51
|
Effective connectivity alteration according to recurrence in transient global amnesia. Neuroradiology 2021; 63:1441-1449. [PMID: 33486582 DOI: 10.1007/s00234-021-02645-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE This study aimed to evaluate alterations in structural covariance network and effective connectivity of the intrahippocampal circuit in patients with transient global amnesia (TGA). We also investigated whether there were differences of them according to recurrence. METHODS We enrolled 88 patients with TGA and 50 healthy controls. We classified patients with TGA into two groups: the single event group (N = 77) and recurrent events group (N = 11). We performed volumetric analysis using the FreeSurfer program and structural covariance network analysis based on the structural volumes using a graph theoretical analysis in patients with TGA and healthy controls. The effective connectivity of the intrahippocampal circuit was also evaluated using structural equation modeling. RESULTS There were no significant differences between patients with all TGA events/a single TGA event and healthy controls with regard to global structural covariance network. However, patients with recurrent events had significant alterations in global structural covariance network with a decrease in the small-worldness index (0.907 vs. 0.970, p = 0.032). In patients with all events/a single, there were alterations in effective connectivity from the entorhinal cortex to CA4, only. However, in patients with recurrent events, there were alterations in effective connectivity from the subiculum to the fimbria as well as from the entorhinal cortex to CA4 in bilateral hemispheres. CONCLUSION Our study revealed significant alterations in structural covariance network and disruption of the intrahippocampal circuit in patients with TGA compared to healthy controls, which is more prominent when amnestic events recurred. It could be related to the pathogenesis of TGA.
Collapse
|
52
|
Deidda G, Crunelli V, Di Giovanni G. 5-HT/GABA interaction in epilepsy. PROGRESS IN BRAIN RESEARCH 2021; 259:265-286. [PMID: 33541679 DOI: 10.1016/bs.pbr.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epilepsy is a neurological condition characterized by synchronous neuronal oscillations (seizures) in the electroencephalogram. Seizures are classified in focal or generalized (depending on the brain territory interested during seizures), and in convulsive and/or not convulsive (depending on the presence or not of involuntary movements). The current pharmacological treatments are mainly based on GABA modulation although different neurotransmitters are also involved in epilepsy, including serotonin. However despite much extensive progress in the understanding of epilepsy mechanisms, still, a percentage of people with epilepsy are pharmaco-resistant calling for the need for new therapeutic targets. Here we review preclinical and human evidence showing that serotonin modulates epilepsy that this likely happens via a major modulation/interaction with GABA.
Collapse
Affiliation(s)
- Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Vincenzo Crunelli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
53
|
Neal EG, Schoenberg MR, Maciver S, Bezchlibnyk YB, Vale FL. Seizure Freedom After Epilepsy Surgery and Higher Baseline Cognition May Be Associated With a Negatively Correlated Epilepsy Network in Temporal Lobe Epilepsy. Front Neurosci 2021; 14:629667. [PMID: 33584184 PMCID: PMC7874020 DOI: 10.3389/fnins.2020.629667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Brain regions positively correlated with the epileptogenic zone in patients with temporal lobe epilepsy vary in spread across the brain and in the degree of correlation to the temporal lobes, thalamus, and limbic structures, and these parameters have been associated with pre-operative cognitive impairment and seizure freedom after epilepsy surgery, but negatively correlated regions have not been as well studied. We hypothesize that connectivity within a negatively correlated epilepsy network may predict which patients with temporal lobe epilepsy will respond best to surgery. Methods: Scalp EEG and resting state functional MRI (rsfMRI) were collected from 19 patients with temporal lobe epilepsy and used to estimate the irritative zone. Using patients' rsfMRI, the negatively correlated epilepsy network was mapped by determining all the brain voxels that were negatively correlated with the voxels in the epileptogenic zone and the spread and average connectivity within the network was determined. Results: Pre-operatively, connectivity within the negatively correlated network was inversely related to the spread (diffuseness) of that network and positively associated with higher baseline verbal and logical memory. Pre-operative connectivity within the negatively correlated network was also significantly higher in patients who would go on to be seizure free. Conclusion: Patients with higher connectivity within brain regions negatively correlated with the epilepsy network had higher baseline memory function, narrower network spread, and were more likely to be seizure free after surgery.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Mike R Schoenberg
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States.,Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Stephanie Maciver
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Yarema B Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
54
|
Valian N, Sorayya M, Asadi S, Sherafati F, Ershad A, Savaheli S, Ahmadiani A. Preconditioning by ultra-low dose of tramadol reduces the severity of tramadol-induced seizure: Contribution of glutamate receptors. Biomed Pharmacother 2021; 133:111031. [PMID: 33249277 DOI: 10.1016/j.biopha.2020.111031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/07/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tramadol, a weak agonist of mu-opioid receptors, causes seizure via several mechanisms. Preconditioning has been purposed to reduce the epileptic seizures in animal models of epilepsy. The preconditioning effect of tramadol on seizure is not studied yet. This study was designed to evaluate the preconditioning effect of ultra-low dose of tramadol on the seizures induced by tramadol at high dose. Furthermore, regarding the critical role of glutamate signaling in the pathogenesis of epilepsy, the effect of preconditioning on some glutamate signaling elements was also examined. Male Wistar rats received tramadol (2 mg/kg, i.p) or normal saline (1 mL/kg, i.p) in preconditioning and control groups, respectively. After 4 days, the challenging tramadol dose (150 mg/kg) was injected to all rats. Epileptic behaviors were recorded during 50 min. The expression of Norbin (as a regulator of metabotropic glutamate receptor 5), Calponin3 (as a regulator of excitatory synaptic markers), NR1 (NMDA receptor subunit 1) and GluR1 (AMPA receptor subunit 1) was measured in hippocampus, prefrontal cortex (PFC) and amygdala. Preconditioning decreased the number and duration of tremors and tonic-clonic seizures. Norbin, Calponin3, NR1 and GluR1 expression were decreased in hippocampus, and preconditioning had no effect on them. In contrast, it increased Norbin expression in PFC and amygdala, and attenuated NR1 and GluR1 upregulation following tramadol at high dose. These findings indicated that preconditioning by ultra-low dose of tramadol protected the animals against seizures following high dose of tramadol mediated, at least in part, by Norbin up regulation, and NR1 and GluR1 down regulation.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Sorayya
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sherafati
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ershad
- Department of Clinical Toxicology, Loghman Hakim Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Savaheli
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
55
|
DuBois JM, Mathotaarachchi S, Rousset OG, Sziklas V, Sepulcre J, Guiot MC, Hall JA, Massarweh G, Soucy JP, Rosa-Neto P, Kobayashi E. Large-scale mGluR5 network abnormalities linked to epilepsy duration in focal cortical dysplasia. Neuroimage Clin 2020; 29:102552. [PMID: 33401137 PMCID: PMC7787952 DOI: 10.1016/j.nicl.2020.102552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/03/2022]
Abstract
To determine the extent of metabotropic glutamate receptor type 5 (mGluR5) network abnormalities associated with focal cortical dysplasia (FCD), we performed graph theoretical analysis of [11C]ABP688 PET binding potentials (BPND), which allows for quantification of mGluR5 availability. Undirected graphs were constructed for the entire cortex in 17 FCD patients and 33 healthy controls using inter-regional similarity of [11C]ABP688 BPND. We assessed group differences in network integration between healthy controls and the ipsilateral and contralateral hemispheres of FCD patients. Compared to healthy controls, FCD patients showed reduced network efficiency and reduced small-world connectivity. The mGluR5 network of FCD patients was also less resilient to targeted removal of high centrality nodes, suggesting a less integrated network organization. In highly efficient hub nodes of FCD patients, we observed a significant negative correlation between local efficiency and duration of epilepsy only in the contralateral hemisphere, suggesting that some nodes may be more vulnerable to persistent epileptic activity. Our study provides the first in vivo evidence for a widespread reduction in cortical mGluR5 network integration in FCD patients. In addition, we find that ongoing epileptic activity may alter chemoarchitectural brain organization resulting in reduced efficiency in distant regions that are essential for network integration.
