51
|
Biomimetic approaches for targeting tumor inflammation. Semin Cancer Biol 2022; 86:555-567. [DOI: 10.1016/j.semcancer.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
52
|
Moghaddasi L, Reid P, Bezak E, Marcu LG. Radiobiological and Treatment-Related Aspects of Spatially Fractionated Radiotherapy. Int J Mol Sci 2022; 23:3366. [PMID: 35328787 PMCID: PMC8954016 DOI: 10.3390/ijms23063366] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The continuously evolving field of radiotherapy aims to devise and implement techniques that allow for greater tumour control and better sparing of critical organs. Investigations into the complexity of tumour radiobiology confirmed the high heterogeneity of tumours as being responsible for the often poor treatment outcome. Hypoxic subvolumes, a subpopulation of cancer stem cells, as well as the inherent or acquired radioresistance define tumour aggressiveness and metastatic potential, which remain a therapeutic challenge. Non-conventional irradiation techniques, such as spatially fractionated radiotherapy, have been developed to tackle some of these challenges and to offer a high therapeutic index when treating radioresistant tumours. The goal of this article was to highlight the current knowledge on the molecular and radiobiological mechanisms behind spatially fractionated radiotherapy and to present the up-to-date preclinical and clinical evidence towards the therapeutic potential of this technique involving both photon and proton beams.
Collapse
Affiliation(s)
- Leyla Moghaddasi
- Department of Medical Physics, Austin Health, Ballarat, VIC 3350, Australia;
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
| | - Paul Reid
- Radiation Health, Environment Protection Authority, Adelaide, SA 5000, Australia;
| | - Eva Bezak
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Loredana G. Marcu
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
| |
Collapse
|
53
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
54
|
Chen S, Li X, Wang H, Chen G, Zhou Y. Anti-VEGFR2 monoclonal antibody(MSB0254) inhibits angiogenesis and tumor growth by blocking the signaling pathway mediated by VEGFR2 in glioblastoma. Biochem Biophys Res Commun 2022; 604:158-164. [PMID: 35305420 DOI: 10.1016/j.bbrc.2022.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Angiogenesis is a key physiological process that plays a key role in glioblastoma (GBM) progression and displays therapeutic resistance to antiangiogenic therapies. In this study, we aimed to identify whether vascular endothelial growth factor receptor 2(VEGFR2)monoclonal antibodies(mab)could inhibit tumorigenicity and the formation of vascular mimicry (VM) in GBM. The bioinformatic analysis from TCGA, CGGA, and TCPA databases and Immunohistochemistry (IHC) revealed that VEGFR2 is highly expressed in glioma tissues and results in a poor prognosis and is positively associated with VM markers (CD34 and PAS). The anti-VEGFR2 monoclonal antibodies(MSB0254)could inhibit the invasion, migration, and VM formation of U251 and primary glioma cells in vitro. In vivo, MSB0254 (m) could not only inhibit the growth of transplanted tumors of U251 and GL261 cells, but also significantly inhibit the expression of CD34, VEGFR2, Ki67, MMP2, MMP9 and reduce the expression of CD34/PAS and inhibit VM formation. The VEGFR2 monoclonal antibody could inhibit the angiogenesis and tumor growth of GBM by blocking the signaling pathway mediated by VEGFR2. It may become a new supplementary treatment for GBM.
Collapse
Affiliation(s)
- Sansong Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China; Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No.2 Zheshan Road, Wuhu, 241001, Anhui Province, China
| | - Xuetao Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Hao Wang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
55
|
Michon S, Rodier F, Yu FTH. Targeted Anti-Cancer Provascular Therapy Using Ultrasound, Microbubbles, and Nitrite to Increase Radiotherapy Efficacy. Bioconjug Chem 2022; 33:1093-1105. [PMID: 34990112 DOI: 10.1021/acs.bioconjchem.1c00510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia is an important mechanism of resistance to radiation therapy in many human malignancies including prostate cancer. It has been recently shown that ultrasound targeted microbubble cavitation (UTMC) can increase blood perfusion in skeletal muscle by triggering nitric oxide signaling. Interestingly, this effect was amplified with a sodium nitrite coinjection. Since sodium nitrite has been shown to synergize with radiotherapy (RT), we hypothesized that UTMC with a sodium nitrite coinjection could further radiosensitize solid tumors by increasing blood perfusion and thus reduce tumor hypoxia. We evaluated (1) the ability of UTMC with and without nitrite to increase perfusion in muscle (mouse hindlimbs) and human prostate tumors using different pulse lengths and pressure; (2) the efficacy of this approach as a provascular therapy given directly before RT in the human prostate subcutaneous xenografts PC3 tumor model. Using long pulses with various pressures, in muscle, the provascular response following UTMC was strong (6.61 ± 4.41-fold increase in perfusion post-treatment). In tumors, long pulses caused an increase in perfusion (2.42 ± 1.38-fold) at lower mechanical index (MI = 0.25) but not at higher MI (0.375, 0.5, and 0.750) when compared to control (no UTMC). However, when combined with RT, UTMC with long pulses (MI = 0.25) did not improve tumor growth inhibition. With short pulses, in muscle, the provascular response following UTMC (SONOS) + nitrite was strong (13.74 ± 8.60-fold increase in perfusion post-treatment). In tumors, UTMC (SONOS) + nitrite also caused a provascular response (1.94 ± 1.20-fold increase in perfusion post-treatment) that lasted for at least 10 min, but not with nitrite alone. Interestingly, the blunted provascular response observed for long pulses at higher MI without nitrite was reversed with the addition of nitrite. UTMC (SONOS) with and without nitrite caused an increase in perfusion in tumors. The provascular response observed for UTMC (SONOS) + nitrite was confirmed by histology. Finally, there was an improved growth inhibition for the 8 Gy RT dose + nitrite + UTMC group vs 8 Gy RT + nitrite alone. This effect was not significant with mice treated by UTMC + nitrite and receiving doses of 0 or 2 Gy RT. In conclusion, UTMC + nitrite increased blood flow leading to an increased efficacy of higher doses of RT in our tumor model, warranting further study of this strategy.
