51
|
Mirzapoiazova T, Xiao G, Mambetsariev B, Nasser MW, Miaou E, Singhal SS, Srivastava S, Mambetsariev I, Nelson MS, Nam A, Behal A, Arvanitis L, Atri P, Muschen M, Tissot FLH, Miser J, Kovach JS, Sattler M, Batra SK, Kulkarni P, Salgia R. Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1820-1835. [PMID: 34253596 PMCID: PMC8722383 DOI: 10.1158/1535-7163.mct-21-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023]
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of apoptosis, proliferation, and DNA-damage response, is overexpressed in many cancers, including small cell lung cancer (SCLC). Here we report that LB100, a small molecule inhibitor of PP2A, when combined with platinum-based chemotherapy, synergistically elicited an antitumor response both in vitro and in vivo with no apparent toxicity. Using inductively coupled plasma mass spectrometry, we determined quantitatively that sensitization via LB100 was mediated by increased uptake of carboplatin in SCLC cells. Treatment with LB100 alone or in combination resulted in inhibition of cell viability in two-dimensional culture and three-dimensional spheroid models of SCLC, reduced glucose uptake, and attenuated mitochondrial and glycolytic ATP production. Combining LB100 with atezolizumab increased the capacity of T cells to infiltrate and kill tumor spheroids, and combining LB100 with carboplatin caused hyperphosphorylation of the DNA repair marker γH2AX and enhanced apoptosis while attenuating MET signaling and invasion through an endothelial cell monolayer. Taken together, these data highlight the translational potential of inhibiting PP2A with LB100 in combination with platinum-based chemotherapy and immunotherapy in SCLC.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Gang Xiao
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
- Institute of Immunology, Institute of Hematology, Zhejiang University School of Medicine, Zhejiang, China
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emily Miaou
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Saumya Srivastava
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, California
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Cancer Center, Duarte, California
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Markus Muschen
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - François L H Tissot
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - James Miser
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California
| | - John S Kovach
- Lixte Biotechnology Holdings, Inc., East Setauket, New York
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
52
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
53
|
Chen S, Zhou X, Yang X, Li W, Li S, Hu Z, Ling C, Shi R, Liu J, Chen G, Song N, Jiang X, Sui X, Gao Y. Dual Blockade of Lactate/GPR81 and PD-1/PD-L1 Pathways Enhances the Anti-Tumor Effects of Metformin. Biomolecules 2021; 11:1373. [PMID: 34572586 PMCID: PMC8466555 DOI: 10.3390/biom11091373] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely used antidiabetic drug for cancer prevention and treatment. However, the overproduction of lactic acid and its inefficiency in cancer therapy limit its application. Here, we demonstrate the synergistic effects of the lactate/GPR81 blockade (3-hydroxy-butyrate, 3-OBA) and metformin on inhibiting cancer cells growth in vitro. Simultaneously, this combination could inhibit glycolysis and OXPHOS metabolism, as well as inhibiting tumor growth and reducing serum lactate levels in tumor-bearing mice. Interestingly, we observed that this combination could enhance the functions of Jurkat cells in vitro and CD8+ T cells in vivo. In addition, considering that 3-OBA could recover the inhibitory effects of metformin on PD-1 expression, we further determined the dual blockade effects of PD-1/PD-L1 and lactate/GPR81 on the antitumor activity of metformin. Our results suggested that this dual blockade strategy could remarkably enhance the anti-tumor effects of metformin, or even lead to tumor regression. In conclusion, our study has proposed a novel and robust strategy for a future application of metformin in cancer treatment.
Collapse
Affiliation(s)
- Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Chen Ling
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Nazi Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China; (N.S.); (X.J.)
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China; (N.S.); (X.J.)