Collapse
Affiliation(s)
- Jonathan M DuBois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Center for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Olivier G Rousset
- Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University, Baltimore, United States
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Marie-Christine Guiot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Gassan Massarweh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PET Unit, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada; Bio-Imaging Group, PERFORM Centre, Concordia University, Montreal, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada; Translational Neuroimaging Laboratory, McGill Center for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Canada; PET Unit, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
56
|
Larivière S, Bernasconi A, Bernasconi N, Bernhardt BC. Connectome biomarkers of drug-resistant epilepsy. Epilepsia 2020; 62:6-24. [PMID: 33236784 DOI: 10.1111/epi.16753] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Drug-resistant epilepsy (DRE) considerably affects patient health, cognition, and well-being, and disproportionally contributes to the overall burden of epilepsy. The most common DRE syndromes are temporal lobe epilepsy related to mesiotemporal sclerosis and extratemporal epilepsy related to cortical malformations. Both syndromes have been traditionally considered as "focal," and most patients benefit from brain surgery for long-term seizure control. However, increasing evidence indicates that many DRE patients also present with widespread structural and functional network disruptions. These anomalies have been suggested to relate to cognitive impairment and prognosis, highlighting their importance for patient management. The advent of multimodal neuroimaging and formal methods to quantify complex systems has offered unprecedented ability to profile structural and functional brain networks in DRE patients. Here, we performed a systematic review on existing DRE network biomarker candidates and their contribution to three key application areas: (1) modeling of cognitive impairments, (2) localization of the surgical target, and (3) prediction of clinical and cognitive outcomes after surgery. Although network biomarkers hold promise for a range of clinical applications, translation of neuroimaging biomarkers to the patient's bedside has been challenged by a lack of clinical and prospective studies. We therefore close by highlighting conceptual and methodological strategies to improve the evaluation and accessibility of network biomarkers, and ultimately guide clinically actionable decisions.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
57
|
Roggenhofer E, Muller S, Santarnecchi E, Melie-Garcia L, Wiest R, Kherif F, Draganski B. Remodeling of brain morphology in temporal lobe epilepsy. Brain Behav 2020; 10:e01825. [PMID: 32945137 PMCID: PMC7667340 DOI: 10.1002/brb3.1825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mesial temporal lobe epilepsy (TLE) is one of the most widespread neurological network disorders. Computational anatomy MRI studies demonstrate a robust pattern of cortical volume loss. Most statistical analyses provide information about localization of significant focal differences in a segregationist way. Multivariate Bayesian modeling provides a framework allowing inferences about inter-regional dependencies. We adopt this approach to answer following questions: Which structures within a pattern of dynamic epilepsy-associated brain anatomy reorganization best predict TLE pathology. Do these structures differ between TLE subtypes? METHODS We acquire clinical and MRI data from TLE patients with and without hippocampus sclerosis (n = 128) additional to healthy volunteers (n = 120). MRI data were analyzed in the computational anatomy framework of SPM12 using classical mass-univariate analysis followed by multivariate Bayesian modeling. RESULTS After obtaining TLE-associated brain anatomy pattern, we estimate predictive power for disease and TLE subtypes using Bayesian model selection and comparison. We show that ipsilateral para-/hippocampal regions contribute most to disease-related differences between TLE and healthy controls independent of TLE laterality and subtype. Prefrontal cortical changes are more discriminative for left-sided TLE, whereas thalamus and temporal pole for right-sided TLE. The presence of hippocampus sclerosis was linked to stronger involvement of thalamus and temporal lobe regions; frontoparietal involvement was predominant in absence of sclerosis. CONCLUSIONS Our topology inferences on brain anatomy demonstrate a differential contribution of structures within limbic and extralimbic circuits linked to main effects of TLE and hippocampal sclerosis. We interpret our results as evidence for TLE-related spatial modulation of anatomical networks.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Neurology Department, Department of Clinical Neuroscience, HUG, University Hospitals and Faculty of Medicine Geneva, Geneva, Switzerland.,Department of Clinical Neurosciences, LREN, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Sandrine Muller
- Department of Clinical Neurosciences, LREN, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Cognitive Neurology Department, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA.,Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lester Melie-Garcia
- Department of Clinical Neurosciences, LREN, CHUV, University of Lausanne, Lausanne, Switzerland.,Applied Signal Processing Group, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital, University of Bern, Bern, Switzerland
| | - Ferath Kherif
- Department of Clinical Neurosciences, LREN, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- Department of Clinical Neurosciences, LREN, CHUV, University of Lausanne, Lausanne, Switzerland.,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Max Planck Society, Leipzig, Germany
| |
Collapse
|
58
|
Foit NA, Bernasconi A, Ladbon-Bernasconi N. Contributions of Imaging to Neuromodulatory Treatment of Drug-Refractory Epilepsy. Brain Sci 2020; 10:E700. [PMID: 33023078 PMCID: PMC7601437 DOI: 10.3390/brainsci10100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Epilepsy affects about 1% of the world's population, and up to 30% of all patients will ultimately not achieve freedom from seizures with anticonvulsive medication alone. While surgical resection of a magnetic resonance imaging (MRI) -identifiable lesion remains the first-line treatment option for drug-refractory epilepsy, surgery cannot be offered to all. Neuromodulatory therapy targeting "seizures" instead of "epilepsy" has emerged as a valuable treatment option for these patients, including invasive procedures such as deep brain stimulation (DBS), responsive neurostimulation (RNS) and peripheral approaches such as vagus nerve stimulation (VNS). The purpose of this review is to provide in-depth information on current concepts and evidence on network-level aspects of drug-refractory epilepsy. We reviewed the current evidence gained from studies utilizing advanced imaging methodology, with a specific focus on their contributions to neuromodulatory therapy.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, D-79106 Freiburg, Germany
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
| | - Neda Ladbon-Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
| |
Collapse
|
59
|
Yakoubi R, Rollenhagen A, von Lehe M, Shao Y, Sätzler K, Lübke JHR. Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis. Cereb Cortex 2020; 29:2797-2814. [PMID: 29931200 DOI: 10.1093/cercor/bhy146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
Studies of synapses are available for different brain regions of several animal species including non-human primates, but comparatively little is known about their quantitative morphology in humans. Here, synaptic boutons in Layer 5 (L5) of the human temporal lobe (TL) neocortex were investigated in biopsy tissue, using fine-scale electron microscopy, and quantitative three-dimensional reconstructions. The size and organization of the presynaptic active zones (PreAZs), postsynaptic densities (PSDs), and that of the 3 distinct pools of synaptic vesicles (SVs) were particularly analyzed. L5 synaptic boutons were medium-sized (~6 μm2) with a single but relatively large PreAZ (~0.3 μm2). They contained a total of ~1500 SVs/bouton, ~20 constituting the putative readily releasable pool (RRP), ~180 the recycling pool (RP), and the remainder, the resting pool. The PreAZs, PSDs, and vesicle pools are ~3-fold larger than those of CNS synapses in other species. Astrocytic processes reached the synaptic cleft and may regulate the glutamate concentration. Profound differences exist between synapses in human TL neocortex and those described in various species, particularly in the size and geometry of PreAZs and PSDs, the large RRP/RP, and the astrocytic ensheathment suggesting high synaptic efficacy, strength, and modulation of synaptic transmission at human synapses.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Marec von Lehe
- University Hospital/Knappschaftskrankenhaus Bochum, In der Schornau 23-25, Bochum, Germany.,Department of Neurosurgery, Ruppiner Kliniken, Medizinische Hochschule Brandenburg, Fehrbelliner Str. 38, Neuruppin, Germany
| | - Yachao Shao
- Simulation Lab Neuroscience, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,College of Computer, National University of Defense Technology, Changsha, China
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., BT52 1SA, Londonderry, UK
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty/RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen, Germany.,JARA Translational Brain Medicine, Germany
| |
Collapse
|
60
|
Pearce K, Dixon L, D'Arco F, Pujar S, Das K, Tahir Z, Tisdall M, Mankad K. Epilepsy surgery in children: what the radiologist needs to know. Neuroradiology 2020; 62:1061-1078. [PMID: 32435887 DOI: 10.1007/s00234-020-02448-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
This review updates the radiologist on current epilepsy surgery practice in children, with a specific focus on the role of imaging in pre-surgical work-up, current and novel surgical techniques, expected post-surgical imaging appearances and important post-operative complications. A comprehensive review of the current and emerging international practices in paediatric epilepsy surgical planning and post-operative imaging is provided with details on case-based radiological findings. A detailed discussion of the pathophysiology and imaging features of different epileptogenic lesions will not be discussed as this is not the objective of this paper. Epilepsy surgery can be an effective method to control seizures in certain children with drug-resistant focal epilepsy. Early surgery in selected appropriate cases can lead to improved cognitive and developmental outcome. Advances in neurosurgical techniques, imaging and neuroanaesthesia have driven a parallel expansion in the array of epilepsy conditions which are potentially treatable with surgery. The range of surgical options is now wide, including minimally invasive ablative procedures for small lesions such as hypothalamic hamartomata, resections for focal lesions like hippocampal sclerosis and complex disconnective surgeries for multilobar conditions like Sturge Weber Syndrome and diffuse cortical malformations. An awareness of the surgical thinking when planning epilepsy surgery in children, and the practical knowledge of the operative steps involved will promote more accurate radiology reporting of the post-operative scan.
Collapse
Affiliation(s)
- Kirsten Pearce
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Luke Dixon
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Krishna Das
- Department of Neurology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Zubair Tahir
- Department of Neurosurgery, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Martin Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK.
| |
Collapse
|
61
|
Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging 2020; 47:3130-3142. [DOI: 10.1007/s00259-020-04791-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022]
|
62
|
Pajkert A, Ploner CJ, Lehmann TN, Witte VA, Oltmanns F, Sommer W, Holtkamp M, Heekeren HR, Finke C. Early volumetric changes of hippocampus and medial prefrontal cortex following medial temporal lobe resection. Eur J Neurosci 2020; 52:4375-4384. [PMID: 32421911 DOI: 10.1111/ejn.14784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that cognitive demands and physical exercise stimulate adult neurogenesis in the dentate gyrus and hippocampus. Recent observations in healthy humans and patients with mild cognitive impairment moreover suggest that training-induced increases in hippocampal volume may be associated with improved memory performance. The corresponding plasticity processes in hippocampal volume may occur on timescales of months to years. For patients with focal lesions in this region, previous functional imaging studies suggest that increased recruitment of the contralateral hippocampus and extratemporal regions may be an important part of the reorganization of episodic memory. However, it is currently unclear whether focal damage to the medial temporal lobe (MTL) induces gray matter (GM) volume changes in the intact contralateral hippocampus and in connected network regions on a shorter timescale. We therefore investigated whether unilateral resection of the MTL, including the hippocampus, induces measurable volumetric changes in the contralateral hippocampus and in the default mode network (DMN). We recruited 31 patients with unilateral left (N = 19) or right (N = 12) hippocampal sclerosis undergoing MTL resection for treatment of drug-resistant epilepsy. Structural MRI was acquired immediately before and 3 months after surgery. Longitudinal voxel-based morphometry (VBM) analysis revealed a significant increase of right hippocampal volume following resection of the left anterior MTL. Furthermore, this patient group showed GM volume increases in the DMN. These results demonstrate significant structural plasticity of the contralateral hippocampus, even in patients with a long-standing unilateral hippocampal dysfunction and structural reorganization processes extending to distant, but functionally connected brain regions.
Collapse
Affiliation(s)
- Anna Pajkert
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J Ploner
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Veronica A Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Berlin, Germany
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind & Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
63
|
Li T, Li G, Xue T, Zhang J. Analyzing Brain Connectivity in the Mutual Regulation of Emotion-Movement Using Bidirectional Granger Causality. Front Neurosci 2020; 14:369. [PMID: 32435177 PMCID: PMC7219140 DOI: 10.3389/fnins.2020.00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/26/2020] [Indexed: 11/24/2022] Open
Abstract
Body language and movement are important media of emotional expression. There is an interactive physiological relationship between emotion and movement. Thus, we hypothesize that the emotional cortex interacts with the motor cortex during the mutual regulation of emotion and movement. And this interaction can be revealed by brain connectivity analysis based on electroencephalogram (EEG) signal processing. We proposed a brain connectivity analysis method: bidirectional long short-term memory Granger causality (bi-LSTM-GC). The theoretical basis of the proposed method was Granger causality estimation using a bidirectional LSTM recurrent neural network (RNN) for solving nonlinear parameters. Then, we compared the accuracy of the bi-LSTM-GC with other unidirectional connectivity methods. The results demonstrated that the information interaction existed among multiple brain regions (EEG 10-20 system) in the paradigm of emotion-movement regulation. The detected directional dependencies in EEG signals were mainly distributed from the frontal to the central region and from the prefrontal to the central-parietal.