Collapse
Affiliation(s)
- Simon Michon
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada.,Institut de Génie Biomédical, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada.,Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - François T H Yu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada.,Institut de Génie Biomédical, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
56
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Addressing the obstacles of CAR T cell migration in solid tumors: wishing a heavy traffic. Crit Rev Biotechnol 2021; 42:1079-1098. [PMID: 34957875 DOI: 10.1080/07388551.2021.1988509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been recognized as one of the most prosperous treatment options against certain blood-based malignancies. However, the same clinical and commercial success have been out of range in the case of solid tumors. The main contributing factor in this regard is the hostile environment the tumor cells impose that results in the exhaustion of immune effector cells alongside the abrogation of their infiltration capacity. The discovery of the underlying mechanisms and the development of reliable counterstrategies to overcome the inaccessibility of CAR-Ts to their target cells might correlate with encouraging clinical outcomes in advanced solid tumors. Here, we highlight the successive physical and metabolic barriers that systemically administered CAR-Ts face on their journey toward their target cells. Moreover, we propose meticulously-devised countertactics and combination therapies that can be applied to maximize the therapeutic benefits of CAR-T therapies against solid tumors.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
57
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
58
|
O'Connor MN, Kallenberg DM, Camilli C, Pilotti C, Dritsoula A, Jackstadt R, Bowers CE, Watson HA, Alatsatianos M, Ohme J, Dowsett L, George J, Blackburn JWD, Wang X, Singhal M, Augustin HG, Ager A, Sansom OJ, Moss SE, Greenwood J. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. MED 2021; 2:1231-1252.e10. [PMID: 35590198 PMCID: PMC7614757 DOI: 10.1016/j.medj.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization. Here, we investigate whether LRG1 in tumors is vasculopathic and whether its inhibition has therapeutic utility. METHODS Tumor growth and vascular structure were analyzed in subcutaneous and genetically engineered mouse models in wild-type and Lrg1 knockout mice. The effects of LRG1 antibody blockade as monotherapy, or in combination with co-therapies, on vascular function, tumor growth, and infiltrated lymphocytes were investigated. FINDINGS In mouse models of cancer, Lrg1 expression was induced in tumor endothelial cells, consistent with an increase in protein expression in human cancers. The expression of LRG1 affected tumor progression as Lrg1 gene deletion, or treatment with a LRG1 function-blocking antibody, inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function, resulting in enhanced efficacy of cisplatin chemotherapy, adoptive T cell therapy, and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent to immune active. CONCLUSIONS LRG1 drives vascular abnormalization, and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics. FUNDING Wellcome Trust (206413/B/17/Z), UKRI/MRC (G1000466, MR/N006410/1, MC/PC/14118, and MR/L008742/1), BHF (PG/16/50/32182), Health and Care Research Wales (CA05), CRUK (C42412/A24416 and A17196), ERC (ColonCan 311301 and AngioMature 787181), and DFG (CRC1366).
Collapse
Affiliation(s)
- Marie N O'Connor
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - David M Kallenberg
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Carlotta Camilli
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Camilla Pilotti
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Athina Dritsoula
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Chantelle E Bowers
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - H Angharad Watson
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Markella Alatsatianos
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ohme
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Laura Dowsett
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Jestin George
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Jack W D Blackburn
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Xiaomeng Wang
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London SE5 8BN, UK.
| | - John Greenwood
- Institute of Ophthalmology, University College London, London SE5 8BN, UK.
| |
Collapse
|
59
|
Mollica H, Teo YJ, Tan ASM, Tan DZM, Decuzzi P, Pavesi A, Adriani G. A 3D pancreatic tumor model to study T cell infiltration. Biomater Sci 2021; 9:7420-7431. [PMID: 34706370 DOI: 10.1039/d1bm00210d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The desmoplastic nature of the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME) prevents the infiltration of T cells and the penetration of chemotherapeutic drugs, posing a challenge to the validation of targeted therapies, including T cell immunotherapies. We present an in vitro 3D PDAC-TME model to observe and quantify T cell infiltration across the vasculature. In a three-channel microfluidic device, PDAC cells are cultured in a collagen matrix in the central channel surrounded, on one side, by endothelial cells (ECs) to mimic a blood vessel and, on the opposite side, by pancreatic stellate cells (PSCs) to simulate exocrine pancreas. The migration of T cells toward the tumor is quantified based on their activation state and TME composition. The presence of EC-lining drastically reduces T cell infiltration, confirming the essential role of the vasculature in controlling T cell trafficking. We show that activated T cells migrate ∼50% more than the not-activated ones toward the cancer cells. Correspondingly, in the absence of cancer cells, both activated and not-activated T cells present similar migration toward the PSCs. The proposed approach could help researchers in testing and optimizing immunotherapies for pancreatic cancer.
Collapse
Affiliation(s)
- Hilaria Mollica
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genova, 16163, Italy
| | - Yi Juan Teo
- Singapore Immunology Network, A*STAR, 8A Biomedical Groove, 138648, Singapore.
| | - Alrina Shin Min Tan
- Singapore Immunology Network, A*STAR, 8A Biomedical Groove, 138648, Singapore.
| | - Damien Zhi Ming Tan
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, 138673, Singapore
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genova, 16163, Italy
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, 138673, Singapore
| | - Giulia Adriani
- Singapore Immunology Network, A*STAR, 8A Biomedical Groove, 138648, Singapore. .,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| |
Collapse
|
60
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
61
|
Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 2021; 10:2712. [PMID: 34685692 PMCID: PMC8534745 DOI: 10.3390/cells10102712] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.
Collapse
Affiliation(s)
- Jan K. Hennigs
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christiane Matuszcak
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
62
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
63
|
Wang Y, Li Y, Yin B, Yang X, Wang F, Wang H, Jiang W. Papillary squamous cell carcinoma successfully treated with bronchoscopic intratumoral injections of cisplatin and Endostar: a case report. J Int Med Res 2021; 49:3000605211047077. [PMID: 34579594 PMCID: PMC8485288 DOI: 10.1177/03000605211047077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a malignant epithelial tumor originating from the bronchial epithelium that shows keratosis and/or intercellular bridges. Papillary squamous cell carcinoma (PSCC) is an extremely rare subtype of SCC that manifests with a unique intrabronchial papillary growth pattern. Surgical resection is still the first recommendation for localized noninvasive SCC. However, some patients are not candidates for surgical resection. With the development of interventional pulmonology, bronchoscopic interventional therapy has played a key role in the treatment of central airway tumors. Here, we report a case of noninvasive PSCC in the airway treated with an electric snare, argon plasma coagulation (APC), and cryotherapy. After removing the tumor by electrotomy, cryotherapy, and APC, the tumor was injected with Endostar 15 mg (3 ml) and cisplatin 20 mg (diluted to 3 ml with 0.9% normal saline) in six separate sites, once every 21 days. The tumor was eliminated, and the treatment was stopped after four treatment cycles. During the 1-year follow-up, there was no recurrence of PSCC in the airway. In this case, submucosal injections of Endostar combined with cisplatin was a feasible and effective endoscopic method for treating a low-grade intratracheal malignant tumor.
Collapse
Affiliation(s)
- Yong Wang
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| | - Yue Li
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| | - Bin Yin
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| | - Xiaoping Yang
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| | - Fengchan Wang
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| | - Haiyan Wang
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| | - Wenqing Jiang
- Department of Respiratory Diseases, 155177Qingdao Haici Hospital, Qingdao Haici Hospital, Qingdao, China.,Department of Pulmonary and Critical Care Medicine, Qingdao Haici Hospital, Qingdao, China
| |
Collapse
|
64
|
Sentek H, Klein D. Lung-Resident Mesenchymal Stem Cell Fates within Lung Cancer. Cancers (Basel) 2021; 13:cancers13184637. [PMID: 34572864 PMCID: PMC8472774 DOI: 10.3390/cancers13184637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer remains the leading cause of cancer-related deaths worldwide. Herein, the heterogeneous tumor stroma decisively impacts on tumor progression, therapy resistance, and, thus, poor clinical outcome. Among the numerous non-epithelial cells constructing the complex environment of lung carcinomas, mesenchymal stem cells (MSC) gained attraction being stromal precursor cells that could be recruited and ‘educated’ by lung cancer cells to adopt a tumor-associated MSC phenotype, serve as source for activated fibroblasts and presumably for vascular mural cells finally reinforcing tumor progression. Lung-resident MSCs should be considered as ‘local MSCs in stand by’ ready to be arranged within the cancer stroma. Abstract Lung-resident mesenchymal stem cells (LR-MSCs) are non-hematopoietic multipotent stromal cells that predominately reside adventitial within lung blood vessels. Based on their self-renewal and differentiation properties, LR-MSCs turned out to be important regulators of normal lung homeostasis. LR-MSCs exert beneficial effects mainly by local secretion of various growth factors and cytokines that in turn foster pulmonary regeneration including suppression of inflammation. At the same time, MSCs derived from various tissues of origins represent the first choice of cells for cell-based therapeutic applications in clinical medicine. Particularly for various acute as well as chronic lung diseases, the therapeutic applications of exogenous MSCs were shown to mediate beneficial effects, hereby improving lung function and survival. In contrast, endogenous MSCs of normal lungs seem not to be sufficient for lung tissue protection or repair following a pathological trigger; LR-MSCs could even contribute to initiation and/or progression of lung diseases, particularly lung cancer because of their inherent tropism to migrate towards primary tumors and metastatic sites. However, the role of endogenous LR-MSCs to be multipotent tumor-associated (stromal) precursors remains to be unraveled. Here, we summarize the recent knowledge how ‘cancer-educated’ LR-MSCs impact on lung cancer with a focus on mesenchymal stem cell fates.