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| |
Collapse
|
54
|
Xi J, Xi Y, Zhang Z, Hao Y, Wu F, Bian B, Hao G, Li W, Zhang S. Hsa_circ_0060937 accelerates non-small cell lung cancer progression via modulating miR-195-5p/HMGB3 pathway. Cell Cycle 2021; 20:2040-2052. [PMID: 34470585 DOI: 10.1080/15384101.2021.1969203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) exert a critical effect on tumorigenesis and development. Our research aimed to clarify the function and underlying mechanism of circ_0060937 inNSCLC. The concentrations of circ_0060937, miR-195-5p and high-mobility group box 3 (HMGB3) were monitored via qRT-PCR and western blot assays. Additionally, cell proliferation, apoptosis, migration and invasion were assessed using CCK-8, colony formation, flow cytometry and transwell assays. Glycolysis was evaluated via detecting glucose uptake and lactate product. The association between miR-195-5p and circ_0060937/HMGB3 were validated using dual-luciferase reporter, RNA pull-down and RIP assays. Furthermore,in vivo experiment was performed to analyze tumorigenesis.Circ_0060937 and HMGB3 levels were elevated, whereas miR-195-5p level was dropped in NSCLC. Circ_0060937 down-regulation restrainedNSCLC cell proliferation, migration, invasion and glycolysis, and triggered apoptosis. Knockdown of circ_0060937 restrained NSCLC development via absorbing miR-195-5p. Circ_0060937 silencing inhibited NSCLC progression by mediating HMGB3. Besides, circ_0060937 depletion suppressed tumor growth in vivo.Circ_0060937 knockdown hindered NSCLC development and glycolysis via regulating miR-195-5p/HMGB3 pathway.
Collapse
Affiliation(s)
- Junfeng Xi
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Yunfeng Xi
- Department of Dermatology, The First Hospital of Yulin City, Yulin, China
| | - Zhibin Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Yanhong Hao
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Fei Wu
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Burong Bian
- Deapartment of Oncology, The First Hospital of Yulin City, Yulin, China
| | - Guangjun Hao
- Deapartment of Oncology, The First Hospital of Yulin City, Yulin, China
| | - Weiwei Li
- Department of Cardiothoracic Surgery, The First Hospital of Yulin City, Yulin, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
55
|
De Rosa V, Iommelli F, Terlizzi C, Leggiero E, Camerlingo R, Altobelli GG, Fonti R, Pastore L, Del Vecchio S. Non-Canonical Role of PDK1 as a Negative Regulator of Apoptosis through Macromolecular Complexes Assembly at the ER-Mitochondria Interface in Oncogene-Driven NSCLC. Cancers (Basel) 2021; 13:cancers13164133. [PMID: 34439291 PMCID: PMC8391251 DOI: 10.3390/cancers13164133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Co-targeting of glucose metabolism and oncogene drivers in patients with non-small cell lung cancer (NSCLC) has been proposed as a potentially effective therapeutic strategy. Here, we demonstrate that downregulation of pyruvate dehydrogenase kinase 1 (PDK1), an enzyme of glycolytic cascade, enhances maximal respiration of cancer cells by upregulating mitochondrial complexes of oxidative phosphorylation (OXPHOS) and improves tumor response to tyrosine kinase inhibitors by promoting apoptosis. Furthermore, we provided consistent evidence that PDK1 drives the formation of macromolecular complexes at the ER–mitochondria interface involving PKM2, Bcl-2 and Bcl-xL and serves as an indirect anchorage of anti-apoptotic proteins to the mitochondrial membrane. Our findings taken together highlighted a non-canonical role of PDK1 as a negative regulator of apoptosis, thus coupling the glycolytic phenotype to drug resistance. The major translational relevance of this study is to provide a rational basis for combined therapeutic strategies targeting PDK1 and oncogene drivers in NSCLC patients. Abstract Here, we tested whether co-targeting of glucose metabolism and oncogene drivers may enhance tumor response to tyrosine kinase inhibitors (TKIs) in NSCLC. To this end, pyruvate dehydrogenase kinase 1 (PDK1) was stably downregulated in oncogene-driven NSCLC cell lines exposed or not to TKIs. H1993 and H1975 cells were stably transfected with scrambled (shCTRL) or PDK1-targeted (shPDK1) shRNA and then treated with MET inhibitor crizotinib (1 µM), double mutant EGFRL858R/T790M inhibitor WZ4002 (1 µM) or vehicle for 48 h. The effects of PDK1 knockdown on glucose metabolism and apoptosis were evaluated in untreated and TKI-treated cells. PDK1 knockdown alone did not cause significant changes in glycolytic cascade, ATP production and glucose consumption, but it enhanced maximal respiration in shPDK1 cells when compared to controls. When combined with TKI treatment, PDK1 downregulation caused a strong enhancement of OXPHOS and a marked reduction in key glycolytic enzymes. Furthermore, increased levels of apoptotic markers were found in shPDK1 cells as compared to shCTRL cells after treatment with TKIs. Co-immunoprecipitation studies showed that PDK1 interacts with PKM2, Bcl-2 and Bcl-xL, forming macromolecular complexes at the ER–mitochondria interface. Our findings showed that downregulation of PDK1 is able to potentiate the effects of TKIs through the disruption of macromolecular complexes involving PKM2, Bcl-2 and Bcl-xL.