Collapse
Affiliation(s)
- Ting Li
- Shaanxi Key Laboratory of Clothing Intelligence, School of Computer Science, Xi’an Polytechnic University, Xi’an, China
- State and Local Joint Engineering Research Center for Advanced Networking & Intelligent Information Services, School of Computer Science, Xi’an Polytechnic University, Xi’an, China
| | - Guoqi Li
- Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing, China
| | - Tao Xue
- Shaanxi Key Laboratory of Clothing Intelligence, School of Computer Science, Xi’an Polytechnic University, Xi’an, China
- State and Local Joint Engineering Research Center for Advanced Networking & Intelligent Information Services, School of Computer Science, Xi’an Polytechnic University, Xi’an, China
| | - Jinhua Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
64
|
Pegg EJ, Taylor JR, Keller SS, Mohanraj R. Interictal structural and functional connectivity in idiopathic generalized epilepsy: A systematic review of graph theoretical studies. Epilepsy Behav 2020; 106:107013. [PMID: 32193094 DOI: 10.1016/j.yebeh.2020.107013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
The evaluation of the role of anomalous neuronal networks in epilepsy using a graph theoretical approach is of growing research interest. There is currently no consensus on optimal methods for performing network analysis, and it is possible that variations in study methodology account for diverging findings. This review focuses on global functional and structural interictal network characteristics in people with idiopathic generalized epilepsy (IGE) with the aim of appraising the methodological approaches used and assessing for meaningful consensus. Thirteen studies were included in the review. Data were heterogenous and not suitable for meta-analysis. Overall, there is a suggestion that the cerebral neuronal networks of people with IGE have different global structural and functional characteristics to people without epilepsy. However, the nature of the aberrations is inconsistent with some studies demonstrating a more regular network configuration in IGE, and some, a more random topology. There is greater consistency when different data modalities and connectivity subtypes are compared separately, with a tendency towards increased small-worldness of networks in functional electroencephalography/magnetoencephalography (EEG/MEG) studies and decreased small-worldness of networks in structural studies. Prominent variation in study design at all stages is likely to have contributed to differences in study outcomes. Despite increasing literature surrounding neuronal network analysis, systematic methodological studies are lacking. Absence of consensus in this area significantly limits comparison of results from different studies, and the ability to draw firm conclusions about network characteristics in IGE.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom; Manchester Academic Health Sciences Centre, United Kingdom
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
65
|
Yaakub SN, Tangwiriyasakul C, Abela E, Koutroumanidis M, Elwes RDC, Barker GJ, Richardson MP. Heritability of alpha and sensorimotor network changes in temporal lobe epilepsy. Ann Clin Transl Neurol 2020; 7:667-676. [PMID: 32333640 PMCID: PMC7261746 DOI: 10.1002/acn3.51032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Electroencephalography (EEG) features in the alpha band have been shown to differ between people with epilepsy and healthy controls. Here, in a group of patients with mesial temporal lobe epilepsy (mTLE), we seek to confirm these EEG features, and using simultaneous functional magnetic resonance imaging, we investigate whether brain networks related to the alpha rhythm differ between patients and healthy controls. Additionally, we investigate whether alpha abnormalities are found as an inherited endophenotype in asymptomatic relatives. METHODS We acquired scalp EEG and simultaneous EEG and functional magnetic resonance imaging in 24 unrelated patients with unilateral mTLE, 23 asymptomatic first-degree relatives of patients with mTLE, and 32 healthy controls. We compared peak alpha power and frequency from electroencephalographic data in patients and relatives to healthy controls. We identified brain networks associated with alpha oscillations and compared these networks in patients and relatives to healthy controls. RESULTS Patients had significantly reduced peak alpha frequency (PAF) across all parietal and occipital electrodes. Asymptomatic relatives also had significantly reduced PAF over 14 of 17 parietal and occipital electrodes. Both patients and asymptomatic relatives showed a combination of increased activation and a failure of deactivation in relation to alpha oscillations compared to healthy controls in the sensorimotor network. INTERPRETATION Genetic factors may contribute to the shift in PAF and alterations in brain networks related to alpha oscillations. These may not entirely be a consequence of anti-epileptic drugs, seizures or hippocampal sclerosis and deserve further investigation as mechanistic contributors to mTLE.
Collapse
Affiliation(s)
- Siti N Yaakub
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Chayanin Tangwiriyasakul
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK
| | - Eugenio Abela
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Michalis Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust, St. Thomas' Hospital, London, UK
| | - Robert D C Elwes
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
66
|
Foit NA, Bernasconi A, Bernasconi N. Functional Networks in Epilepsy Presurgical Evaluation. Neurosurg Clin N Am 2020; 31:395-405. [PMID: 32475488 DOI: 10.1016/j.nec.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Continuing advancements in neuroimaging methodology allow for increasingly detailed in vivo characterization of structural and functional brain networks, leading to the recognition of epilepsy as a disorder of large-scale networks. In surgical candidates, analysis of functional networks has proved invaluable for the identification of eloquent brain areas, such as hemispherical language dominance. More recently, connectome-based biomarkers have demonstrated potential to further inform clinical decision making in drug-refractory epilepsy. This article summarizes current evidence on epilepsy as a network disorder, emphasizing potential benefits of network analysis techniques for preoperative assessments and resection planning.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
67
|
Abstract
Temporal lobe epilepsy (TLE) is the most common type of drug-resistant focal epilepsy. Epilepsy can be conceptualized as a network disorder with the epileptogenic zone a critical node of the network. Temporal lobe networks can be identified on the microscale and macroscale, both during the interictal and ictal periods. This review summarizes the current understanding of TLE networks as studied by neurophysiological and imaging techniques discussing both functional and structural connectivity.
Collapse
|
68
|
Rodríguez-Cruces R, Bernhardt BC, Concha L. Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy. Neuroimage 2020; 213:116706. [PMID: 32151761 DOI: 10.1016/j.neuroimage.2020.116706] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is known to affect large-scale structural networks and cognitive function in multiple domains. The study of complex relations between structural network organization and cognition requires comprehensive analytical methods and a shift towards multivariate techniques. Here, we sought to identify multidimensional associations between cognitive performance and structural network topology in TLE. METHODS We studied 34 drug-resistant adult TLE patients and 24 age- and sex-matched healthy controls. Participants underwent a comprehensive neurocognitive battery and multimodal MRI, allowing for large-scale connectomics, and morphological evaluation of subcortical and neocortical regions. Using canonical correlation analysis, we identified a multivariate mode that links cognitive performance to a brain structural network. Our approach was complemented by bootstrap-based hierarchical clustering to derive cognitive subtypes and associated patterns of macroscale connectome anomalies. RESULTS Both methodologies provided converging evidence for a close coupling between cognitive impairments across multiple domains and large-scale structural network compromise. Cognitive classes presented with an increasing gradient of abnormalities (increasing cortical and subcortical atrophy and less efficient white matter connectome organization in patients with increasing degrees of cognitive impairments). Notably, network topology characterized cognitive performance better than morphometric measures did. CONCLUSIONS Our multivariate approach emphasized a close coupling of cognitive dysfunction and large-scale network anomalies in TLE. Our findings contribute to understand the complexity of structural connectivity regulating the heterogeneous cognitive deficits found in epilepsy.
Collapse
Affiliation(s)
- Raúl Rodríguez-Cruces
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, Mexico; MICA Laboratory, Montreal Neurological Institute and Hospital, Montreal, Canada.
| | - Boris C Bernhardt
- MICA Laboratory, Montreal Neurological Institute and Hospital, Montreal, Canada.
| | - Luis Concha
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, Mexico.
| |
Collapse
|
69
|
Hong SJ, Lee HM, Gill R, Crane J, Sziklas V, Bernhardt BC, Bernasconi N, Bernasconi A. A connectome-based mechanistic model of focal cortical dysplasia. Brain 2020; 142:688-699. [PMID: 30726864 DOI: 10.1093/brain/awz009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging studies have consistently shown distributed brain anomalies in epilepsy syndromes associated with a focal structural lesion, particularly mesiotemporal sclerosis. Conversely, a system-level approach to focal cortical dysplasia has been rarely considered, likely due to methodological difficulties in addressing variable location and topography. Given the known heterogeneity in focal cortical dysplasia histopathology, we hypothesized that lesional connectivity consists of subtypes with distinct structural signatures. Furthermore, in light of mounting evidence for focal anomalies impacting whole-brain systems, we postulated that patterns of focal cortical dysplasia connectivity may exert differential downstream effects on global network topology. We studied a cohort of patients with histologically verified focal cortical dysplasia type II (n = 27), and age- and sex-matched healthy controls (n = 34). We subdivided each lesion into similarly sized parcels and computed their connectivity to large-scale canonical functional networks (or communities). We then dichotomized connectivity profiles of lesional parcels into those belonging to the same functional community as the focal cortical dysplasia (intra-community) and those adhering to other communities (inter-community). Applying hierarchical clustering to community-reconfigured connectome profiles identified three lesional classes with distinct patterns of functional connectivity: decreased intra- and inter-community connectivity, a selective decrease in intra-community connectivity, and increased intra- as well as inter-community connectivity. Hypo-connectivity classes were mainly composed of focal cortical dysplasia type IIB, while the hyperconnected lesions were type IIA. With respect to whole-brain networks, patients with hypoconnected focal cortical dysplasia and marked structural damage showed only mild imbalances, while those with hyperconnected subtle lesions had more pronounced topological alterations. Correcting for interictal epileptic discharges did not impact connectivity patterns. Multivariate structural equation analysis provided a mechanistic model of such complex, diverging interactions, whereby the focal cortical dysplasia structural makeup shapes its functional connectivity, which in turn modulates whole-brain network topology.