Collapse
Affiliation(s)
| | - Diana Klein
- Correspondence: ; Tel.: +49-(0)-201-7238-3342
| |
Collapse
|
65
|
Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen L, da Veiga Leprevost F, Eguez RV, Yang W, Pan J, Wen B, Dou Y, Jiang W, Liao Y, Shi Z, Terekhanova NV, Cao S, Lu RJH, Li Y, Liu R, Zhu H, Ronning P, Wu Y, Wyczalkowski MA, Easwaran H, Danilova L, Mer AS, Yoo S, Wang JM, Liu W, Haibe-Kains B, Thiagarajan M, Jewell SD, Hostetter G, Newton CJ, Li QK, Roehrl MH, Fenyö D, Wang P, Nesvizhskii AI, Mani DR, Omenn GS, Boja ES, Mesri M, Robles AI, Rodriguez H, Bathe OF, Chan DW, Hruban RH, Ding L, Zhang B, Zhang H. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184:5031-5052.e26. [PMID: 34534465 PMCID: PMC8654574 DOI: 10.1016/j.cell.2021.08.023] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/19/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Liwei Cao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - T Mamie Lih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Peter Ronning
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ludmila Danilova
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Arvind Singh Mer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Seungyeul Yoo
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joshua M Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pei Wang
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | | | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
66
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
67
|
Lau D, McLean MA, Priest AN, Gill AB, Scott F, Patterson I, Carmo B, Riemer F, Kaggie JD, Frary A, Milne D, Booth C, Lewis A, Sulikowski M, Brown L, Lapointe JM, Aloj L, Graves MJ, Brindle KM, Corrie PG, Gallagher FA. Multiparametric MRI of early tumor response to immune checkpoint blockade in metastatic melanoma. J Immunother Cancer 2021; 9:e003125. [PMID: 34561275 PMCID: PMC8475139 DOI: 10.1136/jitc-2021-003125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are now standard of care treatment for many cancers. Treatment failure in metastatic melanoma is often due to tumor heterogeneity, which is not easily captured by conventional CT or tumor biopsy. The aim of this prospective study was to investigate early microstructural and functional changes within melanoma metastases following immune checkpoint blockade using multiparametric MRI. METHODS Fifteen treatment-naïve metastatic melanoma patients (total 27 measurable target lesions) were imaged at baseline and following 3 and 12 weeks of treatment on immune checkpoint inhibitors using: T2-weighted imaging, diffusion kurtosis imaging, and dynamic contrast-enhanced MRI. Treatment timepoint changes in tumor cellularity, vascularity, and heterogeneity within individual metastases were evaluated and correlated to the clinical outcome in each patient based on Response Evaluation Criteria in Solid Tumors V.1.1 at 1 year. RESULTS Differential tumor growth kinetics in response to immune checkpoint blockade were measured in individual metastases within the same patient, demonstrating significant intertumoral heterogeneity in some patients. Early detection of tumor cell death or cell loss measured by a significant increase in the apparent diffusivity (Dapp) (p<0.05) was observed in both responding and pseudoprogressive lesions after 3 weeks of treatment. Tumor heterogeneity, as measured by apparent diffusional kurtosis (Kapp), was consistently higher in the pseudoprogressive and true progressive lesions, compared with the responding lesions throughout the first 12 weeks of treatment. These preceded tumor regression and significant tumor vascularity changes (Ktrans, ve, and vp) detected after 12 weeks of immunotherapy (p<0.05). CONCLUSIONS Multiparametric MRI demonstrated potential for early detection of successful response to immune checkpoint inhibitors in metastatic melanoma.
Collapse
Affiliation(s)
- Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Andrew N Priest
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Francis Scott
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ilse Patterson
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Bruno Carmo
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Doreen Milne
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Catherine Booth
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Arthur Lewis
- Clinical Pharmacology & Safety Sciences, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Michal Sulikowski
- Clinical Pharmacology & Safety Sciences, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Lee Brown
- Clinical Pharmacology & Safety Sciences, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Jean-Martin Lapointe
- Clinical Pharmacology & Safety Sciences, AstraZeneca PLC, Cambridge, Cambridgeshire, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Pippa G Corrie
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| |
Collapse
|
68
|
Lapuente-Santana Ó, van Genderen M, Hilbers PA, Finotello F, Eduati F. Interpretable systems biomarkers predict response to immune-checkpoint inhibitors. PATTERNS (NEW YORK, N.Y.) 2021; 2:100293. [PMID: 34430923 PMCID: PMC8369166 DOI: 10.1016/j.patter.2021.100293] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells can leverage several cell-intrinsic and -extrinsic mechanisms to escape immune system recognition. The inherent complexity of the tumor microenvironment, with its multicellular and dynamic nature, poses great challenges for the extraction of biomarkers of immune response and immunotherapy efficacy. Here, we use RNA-sequencing (RNA-seq) data combined with different sources of prior knowledge to derive system-based signatures of the tumor microenvironment, quantifying immune-cell composition and intra- and intercellular communications. We applied multi-task learning to these signatures to predict different hallmarks of immune responses and derive cancer-type-specific models based on interpretable systems biomarkers. By applying our models to independent RNA-seq data from cancer patients treated with PD-1/PD-L1 inhibitors, we demonstrated that our method to Estimate Systems Immune Response (EaSIeR) accurately predicts therapeutic outcome. We anticipate that EaSIeR will be a valuable tool to provide a holistic description of immune responses in complex and dynamic systems such as tumors using available RNA-seq data.
Collapse
Affiliation(s)
- Óscar Lapuente-Santana
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Maisa van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Peter A.J. Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| |
Collapse
|
69
|
Esteves M, Monteiro MP, Duarte JA. The Effects of Physical Exercise on Tumor Vasculature: Systematic Review and Meta-analysis. Int J Sports Med 2021; 42:1237-1249. [PMID: 34341974 DOI: 10.1055/a-1533-1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A wealth of evidence supports an association between physical exercise, decreased tumor growth rate, and reduced risk of cancer mortality. In this context, the tumor vascular microenvironment may play a key role in modulating tumor biologic behavior. The present systematic review and meta-analysis aimed to summarize the evidence regarding the effects of physical exercise on tumor vasculature in pre-clinical studies. We performed a computerized research on the PubMed, Scopus, and EBSCO databases to identify pre-clinical studies that evaluated the effect of physical exercise on tumor vascular outcomes. Mean differences were calculated through a random effects model. The present systematic review included 13 studies involving 373 animals. From these, 11 studies evaluated chronic intratumoral vascular adaptations and 2 studies assessed the acute intratumoral vascular adaptations to physical exercise. The chronic intratumoral vascular adaptations resulted in higher tumor microvessel density in 4 studies, increased tumor perfusion in 2 studies, and reduced intratumoral hypoxia in 3 studies. Quantitatively, regular physical exercise induced an increased tumor vascularization of 2.13 [1.07, 3.20] (p<0.0001). The acute intratumoral vascular adaptations included increased vascular conductance and reduced vascular resistance, which improved tumor perfusion and attenuated intratumoral hypoxia. In pre-clinical studies, physical exercise seems to improve tumor vascularization.