Collapse
Affiliation(s)
- Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (V.D.R.); (F.I.); (R.F.)
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (V.D.R.); (F.I.); (R.F.)
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (C.T.); (G.G.A.)
| | | | - Rosa Camerlingo
- Department of Cell Biology and Biotherapy, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Giovanna G. Altobelli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (C.T.); (G.G.A.)
| | - Rosa Fonti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (V.D.R.); (F.I.); (R.F.)
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (E.L.); (L.P.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (C.T.); (G.G.A.)
- Correspondence: ; Tel.: +39-081-746-3307
| |
Collapse
|
56
|
Dankó T, Petővári G, Sztankovics D, Moldvai D, Raffay R, Lőrincz P, Visnovitz T, Zsiros V, Barna G, Márk Á, Krencz I, Sebestyén A. Rapamycin Plus Doxycycline Combination Affects Growth Arrest and Selective Autophagy-Dependent Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22158019. [PMID: 34360785 PMCID: PMC8347279 DOI: 10.3390/ijms22158019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic alteration is characteristic during tumour growth and therapy; however, targeting metabolic rewiring could overcome therapy resistance. mTOR hyperactivity, autophagy and other metabolic processes, including mitochondrial functions, could be targeted in breast cancer progression. We investigated the growth inhibitory mechanism of rapamycin + doxycycline treatment in human breast cancer model systems. Cell cycle and cell viability, including apoptotic and necrotic cell death, were analysed using flow cytometry, caspase activity measurements and caspase-3 immunostainings. mTOR-, autophagy-, necroptosis-related proteins and treatment-induced morphological alterations were analysed by WesTM, Western blot, immunostainings and transmission electron microscopy. The rapamycin + doxycycline combination decreased tumour proliferation in about 2/3rd of the investigated cell lines. The continuous treatment reduced tumour growth significantly both in vivo and in vitro. The effect after short-term treatment was reversible; however, autophagic vacuoles and degrading mitochondria were detected simultaneously, and the presence of mitophagy was also observed after the long-term rapamycin + doxycycline combination treatment. The rapamycin + doxycycline combination did not cause apoptosis or necrosis/necroptosis, but the alterations in autophagy- and mitochondria-related protein levels (LC3-B-II/I, p62, MitoTracker, TOM20 and certain co-stainings) were correlated to autophagy induction and mitophagy, without mitochondria repopulation. Based on these results, we suggest considering inducing metabolic stress and targeting mTOR hyperactivity and mitochondrial functions in combined anti-cancer treatments.