Collapse
Affiliation(s)
- Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hyo-Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Joelle Crane
- Department of Psychology, Neuropsychology Unit, McGill University, Montreal, Quebec, Canada
| | - Viviane Sziklas
- Department of Psychology, Neuropsychology Unit, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
70
|
Tan L, Chen Y, Wu W, Liu C, Fu Y, He J, Zhang M, Wang G, Wang K, Long H, Xiao W, Xiao B, Long L. Impaired Cognitive Abilities in Siblings of Patients with Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2020; 16:3071-3079. [PMID: 33363375 PMCID: PMC7752648 DOI: 10.2147/ndt.s258074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Patients with temporal lobe epilepsy (TLE) are at high risk of cognitive impairment. In addition to persistent seizures and antiepileptic drugs (AEDs), genetic factors also play an important role in the progression of cognitive deficits in TLE patients. Defining a cognitive endophenotype for TLE can provide information on the risk of cognitive impairment in patients. This study investigated the cognitive endophenotype of TLE by comparing neuropsychological function between patients with TLE, their unaffected siblings, and healthy control subjects. PATIENTS AND METHODS A total of 46 patients with TLE, 26 siblings, and 33 control subjects were recruited. Cognitive function (ie, general cognition, short- and long-term memory, attention, visuospatial and executive functions, and working memory) was assessed with a battery of neuropsychological tests. Differences between groups were evaluated by analysis of covariance, with age and years of education as covariates. The Kruskal-Wallis test was used to evaluate data that did not satisfy the homogeneity of variance assumption. Pairwise comparisons were adjusted by Bonferroni correction, with a significance threshold of P<0.05. RESULTS Patients with TLE showed deficits in the information test (P<0.001), arithmetic test (P=0.003), digit symbol substitution test (P=0.001), block design test (BDT; P=0.005), and backward digit span test (P=0.001) and took a longer time to complete the Hayling test Part A (P=0.011) compared to controls. Left TLE patients tended to have worse executive function test scores than right TLE patients. The siblings of TLE patients showed deficits in the BDT (P=0.006, Bonferroni-corrected) relative to controls. CONCLUSION Patients with TLE exhibit cognitive impairment. Executive function is worse in patients with left TLE than in those with right TLE. Siblings show impaired visuospatial function relative to controls. Thus, cognitive deficits in TLE patients have a genetic component and are independent of seizures or AED use.
Collapse
Affiliation(s)
- Langzi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yayu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yujiao Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jialinzi He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
71
|
Assenza G, Lanzone J, Insola A, Amatori G, Ricci L, Tombini M, Di Lazzaro V. Thalamo-cortical network dysfunction in temporal lobe epilepsy. Clin Neurophysiol 2019; 131:548-554. [PMID: 31818685 DOI: 10.1016/j.clinph.2019.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Imaging and neurophysiological data shows that the cortical disfunction caused by focal epilepsy is not limited to the epileptic focus, thus raising the modern vision of focal epilepsy as a network disorder. The involvement of deep thalamo-cortical projections in temporal lobe epilepsy is a clear example. We aimed at demonstrating the interictal functional impairment of thalamo-cortical network in drug-naïve TLE patients through the study of high frequency oscillations of somatosensory evoked potentials (HF-SEP). METHODS Twelve healthy controls (HC; 8 females, 52.2 ± 17.3 years-old) and 12 drug-naïve TLE patients (8 females, 55.5 ± 21.5 years-old) underwent bilateral median HF-SEP, recorded by scalp electrodes. Cp3'-Fz and Cp4'-Fz traces were filtered (400-800 Hz) to evidence HF-SEP. RESULTS HF-SEP duration in the affected hemisphere was significantly longer when compared to that of both the unaffected hemisphere and HC hemispheres. No significant inter-hemispheric differences were found in areas, powers and latencies of HF-SEP wavelets. CONCLUSION Our results demonstrate that TLE induces early interictal functional impairments of the thalamo-cortical network. SIGNIFICANCE Our data strongly corroborates the vision of focal epilepsy as a network disorder and offers a new neurophysiological tool to test pharmacological, surgical and neuromodulatory therapies.
Collapse
Affiliation(s)
- Giovanni Assenza
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Jacopo Lanzone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Giulia Amatori
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Lorenzo Ricci
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Mario Tombini
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
72
|
Yakoubi R, Rollenhagen A, von Lehe M, Miller D, Walkenfort B, Hasenberg M, Sätzler K, Lübke JH. Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex. eLife 2019; 8:48373. [PMID: 31746736 PMCID: PMC6919978 DOI: 10.7554/elife.48373] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Synapses are fundamental building blocks controlling and modulating the ‘behavior’ of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~20), recycling (~80) and resting pools (~850). Thus, human L4 SBs may act as ‘amplifiers’ of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Marec von Lehe
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bochum, Germany.,Department of Neurosurgery, Brandenburg Medical School, Ruppiner Clinics, Neuruppin, Germany
| | - Dorothea Miller
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Bernd Walkenfort
- Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
| | - Mike Hasenberg
- Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
| | - Joachim Hr Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH University Hospital Aachen, Aachen, Germany.,JARA Translational Brain Medicine, Jülich/Aachen, Germany
| |
Collapse
|
73
|
D'Cruz J, Hefner M, Ledbetter C, Frilot C, Howard B, Zhu P, Riel-Romero R, Notarianni C, Toledo EG, Nanda A, Sun H. Focal epilepsy caused by single cerebral cavernous malformation (CCM) is associated with regional and global resting state functional connectivity (FC) disruption. NEUROIMAGE-CLINICAL 2019; 24:102072. [PMID: 31734529 PMCID: PMC6854067 DOI: 10.1016/j.nicl.2019.102072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
To our knowledge, this is the first study to report resting state functional connectivity (FC) abnormalities associated with focal epilepsy caused by a single cerebral cavernous malformation (CCM). We show, by comparing to the data acquired from the age and gender matched control group, that this type of focal epilepsy is associated with the disruption of the normal regional and global FC. The disruption includes a decrease in the coactivation between the region surrounding the CCM lesion, i.e., the lesional region, and its homotopic counterpart, a reduction in FC between the lesional region and the rest of the brain, and decreased FC among the default mode network (DMN). These changes may be alleviated or reversed after the surgical resection of the CCM and the epileptogenic zone has successfully stopped recurrent seizures. Finally, the severity of the FC disruption in the brain tissue adjacent to the CCM may be used to delineate the epileptogenic zone and to aid the surgical resection.
Epilepsy, including the type with focal onset, is increasingly viewed as a disorder of the brain network. Here we employed the functional connectivity (FC) metrics estimated from the resting state functional MRI (rsfMRI) to investigate the changes of brain network associated with focal epilepsy caused by single cerebral cavernous malformation (CCM). Eight CCM subjects and 21 age and gender matched controls were enrolled in the study. Seven of 8 CCM subjects underwent surgical resection of the CCM and became seizure free and 4 of the surgical subjects underwent a repeat rsfMRI study. We showed that there was both regional and global disruption of the FC values among the CCM subjects including decreased in homotopic FC (HFC) and global FC (GFC) in the regions of interest (ROIs) where the CCMs were located. There was also the disruption of the default mode network (DMN) especially the FC between the middle prefrontal cortex (MPFC) and the right lateral parietal cortex (LPR) among these individuals. We observed the trend of alleviation of these disruptions after the individual has become seizure free from the surgical resection of the CCM. Using a voxel-based approach, we found the disruption of the HFC and GFC in the brain tissue immediately adjacent to the CCM and the severity of the disruption appeared inversely proportional to the distance of the brain tissue to the lesion. Our findings confirm the disruption of normal brain networks from focal epilepsy, a process that may be reversible with successful surgical treatments rendering patients seizure free. Some voxel-based metrics may help identify the epileptogenic zone and guide the surgical resection.
Collapse
Affiliation(s)
- Jason D'Cruz
- Department of Neurosurgery, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Matthew Hefner
- Department of Neurosurgery, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Christina Ledbetter
- Department of Neurosurgery, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Clifton Frilot
- School of Allied Health Professions, Department of Rehabilitation Sciences, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Brady Howard
- Department of Neurosurgery, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Peimin Zhu
- Department of Neurology, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Rosario Riel-Romero
- Department of Neurology, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Christina Notarianni
- Department of Neurosurgery, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Eduardo Gonzalez Toledo
- Department of Radiology, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States
| | - Anil Nanda
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Hai Sun
- Department of Neurosurgery, Louisiana State Unversity Health Science Center, Shreveport, LA 71103, United States.
| |
Collapse
|
74
|
Zhou M, Jiang W, Zhong D, Zheng J. Resting-state brain entropy in right temporal lobe epilepsy and its relationship with alertness. Brain Behav 2019; 9:e01446. [PMID: 31605452 PMCID: PMC6851803 DOI: 10.1002/brb3.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To date, no functional MRI (fMRI) studies have focused on brain entropy in right temporal lobe epilepsy (rTLE) patients. Here, we characterized brain entropy (BEN) alterations in patients with rTLE using resting-state functional MRI(rs-fMRI) and explored the relationship between BEN and alertness. METHOD Thirty-one rTLE patients and 33 controls underwent MRI scanning to investigate differences in BEN and resting-state functional connectivity (rs-FC) in regions of interest (ROIs) between patients and controls. Correlation analyses were performed to examine relationships between the BEN of each ROI and alertness reaction times (RTs) in rTLE patients. RESULTS Compared with controls, the BEN of rTLE patients was significantly increased in the right middle temporal gyrus, inferior temporal gyrus, and other regions of the left hemisphere and significantly decreased in the right middle frontal gyrus and left supplementary motor area (p < .05). The rs-FCs between the ROIs (at p < .01, with the left superior parietal lobule and right precentral gyrus defined as ROI1 and ROI2, respectively) and the whole brain showed an increasing trend in rTLE patients. In addition, the BEN of ROI2 was associated with the intrinsic alertness and phasic alertness RTs of patients with rTLE. CONCLUSIONS Our findings suggest that BEN is altered in patients with rTLE and that decreased BEN in the right precentral gyrus is positively related to intrinsic and phasic alertness; the abnormal FC in the brain regions with altered entropy suggests a reconstruction of brain functional connectivity. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to TLE.
Collapse
Affiliation(s)
- Muhua Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Zhong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
75
|
Chen CL, Shih YC, Liou HH, Hsu YC, Lin FH, Tseng WYI. Premature white matter aging in patients with right mesial temporal lobe epilepsy: A machine learning approach based on diffusion MRI data. NEUROIMAGE-CLINICAL 2019; 24:102033. [PMID: 31795060 PMCID: PMC6978225 DOI: 10.1016/j.nicl.2019.102033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 01/24/2023]
Abstract
A brain age prediction model was developed based on diffusion MRI data. Patients with right MTLE exhibited older brain age than those with left MTLE. Predicted age difference (PAD) was correlated with seizure frequency in right MTLE. Right uncinate fasciculus had highest contribution to the observed PAD in right MTLE.