Collapse
Affiliation(s)
- Mário Esteves
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal.,Department of Physical Medicine and Rehabilitation, Teaching Hospital of the Fernando Pessoa University, Gondomar, Portugal
| | - Mariana P Monteiro
- Department of Anatomy, Universidade do Porto Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Jose Alberto Duarte
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
70
|
Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol 2021; 18:527-540. [PMID: 33833434 DOI: 10.1038/s41571-021-00496-y] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors have revolutionized medical oncology, although currently only a subset of patients has a response to such treatment. A compelling body of evidence indicates that anti-angiogenic therapy has the capacity to ameliorate antitumour immunity owing to the inhibition of various immunosuppressive features of angiogenesis. Hence, combinations of anti-angiogenic agents and immunotherapy are currently being tested in >90 clinical trials and 5 such combinations have been approved by the FDA in the past few years. In this Perspective, we describe how the angiogenesis-induced endothelial immune cell barrier hampers antitumour immunity and the role of endothelial cell anergy as the vascular counterpart of immune checkpoints. We review the antitumour immunity-promoting effects of anti-angiogenic agents and provide an update on the current clinical successes achieved when these agents are combined with immune checkpoint inhibitors. Finally, we propose that anti-angiogenic agents are immunotherapies - and vice versa - and discuss future research priorities.
Collapse
Affiliation(s)
- Zowi R Huinen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland. .,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
71
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
72
|
Spatio-temporal biodistribution of 89Zr-oxine labeled huLym-1-A-BB3z-CAR T-cells by PET imaging in a preclinical tumor model. Sci Rep 2021; 11:15077. [PMID: 34302002 PMCID: PMC8302724 DOI: 10.1038/s41598-021-94490-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Quantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial 89Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgammanull (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following 89Zr-oxine labeling. In vivo experiments employed simultaneous PET/MRI of Raji-bearing NSG mice on day 0 (3 h), 1, 2, and 5 after intravenous administration of low (1.87 ± 0.04 × 106 cells), middle (7.14 ± 0.45 × 106 cells), or high (16.83 ± 0.41 × 106 cells) cell dose. Biodistribution (%ID/g) in regions of interests defined over T1-weighted MRI, such as blood, bone, brain, liver, lungs, spleen, and tumor, were analyzed from PET images. Escalating doses of CAR T-cells resulted in dose-dependent %ID/g biodistributions in all regions. Middle and High dose groups showed significantly higher tumor %ID/g compared to Low dose group on day 2. Tumor-to-blood ratios showed the enhanced extravascular tumor uptake by day 2 in the Low dose group, while the Middle dose showed significant tumor accumulation starting on day 1 up to day 5. From these data obtained over time, it is apparent that intravenously administered CAR T-cells become trapped in the lung for 3–5 h and then migrate to the liver and spleen for up to 2–3 days. This surprising biodistribution data may be responsible for the inactivation of these cells before targeting solid tumors. Ex vivo biodistributions confirmed in vivo PET-derived biodistributions. According to these studies, we conclude that in vivo serial PET imaging with 89Zr-oxine labeled CAR T-cells provides real-time monitoring of biodistributions crucial for interpreting efficacy and guiding treatment in patient care.
Collapse
|
73
|
Faqihi F, Stoodley MA, McRobb LS. The Evolution of Safe and Effective Coaguligands for Vascular Targeting and Precision Thrombosis of Solid Tumors and Vascular Malformations. Biomedicines 2021; 9:biomedicines9070776. [PMID: 34356840 PMCID: PMC8301394 DOI: 10.3390/biomedicines9070776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In cardiovascular and cerebrovascular biology, control of thrombosis and the coagulation cascade in ischemic stroke, myocardial infarction, and other coagulopathies is the focus of significant research around the world. Ischemic stroke remains one of the largest causes of death and disability in developed countries. Preventing thrombosis and protecting vessel patency is the primary goal. However, utilization of the body’s natural coagulation cascades as an approach for targeted destruction of abnormal, disease-associated vessels and tissues has been increasing over the last 30 years. This vascular targeting approach, often termed “vascular infarction”, describes the deliberate, targeted delivery of a thrombogenic effector to diseased blood vessels with the aim to induce localized activation of the coagulation cascade and stable thrombus formation, leading to vessel occlusion and ablation. As systemic delivery of pro-thrombotic agents may cause consternation amongst traditional stroke researchers, proponents of the approach must suitably establish both efficacy and safety to take this field forward. In this review, we describe the evolution of this field and, with a focus on thrombogenic effectors, summarize the current literature with respect to emerging trends in “coaguligand” development, in targeted tumor vessel destruction, and in expansion of the approach to the treatment of brain vascular malformations.
Collapse
|
74
|
Kim BS, Cho WW, Gao G, Ahn M, Kim J, Cho DW. Construction of Tissue-Level Cancer-Vascular Model with High-Precision Position Control via In Situ 3D Cell Printing. SMALL METHODS 2021; 5:e2100072. [PMID: 34928000 DOI: 10.1002/smtd.202100072] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Indexed: 06/14/2023]
Abstract
During tumor progression, the size and location of the tumor are important factors closely associated with the metastatic potential of the cancer as they largely govern tumor hypoxia and angiogenesis. However, despite the achievements of previous studies, these critical factors are poorly studied, mainly due to the lack of a flexible technique that can readily control 3D tumor mimicking constructs and their spatial relations with vasculature. Here, a novel tissue-level platform consisting of a metastatic cancer unit (MCU) and a perfusable vascular endothelium system (VES) is presented using in situ 3D cell printing. Size-tunable and position-controllable 3D cancer spheroids (500-1000 µm) are directly printed within the established bath bioink with a self-driven perfusable vascular channel. The cancer-vascular interactions are generated through controlling the distance between MCU and VES to investigate metastasis-associated changes at adjacent and distal regions. The result shows that MCU in 600 µm diameter includes hypoxia, invasion, and angiogenetic signaling. The further observations demonstrate that the proximity of MCU to VES augments the epithelial-mesenchymal transition (EMT) in MCU and vascular dysfunction/inflammation in VES, corroborating the positional significance in tumor metastasis. The platform with the precise-positioning control enables the recapitulation of patient's detailed metastatic progression, opening the chance for precision cancer medicine.
