse
Affiliation(s)
- S E Dougherty
- University of Alabama Birmingham, Department of Psychiatry & Behavioral Neurobiology, United States
| | - A F Bartley
- University of Alabama Birmingham, Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, United States
| | - E K Lucas
- University of Alabama Birmingham, Department of Psychiatry & Behavioral Neurobiology, United States
| | - J J Hablitz
- University of Alabama Birmingham, Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, United States
| | - L E Dobrunz
- University of Alabama Birmingham, Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, United States.
| | - R M Cowell
- University of Alabama Birmingham, Department of Psychiatry & Behavioral Neurobiology, United States.
| |
Collapse
|
62
|
Gardner RJ, Kersanté F, Jones MW, Bartsch U. Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia. Eur J Neurosci 2014; 39:1091-106. [DOI: 10.1111/ejn.12533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/29/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Richard J. Gardner
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Flavie Kersanté
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Matthew W. Jones
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Ullrich Bartsch
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| |
Collapse
|
63
|
Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M, Gundlach AL. Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 2014; 5:46. [PMID: 24711793 PMCID: PMC3968750 DOI: 10.3389/fphar.2014.00046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Animal and clinical studies of gene-environment interactions have helped elucidate the mechanisms involved in the pathophysiology of several mental illnesses including anxiety, depression, and schizophrenia; and have led to the discovery of improved treatments. The study of neuropeptides and their receptors is a parallel frontier of neuropsychopharmacology research and has revealed the involvement of several peptide systems in mental illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which is highly responsive to environmental stimuli, particularly neurogenic stressors, and in turn modulates behavioral responses to these stressors and alters key neural processes, including hippocampal theta rhythm and associated learning and memory. Here, we review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt to highlight aspects that are relevant and/or potentially translatable to the etiology and treatment of major depression and anxiety. Evidence pertinent to autism spectrum and metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also nominate some key experimental studies required to better establish the therapeutic potential of this intriguing neuromodulatory signaling system, including an examination of the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common neural substrates and circuitry that are identified as dysfunctional in these debilitating brain diseases.
Collapse
Affiliation(s)
- Craig M Smith
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew W Walker
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Ihaia T Hosken
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Berenice E Chua
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Cary Zhang
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Mouna Haidar
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew L Gundlach
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne VIC, Australia
| |
Collapse
|
64
|
Permyakov SE, Kazakov AS, Avkhacheva NV, Permyakov EA. Parvalbumin as a metal-dependent antioxidant. Cell Calcium 2014; 55:261-8. [PMID: 24685310 DOI: 10.1016/j.ceca.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/23/2014] [Accepted: 03/01/2014] [Indexed: 11/25/2022]
Abstract
Parvalbumin (PA) is a Ca(2+)-binding protein of vertebrates massively expressed in tissues with high oxygen uptake and respectively elevated level of reactive oxygen species (ROS). To characterize antioxidant properties of PA, antioxidant capacity (AOC) of intact rat α-PA has been explored. ORAC, TEAC and hydrogen peroxide AOC assays evidence conformation-dependent oxidation of the PA. AOC value for the apo-PA 4-11-fold exceeds that for the Ca(2+)-loaded protein. Despite folded conformation of apo-PA, it has AOC equivalent to that of the proteolized protein. The most populated under resting conditions PA form, Mg(2+)-bound PA, has AOC similar to that of apo-PA. ROS-induced changes in absorption spectrum of PA evidence an oxidation of PA's phenylalanines in the ORAC assay. Sensitivity of PA oxidation to its conformation enabled characterization of its metal affinity and pH-dependent behavior: a transition with pKa of 7.6 has been revealed for the Ca(2+)-loaded PA. Since total AOC of PA under in vivo conditions may reach the level of reduced glutathione, we propose that PA might modulate intracellular redox equilibria and/or signaling in a calcium-dependent manner. We speculate that the oxidation-mediated damage of some of PA-GABAergic interneurons observed in schizophrenia is due to a decline in total AOC of the reduced glutathione-PA pair.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia
| | - Nadezhda V Avkhacheva
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Eugene A Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| |
Collapse
|
65
|
Loi M, Koricka S, Lucassen PJ, Joëls M. Age- and sex-dependent effects of early life stress on hippocampal neurogenesis. Front Endocrinol (Lausanne) 2014; 5:13. [PMID: 24600436 PMCID: PMC3929839 DOI: 10.3389/fendo.2014.00013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/31/2014] [Indexed: 01/21/2023] Open
Abstract
Early life stress is a well-documented risk factor for the development of psychopathology in genetically predisposed individuals. As it is hard to study how early life stress impacts human brain structure and function, various animal models have been developed to address this issue. The models discussed here reveal that perinatal stress in rodents exerts lasting effects on the stress system as well as on the structure and function of the brain. One of the structural parameters strongly affected by perinatal stress is adult hippocampal neurogenesis. Based on compiled literature data, we report that postnatal stress slightly enhances neurogenesis until the onset of puberty in male rats; when animals reach adulthood, neurogenesis is reduced as a consequence of perinatal stress. By contrast, female rats show a prominent reduction in neurogenesis prior to the onset of puberty, but this effect subsides when animals reach young adulthood. We further present preliminary data that transient treatment with a glucocorticoid receptor antagonist can normalize cell proliferation in maternally deprived female rats, while the compound had no effect in non-deprived rats. Taken together, the data show that neurogenesis is affected by early life stress in an age- and sex-dependent manner and that normalization may be possible during critical stages of brain development.
Collapse
Affiliation(s)
- Manila Loi
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Manila Loi, Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, Netherlands e-mail:
| | - Sylwia Koricka
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences – Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|