Brain age prediction based on machine learning has been applied to various neurological diseases to discover its clinical values. By this innovative approach, it has been reported that the patients with refractory epilepsy had premature brain aging. Of refractory epilepsy, right and left subtypes of mesial temporal lobe epilepsy (MTLE) are the most common forms and exhibit distinct patterns in white matter alterations. So far, it is unclear whether these two subtypes of MTLE would have difference in white matter aging due to distinct white matter alterations. To address this issue, a machine learning based brain age model using diffusion MRI data was established to investigate biological age of white matter tracts. All diffusion MRI datasets were obtained from the same 3-Tesla MRI scanner. To build the brain age prediction model, diffusion MRI datasets of 300 healthy participants were processed to extract age-relevant diffusion indices from 76 major white matter tracts. The extracted diffusion indices underwent Gaussian process regression to build the prediction model for white matter brain age. The model was validated in an independent testing set (N = 40) to ensure no overfitting of the model. The model was then applied to patients with right and left MTLE and matched controls (right MTLE: N = 17, left MTLE: N = 18, controls: N = 37), and predicted age difference (PAD) was obtained by calculating the difference between each individual's predicted brain age and chronological age. The higher PAD score indicated older brain age. The results showed that right MTLE exhibited older predicted brain age than the other two groups (PAD of right MTLE = 10.9 years [p < 0.05 against left MTLE; p < 0.001 against control]; PAD of left MTLE = 2.2 years [p > 0.1 against control]; PAD of controls = 0.82 years). Patients with right and left MTLE showed strong correlations of the PAD scores with age of onset and duration of illness, but both groups showed opposite directions of correlations. In right MTLE, positive correlation of PAD with seizure frequency was found, and the right uncinate fasciculus was the most attributable tract to the increase in PAD. In conclusion, the present study found that patients with right MTLE exhibited premature white matter brain aging and their PAD scores were correlated with seizure frequency. Therefore, PAD is a potentially useful indicator of white matter impairment and disease severity in patients with right MTLE.
Collapse
Affiliation(s)
- Chang-Le Chen
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Chia Shih
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | - Fa-Hsuan Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Wen-Yih Isaac Tseng
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
76
|
Kreilkamp BAK, Lisanti L, Glenn GR, Wieshmann UC, Das K, Marson AG, Keller SS. Comparison of manual and automated fiber quantification tractography in patients with temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2019; 24:102024. [PMID: 31670154 PMCID: PMC6831895 DOI: 10.1016/j.nicl.2019.102024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022]
Abstract
Tractography approaches showed moderate to good agreement for tract morphology. Along- and whole-tract diffusivity was significantly correlated across approaches. Whole-tract AFQ but not manual tract diffusivity correlated with clinical variables. Absence of excellent agreement between approaches warrants caution.
Objective To investigate the agreement between manually and automatically generated tracts from diffusion tensor imaging (DTI) in patients with temporal lobe epilepsy (TLE). Whole and along-the-tract diffusivity metrics and correlations with patient clinical characteristics were analyzed with respect to tractography approach. Methods We recruited 40 healthy controls and 24 patients with TLE who underwent conventional T1-weighted imaging and 60-direction DTI. An automated (Automated Fiber Quantification, AFQ) and manual (TrackVis) deterministic tractography approach was used to identify the uncinate fasciculus (UF) and parahippocampal white matter bundle (PHWM). Tract diffusion scalar metrics were analyzed with respect to agreement across automated and manual approaches (Dice Coefficient and Spearman correlations), to side of onset of epilepsy and patient clinical characteristics, including duration of epilepsy, age of onset and presence of hippocampal sclerosis. Results Across approaches the analysis of tract morphology similarity revealed Dice coefficients at moderate to good agreement (0.54 - 0.6) and significant correlations between diffusion values (Spearman's Rho=0.4–0.9). However, within bilateral PHWM, AFQ yielded significantly lower FA (left: Z = 4.4, p<0.001; right: Z = 5.1, p<0.001) and higher MD values (left: Z=-4.7, p<0.001; right: Z=-3.7, p<0.001) compared to the manual approach. Whole tract DTI metrics determined using AFQ were significantly correlated with patient characteristics, including age of epilepsy onset in FA (R = 0.6, p = 0.02) and MD of the ipsilateral PHWM (R=-0.6, p = 0.02), while duration of epilepsy corrected for age correlated with MD in ipsilateral PHWM (R = 0.7, p<0.01). Correlations between clinical metrics and diffusion values extracted using the manual whole tract technique did not survive correction for multiple comparisons. Both manual and automated along-the-tract analyses demonstrated significant correlations with patient clinical characteristics such as age of onset and epilepsy duration. The strongest and most widespread localized ipsi- and contralateral diffusivity alterations were observed in patients with left TLE and patients with HS compared to controls, while patients with right TLE and patients without HS did not show these strong effects. Conclusions Manual and AFQ tractography approaches revealed significant correlations in the reconstruction of tract morphology and extracted whole and along-tract diffusivity values. However, as non-identical methods they differed in the respective yield of significant results across clinical correlations and group-wise statistics. Given the absence of excellent agreement between manual and AFQ techniques as demonstrated in the present study, caution should be considered when using AFQ particularly when used without reference to benchmark manual measures.
Collapse
Affiliation(s)
- Barbara A K Kreilkamp
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.
| | - Lucy Lisanti
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Royal Society, London, United Kingdom
| | - G Russell Glenn
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Udo C Wieshmann
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Kumar Das
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
77
|
Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, Scavarda D, Milh M, Pizzo F, Colombet B, Giusiano B, Medina Villalon S, Guye M, Bénar CG, Bartolomei F. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 2019; 141:2966-2980. [PMID: 30107499 DOI: 10.1093/brain/awy214] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.
Collapse
Affiliation(s)
- Stanislas Lagarde
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Nicolas Roehri
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Isabelle Lambert
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trebuchon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Paediatric Neurosurgery, Marseille, France
| | - Mathieu Milh
- APHM, Timone Hospital, Paediatric Neurology, Marseille, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bruno Colombet
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Maxime Guye
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
78
|
Shah P, Ashourvan A, Mikhail F, Pines A, Kini L, Oechsel K, Das SR, Stein JM, Shinohara RT, Bassett DS, Litt B, Davis KA. Characterizing the role of the structural connectome in seizure dynamics. Brain 2019; 142:1955-1972. [PMID: 31099821 PMCID: PMC6598625 DOI: 10.1093/brain/awz125] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
Collapse
Affiliation(s)
- Preya Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Ashourvan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fadi Mikhail
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Pines
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lohith Kini
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Oechsel
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
79
|
Shah P, Bernabei JM, Kini LG, Ashourvan A, Boccanfuso J, Archer R, Oechsel K, Das SR, Stein JM, Lucas TH, Bassett DS, Davis KA, Litt B. High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients. NEUROIMAGE-CLINICAL 2019; 23:101908. [PMID: 31491812 PMCID: PMC6617333 DOI: 10.1016/j.nicl.2019.101908] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
Abstract
Patients with drug-resistant focal epilepsy are often candidates for invasive surgical therapies. In these patients, it is necessary to accurately localize seizure generators to ensure seizure freedom following intervention. While intracranial electroencephalography (iEEG) is the gold standard for mapping networks for surgery, this approach requires inducing and recording seizures, which may cause patient morbidity. The goal of this study is to evaluate the utility of mapping interictal (non-seizure) iEEG networks to identify targets for surgical treatment. We analyze interictal iEEG recordings and neuroimaging from 27 focal epilepsy patients treated via surgical resection. We generate interictal functional networks by calculating pairwise correlation of iEEG signals across different frequency bands. Using image coregistration and segmentation, we identify electrodes falling within surgically resected tissue (i.e. the resection zone), and compute node-level and edge-level synchrony in relation to the resection zone. We further associate these metrics with post-surgical outcomes. Greater overlap between resected electrodes and highly synchronous electrodes is associated with favorable post-surgical outcomes. Additionally, good-outcome patients have significantly higher connectivity localized within the resection zone compared to those with poorer postoperative seizure control. This finding persists following normalization by a spatially-constrained null model. This study suggests that spatially-informed interictal network synchrony measures can distinguish between good and poor post-surgical outcomes. By capturing clinically-relevant information during interictal periods, our method may ultimately reduce the need for prolonged invasive implants and provide insights into the pathophysiology of an epileptic brain. We discuss next steps for translating these findings into a prospectively useful clinical tool. We analyze interictal iEEG recordings and neuroimaging from epilepsy patients We find that high interictal strength selectivity is associated with better outcomes This effect appears to be driven largely by connectivity within the resection zone Interictal recordings can guide identification of seizure-generating networks
Collapse
Affiliation(s)
- Preya Shah
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lohith G Kini
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arian Ashourvan
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Boccanfuso
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Archer
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Oechsel
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
80
|
Wykes RC, Khoo HM, Caciagli L, Blumenfeld H, Golshani P, Kapur J, Stern JM, Bernasconi A, Dedeurwaerdere S, Bernasconi N. WONOEP appraisal: Network concept from an imaging perspective. Epilepsia 2019; 60:1293-1305. [PMID: 31179547 DOI: 10.1111/epi.16067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023]
Abstract
Neuroimaging techniques applied to a variety of organisms-from zebrafish, to rodents to humans-can offer valuable insights into neuronal network properties and their dysfunction in epilepsy. A wide range of imaging methods used to monitor neuronal circuits and networks during evoked seizures in animal models and advances in functional magnetic resonance imaging (fMRI) applied to patients with epilepsy were discussed during the XIV Workshop on Neurobiology of Epilepsy (XIV WONOEP) organized in 2017 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). We review the growing number of technological approaches developed, as well as the current state of knowledge gained from studies applying these advanced imaging approaches to epilepsy research.