Collapse
Affiliation(s)
- Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan, Kyungbuk, 50612, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
| | - Won-Woo Cho
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Ge Gao
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100091, China
| | - Minjun Ahn
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jongmin Kim
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Dong-Woo Cho
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| |
Collapse
|
75
|
Hansel C, Barr S, Schemann AV, Lauber K, Hess J, Unger K, Zitzelsberger H, Jendrossek V, Klein D. Metformin Protects against Radiation-Induced Acute Effects by Limiting Senescence of Bronchial-Epithelial Cells. Int J Mol Sci 2021; 22:7064. [PMID: 34209135 PMCID: PMC8268757 DOI: 10.3390/ijms22137064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage to normal lung parenchyma remains a dose-limiting factor in thorax-associated radiotherapy (RT). Severe early and late complications with lungs can increase the risk of morbidity in cancer patients after RT. Herein, senescence of lung epithelial cells following RT-induced cellular stress, or more precisely the respective altered secretory profile, the senescence-associated secretory phenotype (SASP), was suggested as a central process for the initiation and progression of pneumonitis and pulmonary fibrosis. We previously reported that abrogation of certain aspects of the secretome of senescent lung cells, in particular, signaling inhibition of the SASP-factor Ccl2/Mcp1 mediated radioprotection especially by limiting endothelial dysfunction. Here, we investigated the therapeutic potential of a combined metformin treatment to protect normal lung tissue from RT-induced senescence and associated lung injury using a preclinical mouse model of radiation-induced pneumopathy. Metformin treatment efficiently limited RT-induced senescence and SASP expression levels, thereby limiting vascular dysfunctions, namely increased vascular permeability associated with increased extravasation of circulating immune and tumor cells early after irradiation (acute effects). Complementary in vitro studies using normal lung epithelial cell lines confirmed the senescence-limiting effect of metformin following RT finally resulting in radioprotection, while fostering RT-induced cellular stress of cultured malignant epithelial cells accounting for radiosensitization. The radioprotective action of metformin for normal lung tissue without simultaneous protection or preferable radiosensitization of tumor tissue might increase tumor control probabilities and survival because higher radiation doses could be used.
Collapse
Affiliation(s)
- Christine Hansel
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Samantha Barr
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Alina V. Schemann
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, 80539 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80539 Munich, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
| | - Julia Hess
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| |
Collapse
|
76
|
Moccia C, Haase K. Engineering Breast Cancer On-chip-Moving Toward Subtype Specific Models. Front Bioeng Biotechnol 2021; 9:694218. [PMID: 34249889 PMCID: PMC8261144 DOI: 10.3389/fbioe.2021.694218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second leading cause of death among women worldwide, and while hormone receptor positive subtypes have a clear and effective treatment strategy, other subtypes, such as triple negative breast cancers, do not. Development of new drugs, antibodies, or immune targets requires significant re-consideration of current preclinical models, which frequently fail to mimic the nuances of patient-specific breast cancer subtypes. Each subtype, together with the expression of different markers, genetic and epigenetic profiles, presents a unique tumor microenvironment, which promotes tumor development and progression. For this reason, personalized treatments targeting components of the tumor microenvironment have been proposed to mitigate breast cancer progression, particularly for aggressive triple negative subtypes. To-date, animal models remain the gold standard for examining new therapeutic targets; however, there is room for in vitro tools to bridge the biological gap with humans. Tumor-on-chip technologies allow for precise control and examination of the tumor microenvironment and may add to the toolbox of current preclinical models. These new models include key aspects of the tumor microenvironment (stroma, vasculature and immune cells) which have been employed to understand metastases, multi-organ interactions, and, importantly, to evaluate drug efficacy and toxicity in humanized physiologic systems. This review provides insight into advanced in vitro tumor models specific to breast cancer, and discusses their potential and limitations for use as future preclinical patient-specific tools.
Collapse
Affiliation(s)
| | - Kristina Haase
- European Molecular Biology Laboratory, European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| |
Collapse
|
77
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
78
|
Cavin S, Gkasti A, Faget J, Hao Y, Letovanec I, Reichenbach M, Gonzalez M, Krueger T, Dyson PJ, Meylan E, Perentes JY. Low-dose photodynamic therapy promotes a cytotoxic immunological response in a murine model of pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:783-791. [PMID: 32372095 DOI: 10.1093/ejcts/ezaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is a deadly disease with limited treatment options. Approaches to enhance patient immunity against MPM have been tested but shown variable results. Previously, we have demonstrated interesting vascular modulating properties of low-dose photodynamic therapy (L-PDT) on MPM. Here, we hypothesized that L-PDT vascular modulation could favour immune cell extravasation in MPM and improve tumour control in combination with immune checkpoint inhibitors. METHODS First, we assessed the impact of L-PDT on vascular endothelial E-selectin expression, a key molecule for immune cell extravasation, in vitro and in a syngeneic murine model of MPM. Second, we characterized the tumour immune cell infiltrate by 15-colour flow cytometry analysis 2 and 7 days after L-PDT treatment of the murine MPM model. Third, we determined how L-PDT combined with immune checkpoint inhibitor anti-CTLA4 affected tumour growth in a murine MPM model. RESULTS L-PDT significantly enhanced E-selectin expression by endothelial cells in vitro and in vivo. This correlated with increased CD8+ T cells and activated antigen-presenting cells (CD11b+ dendritic cells and macrophages) infiltration in MPM. Also, compared to anti-CTLA4 that only affects tumour growth, the combination of L-PDT with anti-CTLA4 caused complete MPM regression in 37.5% of animals. CONCLUSIONS L-PDT enhances E-selectin expression in the MPM endothelium, which favours immune infiltration of tumours. The combination of L-PDT with immune checkpoint inhibitor anti-CTLA4 allows best tumour control and regression.
Collapse
Affiliation(s)
- Sabrina Cavin
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Aspasia Gkasti
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Faget
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yameng Hao
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maxime Reichenbach
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Gonzalez
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Krueger
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean Y Perentes
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
79
|
Taleb M, Atabakhshi‐Kashi M, Wang Y, Rezavani Alanagh H, Farhadi Sabet Z, Li F, Cheng K, Li C, Qi Y, Nie G, Ying Z. Bifunctional Therapeutic Peptide Assembled Nanoparticles Exerting Improved Activities of Tumor Vessel Normalization and Immune Checkpoint Inhibition. Adv Healthc Mater 2021; 10:e2100051. [PMID: 34021735 DOI: 10.1002/adhm.202100051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/09/2021] [Indexed: 12/19/2022]
Abstract
The effectiveness of cancer immunotherapy is impaired by the dysfunctional vasculature of tumors. Created hypoxia zones and limited delivery of cytotoxic immune cells help to have immune resistance in tumor tissue. Structural and functional normalization of abnormal tumor vasculature provide vessels for more perfusion efficiency and drug delivery that result in alleviating the hypoxia in the tumor site and increasing infiltration of antitumor T cells. Taking advantage of peptide amphiphiles, herein, a novel peptide amphiphile nanoparticle composed of an antiangiogenic peptide (FSEC) and an immune checkpoint blocking peptide (D PPA) is designed and characterized. FSEC peptide is known to be involved in vessel normalization of tumors in vivo. D PPA is an inhibitory peptide of the PD-1/PD-L1 immune checkpoint pathway. The peptide amphiphile nanoparticle sets out to test whether simultaneous modulation of tumor vasculature and immune systems in the tumor microenvironment has a synergistic effect on tumor suppression. Increased intratumoral infiltration of immune cells following vascular normalization, and simultaneously blocking the immune checkpoint function of PD-L1 reactivates effective immune responses to the tumors. In summary, the current study provides a new perspective on the regulation of tumor vessel normalization and immunotherapy based on functional peptide nanoparticles as nanomedicine for improved therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Taleb
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mona Atabakhshi‐Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yazhou Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Hamideh Rezavani Alanagh
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zeinab Farhadi Sabet
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fenfen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Chen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yingqiu Qi
- School of Basic Medical Science Zhengzhou University Henan 450001 China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| | - Zhao Ying
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 P. R. China
| |
Collapse
|
80
|
Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D, Rovati B, Moccia F, Pedrazzoli P, Ferraris E. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res 2021; 138:104189. [PMID: 34062191 DOI: 10.1016/j.mvr.2021.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.
Collapse
Affiliation(s)
- Giovanna Armani
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy..
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Daniela Cicognini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Rovati
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Ferraris
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
81
|
Yuan W, Xu C, Li B, Xia H, Pan Y, Zhong W, Xu L, Chen R, Wang B. Contributions of Costimulatory Molecule CD137 in Endothelial Cells. J Am Heart Assoc 2021; 10:e020721. [PMID: 34027676 PMCID: PMC8483511 DOI: 10.1161/jaha.120.020721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD137 (4-1BB, tumor necrosis factor receptor superfamily 9) is a surface glycoprotein of the tumor necrosis factor receptor family that can be induced on a variety of immunocytes and nonimmune cells, including endothelial cells and smooth muscle cells. The importance of CD137 in immune response has been well recognized; however, the precise biological effects and underlying mechanisms of CD137 in endothelial cells are unclear. A single layer of cells called the endothelium constitutes the innermost layer of blood vessels including larger arteries, veins, the capillaries, and the lymphatic vessels. It not only acts as an important functional interface, but also participates in local inflammatory response. This review covers recent findings to illuminate the role of CD137 in endothelial cells in different pathophysiologic settings.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Chong Xu
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Bo Li
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Hao Xia
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Yingjie Pan
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Wei Zhong
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Liangjie Xu
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Rui Chen
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Bin Wang
- Department of Geriatrics Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
82
|
Liang Q, Zhou L, Li Y, Liu J, Liu Y. Nano drug delivery system reconstruct tumour vasculature for the tumour vascular normalisation. J Drug Target 2021; 30:119-130. [PMID: 33960252 DOI: 10.1080/1061186x.2021.1927056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abnormal structure and function of blood vessels in the TME are obvious characteristics of the tumour. Abnormal blood vessels with high leakage support the occurrence of malignant tumours and increase the possibility of tumour cell invasion and metastasis. The formation of abnormal vascular also enhances immunosuppression and prevents the delivery of chemotherapy drugs to deeper tumours. Therefore, the normalisation of tumour blood vessels is a very promising approach to improve anti-tumour efficacy, aiming to restore the structural integrity of vessels and improve drug delivery efficiency and anti-tumour immunity. In this review, we have summarised strategies to improve cancer treatment that via nano drug delivery technology regulates the normalisation of tumour blood vessels. The treatment strategies related to the structure and function of tumour blood vessels such as angiogenesis factors, tumour-associated macrophages, tumour vascular endothelial cells, tumour-associated fibroblasts and immune checkpoints in the TME were mainly discussed. The normalisation of tumour blood vessels presents new opportunities and challenges for the more efficient delivery of nanoparticles to tumour tissues and cells and an innovative combination of treatments for cancer.
Collapse
Affiliation(s)
- Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
83
|
Verhoeven J, Baelen J, Agrawal M, Agostinis P. Endothelial cell autophagy in homeostasis and cancer. FEBS Lett 2021; 595:1497-1511. [PMID: 33837545 DOI: 10.1002/1873-3468.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jef Baelen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| |
Collapse
|
84
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
85
|
Klebe M, Olbert PJ, Hofmann R, Barth PJ, Hegele A. [CpG-ODN instillation boosts ICAM-1 expression in an orthotopic murine UCC model: immunohistochemical evaluation of the local response to immunostimulatory DNA]. Aktuelle Urol 2021. [PMID: 33853160 DOI: 10.1055/a-1268-2069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Immunostimulatory CpG oligodeoxynucleotides (CpG-ODN) have been verified as an effective antineoplastic agent for intravesical application in a murine orthotopic C57-BL6 /MB-49 urothelial cell carcinoma (UCC). To date, many details in the mode of action have remained unclear. Preceding studies pointed towards a Th1-weighted response. The aim of this work was to identify the local lymphocyte subsets in murine tumour-bearing bladders and to examine effects on the expression of Intercellular Adhesion Molecule 1 (ICAM-1) after treatment with CpG-ODN. MATERIAL AND METHODS Different instillation schedules were applied in an established orthotopic C57-BL6 /MB49 UCC model. After 13 days, fresh frozen sections of the harvested bladders were immunohistochemically examined for the infiltration density of lymphocytes expressing CD 3, CD4, CD8 and CD19. In a second series of the same animal model, healthy and tumour-bearing bladders were exposed to CpG-ODN or PBS and later stained for the expression of ICAM-1. RESULTS CpG-ODN instillation led to augmented T-cell infiltration (represented by CD3). Further T-cell subdifferentiation between T-helper cells (CD4) and cytotoxic T cells (CD 8a) did not show a perceptible variety between groups. The B-cell population (CD19) was found to decrease over the course of treatment. In the second series, treatment provoked a strong expression of ICAM-1 by infiltrating leukocytes, endothelial cells and particularly by the cancer cells themselves. DISCUSSION The previously observed augmented lymphocyte density was classified as T-cell infiltration. The decline of the B-cell concentration over the course of treatment suggests a Th2 suppression in favour of a Th-1 polarisation. These findings support the assumption that a cell-mediated immune response is the mode of action underlying the antineoplastic CpG-ODN capacities. The marked upregulation of ICAM-1 expression, especially on tumour cells, suggests a crucial role of this membrane protein for the initiation and maintenance of anticancer immune response. CONCLUSION CpG-ODN might be a prospective alternative to established instillation therapies. With a view to the current BCG shortage and the well-known toxicities, an amplification of the topic therapy armamentarium could be achievable. The now described capability of ICAM-1 induction on carcinoma cells and, by association, the reversal of escape strategies to cancer immunity may also make the agent interesting as an adjuvant for modern checkpoint inhibition.