Collapse
Affiliation(s)
- Robert C Wykes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hal Blumenfeld
- Department of Neurology, Neuroscience and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Peyman Golshani
- Department of Neurology, Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jaideep Kapur
- School of Medicine, University of Virginia, Charlottesville, Virginia
| | - John M Stern
- Department of Neurology, Geffen School of Medicine, UCLA, Los Angeles, California
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
81
|
Shah P, Bassett DS, Wisse LEM, Detre JA, Stein JM, Yushkevich PA, Shinohara RT, Elliott MA, Das SR, Davis KA. Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study. Hum Brain Mapp 2019; 40:2390-2398. [PMID: 30666753 DOI: 10.1002/hbm.24530] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Mesial temporal lobe epilepsy (TLE) is a common neurological disorder affecting the hippocampus and surrounding medial temporal lobe (MTL). Although prior studies have analyzed whole-brain network distortions in TLE patients, the functional network architecture of the MTL at the subregion level has not been examined. In this study, we utilized high-resolution 7T T2-weighted magnetic resonance imaging (MRI) and resting-state BOLD-fMRI to characterize volumetric asymmetry and functional network asymmetry of MTL subregions in unilateral medically refractory TLE patients and healthy controls. We subdivided the TLE group into mesial temporal sclerosis patients (TLE-MTS) and MRI-negative nonlesional patients (TLE-NL). Using an automated multi-atlas segmentation pipeline, we delineated 10 MTL subregions per hemisphere for each subject. We found significantly different patterns of volumetric asymmetry between the two groups, with TLE-MTS exhibiting volumetric asymmetry corresponding to decreased volumes ipsilaterally in all hippocampal subfields, and TLE-NL exhibiting no significant volumetric asymmetries other than a mild decrease in whole-hippocampal volume ipsilaterally. We also found significantly different patterns of functional network asymmetry in the CA1 subfield and whole hippocampus, with TLE-NL patients exhibiting asymmetry corresponding to increased connectivity ipsilaterally and TLE-MTS patients exhibiting asymmetry corresponding to decreased connectivity ipsilaterally. Our findings provide initial evidence that functional neuroimaging-based network properties within the MTL can distinguish between TLE subtypes. High-resolution MRI has potential to improve localization of underlying brain network disruptions in TLE patients who are candidates for surgical resection.
Collapse
Affiliation(s)
- Preya Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark A Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
82
|
Yaakub SN, Barker GJ, Carr SJ, Abela E, Koutroumanidis M, Elwes RDC, Richardson MP. Abnormal temporal lobe morphology in asymptomatic relatives of patients with hippocampal sclerosis: A replication study. Epilepsia 2019; 60:e1-e5. [PMID: 30324623 PMCID: PMC6334277 DOI: 10.1111/epi.14575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022]
Abstract
We investigated gray and white matter morphology in patients with mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE+HS) and first-degree asymptomatic relatives of patients with mTLE+HS. Using T1-weighted magnetic resonance imaging (MRI), we sought to replicate previously reported findings of structural surface abnormalities of the anterior temporal lobe in asymptomatic relatives of patients with mTLE+HS in an independent cohort. We performed whole-brain MRI in 19 patients with mTLE+HS, 14 first-degree asymptomatic relatives of mTLE+HS patients, and 32 healthy control participants. Structural alterations in patients and relatives compared to controls were assessed using automated hippocampal volumetry and cortical surface-based morphometry. We replicated previously reported cortical surface area contractions in the ipsilateral anterior temporal lobe in both patients and relatives compared to healthy controls, with asymptomatic relatives showing similar but less extensive changes than patients. These findings suggest morphologic abnormality in asymptomatic relatives of mTLE+HS patients, suggesting an inherited brain structure endophenotype.
Collapse
Affiliation(s)
- Siti Nurbaya Yaakub
- Department of Basic & Clinical NeuroscienceInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
| | - Gareth J. Barker
- Department of NeuroimagingInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
| | - Sarah J. Carr
- Department of Basic & Clinical NeuroscienceInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
| | - Eugenio Abela
- Department of Basic & Clinical NeuroscienceInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
| | - Michalis Koutroumanidis
- Department of Clinical Neurophysiology and EpilepsiesGuy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | | | - Mark P. Richardson
- Department of Basic & Clinical NeuroscienceInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
| |
Collapse
|
83
|
Alonazi BK, Keller SS, Fallon N, Adams V, Das K, Marson AG, Sluming V. Resting-state functional brain networks in adults with a new diagnosis of focal epilepsy. Brain Behav 2019; 9:e01168. [PMID: 30488645 PMCID: PMC6346674 DOI: 10.1002/brb3.1168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Newly diagnosed focal epilepsy (NDfE) is rarely studied, particularly using advanced neuroimaging techniques. Many patients with NDfE experience cognitive impairments, particularly with respect to memory, sustained attention, mental flexibility, and executive functioning. Cognitive impairments have been related to alterations in resting-state functional brain networks in patients with neurological disorders. In the present study, we investigated whether patients with NDfE had altered connectivity in large-scale functional networks using resting-state functional MRI. METHODS We recruited 27 adults with NDfE and 36 age- and sex-matched healthy controls. Resting-state functional MRI was analyzed using the Functional Connectivity Toolbox (CONN). We investigate reproducibly determined large-scale functional networks, including the default mode, salience, fronto-parietal attention, sensorimotor, and language networks using a seed-based approach. Network comparisons between patients and controls were thresholded using a FDR cluster-level correction approach. RESULTS We found no significant differences in functional connectivity between seeds within the default mode, salience, sensorimotor, and language networks and other regions of the brain between patients and controls. However, patients with NDfE had significantly reduced connectivity between intraparietal seeds within the fronto-parietal attention network and predominantly frontal and temporal cortical regions relative to controls; this finding was demonstrated including and excluding the patients with brain lesions. No common alteration in brain structure was observed in patients using voxel-based morphometry. Findings were not influenced by treatment outcome at 1 year. CONCLUSIONS Patients with focal epilepsy have brain functional connectivity alterations at diagnosis. Functional brain abnormalities are not necessarily a consequence of the chronicity of epilepsy and are present when seizures first emerge.
Collapse
Affiliation(s)
- Batil K Alonazi
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK.,Department of Radiology and Medical Imaging, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,The Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Valerie Adams
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC), University of Liverpool, Liverpool, UK
| | - Kumar Das
- The Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Vanessa Sluming
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| |
Collapse
|
84
|
Hennion S, Szurhaj W, Skrobala E, Davière J, Tyvaert L, Derambure P, Delbeuck X. Experiences of self-conscious emotions in temporal lobe epilepsy. Epilepsy Behav 2019; 90:1-6. [PMID: 30476808 DOI: 10.1016/j.yebeh.2018.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Self-conscious emotions (SCEs) with a negative valence (such as shame and guilt) or a positive valence (such as pride) are moral emotions that emerge from self-reflection and self-evaluation processes in social contexts. In some neurologic and psychiatric disorders, experiences of SCEs are dysregulated. The objectives of the present study were to (i) evaluate whether patients with temporal lobe epilepsy (TLE) experience SCEs in the same way as nonclinical (control) participants and (ii) probe the relationships between experiences of SCEs on the one hand and the psychological symptoms frequently diagnosed in patients with TLE (anxiety and depression), the patients' clinical characteristics, and their functional outcomes in everyday life on the other. Sixty-one patients with TLE and 61 matched controls completed a self-questionnaire (the Positive and Negative Affect Schedule (PANAS)) that enabled us to evaluate the extent to which they experienced shame, guilt, and pride. Demographic data, cognitive data, the severity of anxiety symptoms, and the severity of depressive symptoms were recorded for all participants. In patients with TLE, data of clinical characteristics and quality of life were also evaluated. Relative to controls, patients with TLE were more likely to experience negative-valence SCEs to a higher extent and positive SCEs to a lesser extent. The patients who experienced negative-valence SCEs to a higher extent (rather than to a lesser extent) had a higher frequency of seizures, more severe anxiety and depressive symptoms, and a greater prevalence of anxiety and depressive disorders. Furthermore, patients who experienced positive-valence SCEs to a lesser extent (rather than to a higher extent) displayed a higher level of anxiety. Lastly, differences in experiences of SCEs by patients with TLE were associated with a lower quality of life. In conclusion, experiences of SCEs can be dysregulated in patients with TLE. This dysregulation is linked to the patients' clinical and psychological symptoms and quality of life. In this context, SCEs might be a target of interest in the management of epilepsy.
Collapse
Affiliation(s)
- S Hennion
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France.
| | - W Szurhaj
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - E Skrobala
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Memory Resource and Research Center, Lille University Medical Center, Lille, France
| | - J Davière
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Memory Resource and Research Center, Lille University Medical Center, Lille, France
| | - L Tyvaert
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Department of Neurology, Nancy University Medical Center, UMR 7039, CRAN, University of Lorraine, Nancy, France
| | - P Derambure
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - X Delbeuck
- Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular Cognitive Disorders, Lille, France; Memory Resource and Research Center, Lille University Medical Center, Lille, France
| |
Collapse
|
85
|
Alhusaini S, Kowalczyk MA, Yasuda CL, Semmelroch MK, Katsurayama M, Zabin M, Zanão T, Nogueira MH, Alvim MK, Ferraz VR, Tsai MH, Fitzsimons M, Lopes-Cendes I, Doherty CP, Cavalleri GL, Cendes F, Jackson GD, Delanty N. Normal cerebral cortical thickness in first-degree relatives of temporal lobe epilepsy patients. Neurology 2018; 92:e351-e358. [DOI: 10.1212/wnl.0000000000006834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo examine cerebral cortex thickness in asymptomatic first-degree relatives of patients with mesial temporal lobe epilepsy (MTLE).MethodsWe investigated 127 asymptomatic first-degree relatives of patients with MTLE due to hippocampal sclerosis (HS) (mean age ± SD = 39.4 ± 13 years) and 203 healthy control individuals (mean age ± SD = 36.0 ± 11 years). Participants underwent a comprehensive clinical evaluation and structural brain MRI at 3 study sites. Images were processed simultaneously at each site using a surface-based morphometry method to quantify global brain measures, hippocampal volumes, and cerebral cortical thickness. Differences in brain measures between relatives of patients and controls were examined using generalized models, while controlling for relevant covariates, including age and sex.ResultsNone of the asymptomatic first-degree relatives of MTLE + HS patients showed evidence of HS on qualitative image assessments. Compared to the healthy controls, the asymptomatic relatives of patients displayed no significant differences in intracranial volume, average hemispheric surface area, or hippocampal volume. Similarly, no significant cerebral cortical thinning was identified in the relatives of patients. This was consistent across the 3 cohorts.ConclusionLack of cortical thickness changes in the asymptomatic relatives of patients indicates that the previously characterized MTLE + HS-related cortical thinning is not heritable, and is likely driven by disease-related factors. This finding therefore argues for early and aggressive intervention in patients with medically intractable epilepsy.
Collapse
|
86
|
Kuhn T, Gullett JM, Boutzoukas AE, Bohsali A, Mareci TH, FitzGerald DB, Carney PR, Bauer RM. Temporal lobe epilepsy affects spatial organization of entorhinal cortex connectivity. Epilepsy Behav 2018; 88:87-95. [PMID: 30243111 PMCID: PMC6294293 DOI: 10.1016/j.yebeh.2018.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Evidence for structural connectivity patterns within the medial temporal lobe derives primarily from postmortem histological studies. In humans and nonhuman primates, the parahippocampal gyrus (PHg) is subdivided into parahippocampal (PHc) and perirhinal (PRc) cortices, which receive input from distinct cortical networks. Likewise, their efferent projections to the entorhinal cortex (ERc) are distinct. The PHc projects primarily to the medial ERc (M-ERc). The PRc projects primarily to the lateral portion of the ERc (L-ERc). Both M-ERc and L-ERc, via the perforant pathway, project to the dentate gyrus and hippocampal (HC) subfields. Until recently, these neural circuits could not be visualized in vivo. Diffusion tensor imaging algorithms have been developed to segment gray matter structures based on probabilistic connectivity patterns. However, these algorithms have not yet been applied to investigate connectivity in the temporal lobe or changes in connectivity architecture related to disease processes. In this study, this segmentation procedure was used to classify ERc gray matter based on PRc, ERc, and HC connectivity patterns in 7 patients with temporal lobe epilepsy (TLE) without hippocampal sclerosis (mean age, 14.86 ± 3.34 years) and 7 healthy controls (mean age, 23.86 ± 2.97 years). Within samples paired t-tests allowed for comparison of ERc connectivity between epileptogenic and contralateral hemispheres. In healthy controls, there were no significant within-group differences in surface area, volume, or cluster number of ERc connectivity-defined regions (CDR). Likewise, in line with histology results, ERc CDR in the control group were well-organized, uniform, and segregated via PRc/PHc afferent and HC efferent connections. Conversely, in TLE, there were significantly more PRc and HC CDR clusters in the epileptogenic than the contralateral hemisphere. The surface area of the PRc CDR was greater, and that of the HC CDRs was smaller, in the epileptogenic hemisphere as well. Further, there was no clear delineation between M-ERc and L-ERc connectivity with PRc, PHc or HC in TLE. These results suggest a breakdown of the spatial organization of PHg-ERc-HC connectivity in TLE. Whether this breakdown is the cause or result of epileptic activity remains an exciting research question.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America; Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America.
| | - Joseph M Gullett
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America; Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center Gainesville, FL, United States of America
| | - Angelique E Boutzoukas
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America
| | - Anastasia Bohsali
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - David B FitzGerald
- Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center Gainesville, FL, United States of America
| | - Paul R Carney
- Department of Pediatrics, University of Florida, Gainesville, FL, United States of America; Department of Neurology, University of Florida, Gainesville, FL, United States of America; Department of Neuroscience, University of Florida, Gainesville, FL, United States of America; J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America; B.J. and Eve Wilder Epilepsy Center Excellence, University of Florida, Gainesville, FL, United States of America
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America; Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center Gainesville, FL, United States of America
| |
Collapse
|
87
|
Drenthen GS, Backes WH, Rouhl RPW, Vlooswijk MCG, Majoie MHJM, Hofman PAM, Aldenkamp AP, Jansen JFA. Structural covariance networks relate to the severity of epilepsy with focal-onset seizures. NEUROIMAGE-CLINICAL 2018; 20:861-867. [PMID: 30278373 PMCID: PMC6169103 DOI: 10.1016/j.nicl.2018.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE The brains of patients with epilepsy may exhibit various morphological abnormalities, which are often not directly visible on structural MR images, as they may be focally subtle or related to a more large-scale inconspicuous disorganization of brain structures. To explore the relation between structural brain organization and epilepsy characteristics, including severity and cognitive co-morbidity, we determined structural covariance networks (SCNs). SCNs represent interregional correlations of morphologic measures, for instance in terms of cortical thickness, between various large-scale distributed brain regions. METHODS Thirty-eight patients with focal seizures of all subtypes and 21 healthy controls underwent structural MRI, neurological, and IQ assessment. Cortical thickness was derived from the structural MRIs using FreeSurfer. Subsequently, SCNs were constructed on a group-level based on correlations of the cortical thicknesses between various brain regions. Individual SCNs for the epilepsy patients were extracted by adding the respective patient to the control group prior to the SCN construction (i.e. add-one-patient approach). Calculated network measures, i.e. path length, clustering coefficient and betweenness centrality were correlated with characteristics related to the severity of epilepsy, including seizure history and age at onset of epilepsy, and cognitive performance. RESULTS Stronger clustering in the individual SCN was associated with a higher number of focal to bilateral tonic-clonic seizures during life time, a younger age at onset, and lower cognitive performance. The path length of the individual SCN was not related to the severity of epilepsy or cognitive performance. Higher betweenness centrality of the left cuneus and lower betweenness centrality of the right rostral middle frontal gyrus were associated with increased drug load and younger age at onset, respectively. CONCLUSIONS These results indicate that the correlations between interregional variations of cortical thickness reflect disease characteristics or responses to the disease and deficits in patients with epilepsy with focal seizures.
Collapse
Affiliation(s)
- Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze and Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, Eindhoven, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - Rob P W Rouhl
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze and Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - Marielle C G Vlooswijk
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze and Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - Marian H J M Majoie
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze and Maastricht, the Netherlands
| | - Paul A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze and Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, Eindhoven, the Netherlands; Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Sterkselseweg 65, Heeze, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.
| |
Collapse
|
88
|
Mégevand P, Groppe DM, Bickel S, Mercier MR, Goldfinger MS, Keller CJ, Entz L, Mehta AD. The Hippocampus and Amygdala Are Integrators of Neocortical Influence: A CorticoCortical Evoked Potential Study. Brain Connect 2018; 7:648-660. [PMID: 28978234 DOI: 10.1089/brain.2017.0527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation is increasingly viewed as an effective approach to treat neuropsychiatric disease. The brain's organization in distributed networks suggests that the activity of a remote brain structure could be modulated by stimulating cortical areas that strongly connect to the target. Most connections between cerebral areas are asymmetric, and a better understanding of the relative direction of information flow along connections could improve the targeting of stimulation to influence deep brain structures. The hippocampus and amygdala, two deep-situated structures that are crucial to memory and emotions, respectively, have been implicated in multiple neurological and psychiatric disorders. We explored the directed connectivity between the hippocampus and amygdala and the cerebral cortex in patients implanted with intracranial electrodes using corticocortical evoked potentials (CCEPs) evoked by single-pulse electrical stimulation. The hippocampus and amygdala were connected with most of the cortical mantle, either directly or indirectly, with the inferior temporal cortex being most directly connected. Because CCEPs assess the directionality of connections, we could determine that incoming connections from cortex to hippocampus were more direct than outgoing connections from hippocampus to cortex. We found a similar, although smaller, tendency for connections between the amygdala and cortex. Our results support the roles of the hippocampus and amygdala to be integrators of widespread cortical influence. These results can inform the targeting of noninvasive neurostimulation to influence hippocampus and amygdala function.
Collapse
Affiliation(s)
- Pierre Mégevand
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - David M Groppe
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - Stephan Bickel
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York.,2 Department of Neurology, Montefiore Medical Center , Bronx, New York
| | - Manuel R Mercier
- 2 Department of Neurology, Montefiore Medical Center , Bronx, New York.,3 Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York
| | - Matthew S Goldfinger
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - Corey J Keller
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York.,3 Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York
| | - László Entz
- 4 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences , Hungarian Academy of Sciences, Budapest, Hungary .,5 National Institute of Clinical Neuroscience , Budapest, Hungary .,6 Faculty of Information Technology and Bionics, Péter Pázmány Catholic University , Budapest, Hungary
| | - Ashesh D Mehta
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| |
Collapse
|
89
|
Sun C, Yang F, Wang C, Wang Z, Zhang Y, Ming D, Du J. Mutual Information-Based Brain Network Analysis in Post-stroke Patients With Different Levels of Depression. Front Hum Neurosci 2018; 12:285. [PMID: 30065639 PMCID: PMC6056615 DOI: 10.3389/fnhum.2018.00285] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/25/2018] [Indexed: 11/15/2022] Open
Abstract
Post-stroke depression (PSD) is the most common stroke-related emotional disorder, and it severely affects the recovery process. However, more than half cases are not correctly diagnosed. This study was designed to develop a new method to assess PSD using EEG signal to analyze the specificity of PSD patients' brain network. We have 107 subjects attended in this study (72 stabilized stroke survivors and 35 non-depressed healthy subjects). A Hamilton Depression Rating Scale (HDRS) score was determined for all subjects before EEG data collection. According to HDRS score, the 72 patients were divided into 3 groups: post-stroke non-depression (PSND), post-stroke mild depression (PSMD) and post-stroke depression (PSD). Mutual information (MI)-based graph theory was used to analyze brain network connectivity. Statistical analysis of brain network characteristics was made with a threshold of 10-30% of the strongest MIs. The results showed significant weakened interhemispheric connections and lower clustering coefficient in post-stroke depressed patients compared to those in healthy controls. Stroke patients showed a decreasing trend in the connection between the parietal-occipital and the frontal area as the severity of the depression increased. PSD subjects showed abnormal brain network connectivity and network features based on EEG, suggesting that MI-based brain network may have the potential to assess the severity of depression post stroke.