Collapse
Affiliation(s)
- Marwin Klebe
- Krankenhaus Nordwest, Klink für Urologie und Kinderurologie, Frankfurt
| | | | - Rainer Hofmann
- Universitätsklinikum Gießen und Marburg - Standort Marburg, Klinik für Urologie und Kinderurologie, Marburg
| | - Peter Josef Barth
- Universitätsklinikum Münster, Gerhard-Domagk-Institut für Pathologie, Münster
| | - Axel Hegele
- Urologisches Zentrum Mittelhessen, DRK-Krankenhaus Biedenkopf und Universitätsklinikum Gießen und Marburg, Klinik für Strahlentherapie, Standort Marburg
| |
Collapse
|
86
|
Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Cancer treatment has yet to find a "silver bullet" capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís R Raposo
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rúben Valente
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
87
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
88
|
Park S, Oh JH, Park DJ, Zhang H, Noh M, Kim Y, Kim YS, Kim H, Kim YM, Ha SJ, Kwon YG. CU06-1004-Induced Vascular Normalization Improves Immunotherapy by Modulating Tumor Microenvironment via Cytotoxic T Cells. Front Immunol 2021; 11:620166. [PMID: 33584714 PMCID: PMC7874050 DOI: 10.3389/fimmu.2020.620166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023] Open
Abstract
Blocking the immune evasion mechanism of tumor cells has become an attractive means for treating cancers. However, the usage of a drug such as nivolumab (αPD-1), which blocks programmed cell death protein 1 (PD-1), turned out to be only effective against certain types of cancer. Especially, vascular abnormal structures of which deter delivery route by leakage and cause the poor perfusion were considered to be environment unfavorable to T cells and immune checkpoint blockade (ICB) delivery within the tumor microenvironment (TME). Herein, we report stabilization of tumor blood vessels by endothelial dysfunctional blocker CU06-1004, which modified the TME and showed synergistic effects with immunotherapy anti-PD-1 antibody. CU06-1004 combination therapy consistently prolonged the survival of tumor-bearing mice by decreasing tumor growth. T-cell infiltration increased in the tumors of the combination group, with cytotoxic CD8+ T cell activity within the tumor parenchyma upregulated compared with anti-PD-1 monotherapy. Tumor inhibition was associated with reduced hypoxia and reduced vessel density in the central region of the tumor. These effects correlated significantly with enhanced expression of IFN gamma and PD-L1 in tumors. Taken together, our findings suggest that CU06-1004 is a potential candidate drug capable of improving therapeutic efficacy of anti-PD-1 through beneficial changes in the TME.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/pathology
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Capillary Permeability/drug effects
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/pathology
- Drug Screening Assays, Antitumor
- Drug Synergism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Immune Checkpoint Inhibitors/administration & dosage
- Immune Checkpoint Inhibitors/pharmacokinetics
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/physiopathology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Saponins/administration & dosage
- Saponins/pharmacology
- Saponins/therapeutic use
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Burden/drug effects
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Hoon Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Haiying Zhang
- R&D Department, Curacle Co. Ltd, Seongnam-si, South Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ye-Seul Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
89
|
Cytokine changes during immune-related adverse events and corticosteroid treatment in melanoma patients receiving immune checkpoint inhibitors. Cancer Immunol Immunother 2021; 70:2209-2221. [DOI: 10.1007/s00262-021-02855-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
|
90
|
Hu-Lieskovan S, Malouf GG, Jacobs I, Chou J, Liu L, Johnson ML. Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need. Future Oncol 2021; 17:1401-1439. [PMID: 33475012 DOI: 10.2217/fon-2020-0967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various cancers by reversing the immunosuppressive mechanisms employed by tumors to restore anticancer immunity. Although ICIs have demonstrated substantial clinical efficacy, patient response can vary in depth and duration, and many do not respond at all or eventually develop resistance. ICI resistance mechanisms can be tumor-intrinsic, related to the tumor microenvironment or patient-specific factors. Multiple resistance mechanisms may be present within one tumor subtype, or heterogeneity exists among patients with the same tumor type. Consequently, designing effective combination treatment strategies is challenging. This review will discuss ICI resistance mechanisms, and summarize findings from key preclinical and clinical trials of ICIs, to identify potential treatment strategies or pathways to overcome ICI resistance.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Medicine, Division of Oncology, Huntsman Cancer Institute / University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg & Department of Functional Genomics & Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch Cedex, Strasbourg, France
| | | | | | - Li Liu
- Pfizer Inc, San Diego, CA 92121, USA
| | - Melissa L Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN 37203, USA
| |
Collapse
|
91
|
Khuda-Bukhsh AR, Saha SK, Das S, Saha SS. Molecular approaches toward targeted cancer therapy with some food plant products: On the role of antioxidants and immune microenvironment. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
92
|
Ma W, Wang Y, Zhang R, Yang F, Zhang D, Huang M, Zhang L, Dorsey JF, Binder ZA, O'Rourke DM, Fraietta JA, Gong Y, Fan Y. Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. NATURE CANCER 2021; 2:83-97. [PMID: 35121889 PMCID: PMC10097424 DOI: 10.1038/s43018-020-00147-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Malignant solid tumors are characterized by aberrant vascularity that fuels the formation of an immune-hostile microenvironment and induces resistance to immunotherapy. Vascular abnormalities may be driven by pro-angiogenic pathway activation and genetic reprogramming in tumor endothelial cells (ECs). Here, our kinome-wide screening of mesenchymal-like transcriptional activation in human glioblastoma (GBM)-derived ECs identifies p21-activated kinase 4 (PAK4) as a selective regulator of genetic reprogramming and aberrant vascularization. PAK4 knockout induces adhesion protein re-expression in ECs, reduces vascular abnormalities, improves T cell infiltration and inhibits GBM growth in mice. Moreover, PAK4 inhibition normalizes the tumor vascular microenvironment and sensitizes GBM to chimeric antigen receptor-T cell immunotherapy. Finally, we reveal a MEF2D/ZEB1- and SLUG-mediated mechanism by which PAK4 reprograms the EC transcriptome and downregulates claudin-14 and VCAM-1 expression, enhancing vessel permeability and reducing T cell adhesion to the endothelium. Thus, targeting PAK4-mediated EC plasticity may offer a unique opportunity to recondition the vascular microenvironment and strengthen cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjuan Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanling Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rongxin Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Fraietta
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Gong
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
93
|
Taskaeva I, Bgatova N. Microvasculature in hepatocellular carcinoma: An ultrastructural study. Microvasc Res 2021; 133:104094. [PMID: 33011171 DOI: 10.1016/j.mvr.2020.104094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most vascularized tumor types, and is characterized by development of heterogeneous immature vessels with increased permeability. Here, we analyzed morphology and vascular permeability-related structures in endothelial cells of HCC microvessels. METHODS Small (Type I) and large (Type II) peritumoral blood microvessels were assessed in HCC-bearing mice. By transmission electron microscopy, endothelial cell cytoplasm area, free transport vesicles, vesiculo-vacuolar organelles and clathrin-coated vesicles were measured. RESULTS The phenotypic changes in the HCC microvessels included presence of sinusoidal capillarization, numerous luminal microprocesses and abnormal luminal channels, irregular dilatations of interendothelial junctions, local detachment of basement membranes and widened extracellular space. Endothelial cells Type I microvessels showed increased vesicular trafficking-related structures. CONCLUSION Ultrastructural characteristics of microvessels Type I can associate with HCC new-formed microvessels. The morphological changes observed in HCC microvessels might explain the increased transcellular and paracellular permeability in HCC endothelial cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia.
| | - Nataliya Bgatova
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
94
|
CCL25 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:99-111. [PMID: 34286444 DOI: 10.1007/978-3-030-62658-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.
Collapse
|
95
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
96
|
Meyer AV, Klein D, de Leve S, Szymonowicz K, Stuschke M, Robson SC, Jendrossek V, Wirsdörfer F. Host CD39 Deficiency Affects Radiation-Induced Tumor Growth Delay and Aggravates Radiation-Induced Normal Tissue Toxicity. Front Oncol 2020; 10:554883. [PMID: 33194619 PMCID: PMC7649817 DOI: 10.3389/fonc.2020.554883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The ectonucleoside triphosphate diphosphohydrolase (CD39)/5′ ectonuclotidase (CD73)-dependent purinergic pathway emerges as promising cancer target. Yet, except for own previous work revealing a pathogenic role of CD73 and adenosine in radiation-induced lung fibrosis, the role of purinergic signaling for radiotherapy outcome remained elusive. Here we used C57BL/6 wild-type (WT), CD39 knockout (CD39−/−), and CD73 knockout (CD73−/−) mice and hind-leg tumors of syngeneic murine Lewis lung carcinoma cells (LLC1) to elucidate how host purinergic signaling shapes the growth of LLC1 tumors to a single high-dose irradiation with 10 Gy in vivo. In complementary in vitro experiments, we examined the radiation response of LLC1 cells in combination with exogenously added ATP or adenosine, the proinflammatory and anti-inflammatory arms of purinergic signaling. Finally, we analyzed the impact of genetic loss of CD39 on pathophysiologic lung changes associated with lung fibrosis induced by a single-dose whole-thorax irradiation (WTI) with 15 Gy. Loss of CD73 in the tumor host did neither significantly affect tumor growth nor the radiation response of the CD39/CD73-negative LLC1 tumors. In contrast, LLC1 tumors exhibited a tendency to grow faster in CD39−/− mice compared to WT mice. Even more important, tumors grown in the CD39-deficient background displayed a significantly reduced tumor growth delay upon irradiation when compared to irradiated tumors grown on WT mice. CD39 deficiency caused only subtle differences in the immune compartment of irradiated LLC1 tumors compared to WT mice. Instead, we could associate the tumor growth and radioresistance-promoting effects of host CD39 deficiency to alterations in the tumor endothelial compartment. Importantly, genetic deficiency of CD39 also augmented the expression level of fibrosis-associated osteopontin in irradiated normal lungs and exacerbated radiation-induced lung fibrosis at 25 weeks after irradiation. We conclude that genetic loss of host CD39 alters the tumor microenvironment, particularly the tumor microvasculature, and thereby promotes growth and radioresistance of murine LLC1 tumors. In the normal tissue loss of host, CD39 exacerbates radiation-induced adverse late effects. The suggested beneficial roles of host CD39 on the therapeutic ratio of radiotherapy suggest that therapeutic strategies targeting CD39 in combination with radiotherapy have to be considered with caution.
Collapse
Affiliation(s)
- Alina V Meyer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Simone de Leve
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Klaudia Szymonowicz
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Verena Jendrossek
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
97
|
Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 2020; 10:2018-2036. [PMID: 33304777 PMCID: PMC7714955 DOI: 10.1016/j.apsb.2020.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors, endogenous immune surveillance and immune cell function. Vascular normalization as a novel therapeutic strategy tends to prune some of the immature blood vessels and fortify the structure and function of the remaining vessels, thus improving immune stimulation and the efficacy of immunotherapy. Interestingly, the presence of "immune‒vascular crosstalk" enables the formation of a positive feedback loop between vascular normalization and immune reprogramming, providing the possibility to develop new cancer therapeutic strategies. The applications of nanomedicine in vascular-targeting therapy in cancer have gained increasing attention due to its specific physical and chemical properties. Here, we reviewed the recent advances of effective routes, especially nanomedicine, for normalizing tumor vasculature. We also summarized the development of enhancing nanoparticle-based anticancer drug delivery via the employment of transcytosis and mimicking immune cell extravasation. This review explores the potential to optimize nanomedicine-based therapeutic strategies as an alternative option for cancer treatment.
Collapse
|
98
|
Jiang W, Yang X, Wang X, Li Y, Yang X, Wang N, Yin B. Bronchoscopic intratumoral injections of cisplatin and endostar as concomitants of standard chemotherapy to treat malignant central airway obstruction. Postgrad Med J 2020; 98:104-112. [PMID: 33070116 DOI: 10.1136/postgradmedj-2020-138823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022]
Abstract
STUDY PURPOSE Malignant central airway obstruction (CAO) in non-small cell lung cancer (NSCLC) is associated with high morbidity and requires endobronchial palliative treatment to re-establish a free air passage. We investigate intratumoral therapy combining anti-angiogenic and cytotoxic as a feasible therapeutic modality to treat malignant CAO. STUDY DESIGN Ten NSCLC subjects with symptomatic malignant CAO underwent endobronchial intratumoral cisplatin and Endostar co-injection after tumour debulking next to systemic cisplatin-based chemotherapy. Injection was performed immediately after debulking surgery and was then carried out on day 2, day 6 and day 10 past systemic chemotherapy. Nine subjects of control group constantly received traditional cisplatin-based chemotherapy. Bronchoscopy, CT scanning, histology, FEV1/FVC ratio, Karnofsky performance (KPS) and shortness of breath scores were analysed to assess therapeutic efficacy. RESULTS All 10 subjects benefited from the intratumoral cisplatin and endostar co-injection and systemic chemotherapy combination therapy. Bronchoscopy and CT scanning analyses showed a massive airway widening after treatment. Increased KPS and reduced shortness of breath score were also observed. A substantial improvement of lung function was further confirmed by increased FEV1/FVC ratio. For subjects of control group, the improvement was moderate and obviously not as optimal as the 10 subjects with intratumoral injection. CONCLUSIONS We have shown that the intratumoral injection of cytotoxic cisplatin plus anti-angiogenic Endostar is an effective and safe adjuvant therapeutic option to treat malignant CAO in clinical practice. This time-staggered local and systemic treatment combination improves quality of life and clinical parameters, thus may provide a feasible therapeutic option for symptomatic CAO.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Xiaoping Yang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Xuekun Wang
- Department of Respiration, Qingdao Central Hospital, Qingdao, China
| | - Yue Li
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Xinai Yang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Na Wang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Bin Yin
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| |
Collapse
|
99
|
Peleli M, Moustakas A, Papapetropoulos A. Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. Int J Mol Sci 2020; 21:E7371. [PMID: 33036204 PMCID: PMC7582718 DOI: 10.3390/ijms21197371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC-TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC-TC interaction.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| |
Collapse
|
100
|
Kennedy SA, Morrissey ME, Dunne MR, O'Connell F, Butler CT, Cathcart MC, Buckley AM, Mehigan BJ, Larkin JO, McCormick P, Kennedy BN, O'Sullivan J. Combining 1,4-dihydroxy quininib with Bevacizumab/FOLFOX alters angiogenic and inflammatory secretions in ex vivo colorectal tumors. BMC Cancer 2020; 20:952. [PMID: 33008336 PMCID: PMC7532092 DOI: 10.1186/s12885-020-07430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer-related mortality worldwide with one in every five patients diagnosed with metastatic CRC (mCRC). In mCRC cases, the 5-year survival rate remains at approximately 14%, reflecting the lack of effectiveness of currently available treatments such as the anti-VEGF targeting antibody Bevacizumab combined with the chemotherapy folinic acid, fluorouracil and oxaliplatin (FOLFOX). Approximately 60% of patients do not respond to this combined treatment. Furthermore, Bevacizumab inhibits dendritic cell (DC) maturation in poor responders, a key process for tumor eradication. Method Following drug treatment, secreted expression levels of angiogenic and inflammatory markers in tumor conditioned media generated from human ex vivo colorectal tumors were measured by ELISA. Dendritic cell phenotypic and maturation markers were assessed by flow cytometry. Results Our novel compound, 1,4-dihydroxy quininib, acts in an alternative pathway compared to the approved therapy Bevacizumab. 1,4-dihydroxy quininib alone, and in combination with Bevacizumab or FOLFOX significantly reduced TIE-2 expression which is involved in the promotion of tumor vascularization. Combination treatment with 1,4-dihydroxy quininib significantly increased the expression level of DC phenotypic and maturation markers. Conclusion Our results indicate the anti-angiogenic small molecule 1,4-dihydroxy quininib could be an alternative novel treatment in combination therapy for CRC patients.
Collapse
Affiliation(s)
- Susan A Kennedy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Maria E Morrissey
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Clare T Butler
- UCD Conway Institute & UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Mary-Clare Cathcart
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Amy M Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | - Breandán N Kennedy
- UCD Conway Institute & UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|