Collapse
Affiliation(s)
- Changcheng Sun
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
| | - Fei Yang
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Chunfang Wang
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
| | - Zhonghan Wang
- Rehabilitation Medical Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Zhang
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Jingang Du
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
| |
Collapse
|
90
|
Mohammadi-Nejad AR, Mahmoudzadeh M, Hassanpour MS, Wallois F, Muzik O, Papadelis C, Hansen A, Soltanian-Zadeh H, Gelovani J, Nasiriavanaki M. Neonatal brain resting-state functional connectivity imaging modalities. PHOTOACOUSTICS 2018; 10:1-19. [PMID: 29511627 PMCID: PMC5832677 DOI: 10.1016/j.pacs.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 05/12/2023]
Abstract
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Collapse
Affiliation(s)
- Ali-Reza Mohammadi-Nejad
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
| | - Mahdi Mahmoudzadeh
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | | | - Fabrice Wallois
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | - Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christos Papadelis
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anne Hansen
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Mohammadreza Nasiriavanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
91
|
van Veenendaal TM, Backes WH, Tse DHY, Scheenen TWJ, Klomp DW, Hofman PAM, Rouhl RPW, Vlooswijk MCG, Aldenkamp AP, Jansen JFA. High field imaging of large-scale neurotransmitter networks: Proof of concept and initial application to epilepsy. Neuroimage Clin 2018; 19:47-55. [PMID: 30035001 PMCID: PMC6051471 DOI: 10.1016/j.nicl.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/22/2018] [Accepted: 04/01/2018] [Indexed: 01/05/2023]
Abstract
The brain can be considered a network, existing of multiple interconnected areas with various functions. MRI provides opportunities to map the large-scale network organization of the brain. We tap into the neurobiochemical dimension of these networks, as neuronal functioning and signal trafficking across distributed brain regions relies on the release and presence of neurotransmitters. Using high-field MR spectroscopic imaging at 7.0 T, we obtained a non-invasive snapshot of the spatial distribution of the neurotransmitters GABA and glutamate, and investigated interregional associations of these neurotransmitters. We demonstrate that interregional correlations of glutamate and GABA concentrations can be conceptualized as networks. Furthermore, patients with epilepsy display an increased number of glutamate and GABA connections and increased average strength of the GABA network. The increased glutamate and GABA connectivity in epilepsy might indicate a disrupted neurotransmitter balance. In addition to epilepsy, the 'neurotransmitter networks' concept might also provide new insights for other neurological diseases.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Desmond H Y Tse
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis W Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands
| | - Rob P W Rouhl
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, The Netherlands
| | - Marielle C G Vlooswijk
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, The Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands.
| |
Collapse
|
92
|
Rossi LF, Kullmann DM, Wykes RC. The Enlightened Brain: Novel Imaging Methods Focus on Epileptic Networks at Multiple Scales. Front Cell Neurosci 2018; 12:82. [PMID: 29632475 PMCID: PMC5879108 DOI: 10.3389/fncel.2018.00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Epilepsy research is rapidly adopting novel fluorescence optical imaging methods to tackle unresolved questions on the cellular and circuit mechanisms of seizure generation and evolution. State of the art two-photon microscopy and wide-field fluorescence imaging can record the activity in epileptic networks at multiple scales, from neuronal microcircuits to brain-wide networks. These approaches exploit transgenic and viral technologies to target genetically encoded calcium and voltage sensitive indicators to subclasses of neurons, and achieve genetic specificity, spatial resolution and scalability that can complement electrophysiological recordings from awake animal models of epilepsy. Two-photon microscopy is well suited to study single neuron dynamics during interictal and ictal events, and highlight the differences between the activity of excitatory and inhibitory neuronal classes in the focus and propagation zone. In contrast, wide-field fluorescence imaging provides mesoscopic recordings from the entire cortical surface, necessary to investigate seizure propagation pathways, and how the unfolding of epileptic events depends on the topology of brain-wide functional connectivity. Answering these questions will inform pre-clinical studies attempting to suppress seizures with gene therapy, optogenetic or chemogenetic strategies. Dissecting which network nodes outside the seizure onset zone are important for seizure generation, propagation and termination can be used to optimize current and future evaluation methods to identify an optimal surgical strategy.
Collapse
Affiliation(s)
- L Federico Rossi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - Robert C Wykes
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
93
|
Malformations of Cortical Development: A Structural and Functional MRI Perspective. Epilepsy Curr 2018; 18:92-94. [DOI: 10.5698/1535-7597.18.2.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
94
|
Tai XY, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, Bernasconi N. Review: Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 2018; 44:70-90. [DOI: 10.1111/nan.12458] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- X. Y. Tai
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - B. Bernhardt
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
- Multimodal Imaging and Connectome Analysis Lab; Montreal Neurological Institute; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - M. Thom
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - P. Thompson
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - S. Baxendale
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - M. Koepp
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - N. Bernasconi
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
95
|
Adler S, Hong SJ, Liu M, Baldeweg T, Cross JH, Bernasconi A, Bernhardt BC, Bernasconi N. Topographic principles of cortical fluid-attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia 2018; 59:627-635. [PMID: 29383717 DOI: 10.1111/epi.14017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE In drug-resistant temporal lobe epilepsy (TLE), relative to the large number of whole-brain morphological studies, neocortical T2 changes have not been systematically investigated. The aim of this study was to assess the anatomical principles that govern the distribution of neocortical T2-weighted fluid-attenuated inversion recovery (FLAIR) signal intensity and uncover its topographic principles. METHODS Using a surface-based sampling scheme, we mapped neocortical FLAIR intensity of 61 TLE patients relative to 38 healthy controls imaged at 3 T. To address topographic principles of the susceptibility to FLAIR signal changes in TLE, we assessed associations with normative data on tissue composition using 2 complementary approaches. First, we evaluated whether the degree of TLE-related FLAIR intensity changes differed across cytoarchitectonic classes as defined by Von Economo-Koskinas taxonomy. Second, as a proxy to map regions with similar intracortical composition, we carried out a FLAIR intensity covariance paradigm in controls by seeding systematically from all cortical regions, and identified those networks that were the best spatial predictors of the between-group FLAIR changes. RESULTS Increased intensities were observed in bilateral limbic and paralimbic cortices (hippocampus, parahippocampus, cingulate, temporopolar, insular, orbitofrontal). Effect sizes were highest in periallocortical limbic and insular classes as defined by the Von Economo-Koskinas cytoarchitectonic taxonomy. Furthermore, systematic FLAIR intensity covariance analysis in healthy controls revealed that similarity patterns characteristic of limbic cortices, most notably the hippocampus, served as sensitive predictors for the topography of FLAIR hypersignal in patients. FLAIR intensity findings were robust against correction for morphological confounds. Patients with a history of febrile convulsions showed more marked signal changes in parahippocampal and retrosplenial cortices, known to be strongly connected to the hippocampus. SIGNIFICANCE FLAIR intensity mapping and covariance analysis provide a model of TLE gray matter pathology based on shared vulnerability of periallocortical and limbic cortices.
Collapse
Affiliation(s)
- Sophie Adler
- NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Seok-Jun Hong
- NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Min Liu
- NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Helen Cross
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrea Bernasconi
- NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
96
|
Deleo F, Thom M, Concha L, Bernasconi A, Bernhardt BC, Bernasconi N. Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Res 2017; 140:29-38. [PMID: 29227798 DOI: 10.1016/j.eplepsyres.2017.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Growing evidence highlights the importance of white matter in the pathogenesis of focal epilepsy. Ex vivo and post-mortem studies show pathological changes in epileptic patients in white matter myelination, axonal integrity, and cellular composition. Diffusion-weighted MRI and its analytical extensions, particularly diffusion tensor imaging (DTI), have been the most widely used technique to image the white matter in vivo for the last two decades, and have shown microstructural alterations in multiple tracts both in the vicinity and at distance from the epileptogenic focus. These techniques have also shown promising ability to predict cognitive status and response to pharmacological or surgical treatments. More recently, the hypothesis that focal epilepsy may be more adequately described as a system-level disorder has motivated a shift towards the study of macroscale brain connectivity. This review will cover emerging findings contributing to our understanding of white matter alterations in focal epilepsy, studied by means of histological and ultrastructural analyses, diffusion MRI, and large-scale network analysis. Focus is put on temporal lobe epilepsy and focal cortical dysplasia. This topic was addressed in a special interest group on neuroimaging at the 70th annual meeting of the American Epilepsy Society, held in Houston December 2-6, 2016.
Collapse
Affiliation(s)
- Francesco Deleo
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Maria Thom
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Andrea Bernasconi
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Boris C Bernhardt
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada; Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Neda Bernasconi
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
97
|
Quantitative Measurement of Longitudinal Relaxation Time (qT1) Mapping in TLE: A Marker for Intracortical Microstructure? Epilepsy Curr 2017; 17:358-360. [PMID: 29217978 DOI: 10.5698/1535-7597.17.6.358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
98
|
Rummel C, Slavova N, Seiler A, Abela E, Hauf M, Burren Y, Weisstanner C, Vulliemoz S, Seeck M, Schindler K, Wiest R. Personalized structural image analysis in patients with temporal lobe epilepsy. Sci Rep 2017; 7:10883. [PMID: 28883420 PMCID: PMC5589799 DOI: 10.1038/s41598-017-10707-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
Volumetric and morphometric studies have demonstrated structural abnormalities related to chronic epilepsies on a cohort- and population-based level. On a single-patient level, specific patterns of atrophy or cortical reorganization may be widespread and heterogeneous but represent potential targets for further personalized image analysis and surgical therapy. The goal of this study was to compare morphometric data analysis in 37 patients with temporal lobe epilepsies with expert-based image analysis, pre-informed by seizure semiology and ictal scalp EEG. Automated image analysis identified abnormalities exceeding expert-determined structural epileptogenic lesions in 86% of datasets. If EEG lateralization and expert MRI readings were congruent, automated analysis detected abnormalities consistent on a lobar and hemispheric level in 82% of datasets. However, in 25% of patients EEG lateralization and expert readings were inconsistent. Automated analysis localized to the site of resection in 60% of datasets in patients who underwent successful epilepsy surgery. Morphometric abnormalities beyond the mesiotemporal structures contributed to subtype characterisation. We conclude that subject-specific morphometric information is in agreement with expert image analysis and scalp EEG in the majority of cases. However, automated image analysis may provide non-invasive additional information in cases with equivocal radiological and neurophysiological findings.
Collapse
Affiliation(s)
- Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland.
| | - Nedelina Slavova
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Andrea Seiler
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland.,Sleep-Wake- Epilepsy-Center, Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Eugenio Abela
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland.,Sleep-Wake- Epilepsy-Center, Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Martinus Hauf
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland.,Epilepsy Clinic, Tschugg, Switzerland
| | - Yuliya Burren
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland.,University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christian Weisstanner
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Kaspar Schindler
- Sleep-Wake- Epilepsy-Center, Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
99
|
Schiecke K, Pester B, Piper D, Feucht M, Benninger F, Witte H, Leistritz L. Advanced nonlinear approach to quantify directed interactions within EEG activity of children with temporal lobe epilepsy in their time course. ACTA ACUST UNITED AC 2017. [DOI: 10.1051/epjnbp/2017002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
100
|
Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception. Epilepsy Res 2017; 134:33-40. [DOI: 10.1016/j.eplepsyres.2017.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
|