Collapse
Affiliation(s)
- Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dániel Sztankovics
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dorottya Moldvai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary;
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, H-1094 Budapest, Hungary;
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ágnes Márk
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
- Correspondence:
| |
Collapse
|
57
|
Zhang D, Wang Y, Yang Q. A High Epigenetic Risk Score Shapes the Non-Inflamed Tumor Microenvironment in Breast Cancer. Front Mol Biosci 2021; 8:675198. [PMID: 34381812 PMCID: PMC8350480 DOI: 10.3389/fmolb.2021.675198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Epigenetic dysregulation via aberrant DNA methylation has gradually become recognized as an efficacious signature for predicting tumor prognosis and response to therapeutic targets. However, reliable DNA methylation biomarkers describing tumorigenesis remain to be comprehensively explored regarding their prognostic and therapeutic potential in breast cancer (BC). Methods: Whole-genome methylation datasets integrated from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were profiled (n = 1,268). A three-stage selection procedure (discovery, training, and external validation) was utilized to screen out the prominent biomarkers and establish a robust risk score from more than 300,000 CpG sites after quality control, rigorous filtering, and reducing dimension. Moreover, gene set enrichment analyses guided us to systematically correlate this epigenetic risk score with immunological characteristics, including immunomodulators, anti-cancer immunity cycle, immune checkpoints, tumor-infiltrating immune cells and a series of signatures upon modulating components within BC tumor microenvironment (TME). Multi-omics data analyses were performed to decipher specific genomic alterations in low- and high-risk patients. Additionally, we also analyzed the role of risk score in predicting response to several treatment options. Results: A 10-CpG-based prognostic signature which could significantly and independently categorize BC patients into distinct prognoses was established and sufficiently validated. And we hypothesize that this signature designs a non-inflamed TME in BC based on the evidence that the derived risk score is negatively correlated with tumor-associated infiltrating immune cells, anti-cancer immunity cycle, immune checkpoints, immune cytolytic activity, T cell inflamed score, immunophenoscore, and the vast majority of immunomodulators. The identified high-risk patients were characterized by upregulation of immune inhibited oncogenic pathways, higher TP53 mutation and copy number burden, but lower response to cancer immunotherapy and chemotherapy. Conclusion: Our work highlights the complementary roles of 10-CpG-based signature in estimating overall survival in BC patients, shedding new light on investigating failed events concerning immunotherapy at present.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingnan Wang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
58
|
Matula Z, Mikala G, Lukácsi S, Matkó J, Kovács T, Monostori É, Uher F, Vályi-Nagy I. Stromal Cells Serve Drug Resistance for Multiple Myeloma via Mitochondrial Transfer: A Study on Primary Myeloma and Stromal Cells. Cancers (Basel) 2021; 13:cancers13143461. [PMID: 34298674 PMCID: PMC8307863 DOI: 10.3390/cancers13143461] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Mitochondrial transfer plays a crucial role in the acquisition of drug resistance in multiple myeloma, but its exact mechanism is not yet clear; moreover, overcoming the drug resistance that it causes is also a major challenge. Our research on primary myeloma cell cultures reveals that mitochondrial transfer is bi-directional between bone marrow stromal cells and myeloma cells, occurring via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, whereupon survival and adenosine triphosphate levels increase, while mitochondrial superoxide levels decrease in myeloma cells. These changes and the elevation of superoxide levels in stromal cells are proportional to the amount of incorporated mitochondria derived from the other cell type and to the concentration of the used drug. Although the inhibition of mitochondrial transfer is limited between stromal and myeloma cells, the supportive effect of stromal cells can be effectively averted by influencing the tumor metabolism with an inhibitor of oxidative phosphorylation in addition to chemotherapeutics. Abstract Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation.
Collapse
Affiliation(s)
- Zsolt Matula
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
- Correspondence:
| | - Gábor Mikala
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
| | - Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary;
| | - János Matkó
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary;
| | - Tamás Kovács
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary;
| | - Éva Monostori
- Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary;
| | - Ferenc Uher
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
| | - István Vályi-Nagy
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
| |
Collapse
|
59
|
DE Souza Dutra C, Martello CL, Cadore NA, Ferreira HB, Zaha A, Monteiro KM. Proteomic Analysis of the Non-genetic Response to Cisplatin in Lung Cancer Cells. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:235-243. [PMID: 35399307 PMCID: PMC8962784 DOI: 10.21873/cdp.10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Drug resistance is the main cause of therapy failure in advanced lung cancer. Although non-genetic mechanisms play important roles in tumor chemoresistance, drug-induced epigenetic reprogramming is still poorly understood. MATERIALS AND METHODS The A549 cell line was used to generate cells with non-genetic resistance to cisplatin (CDDP), namely A549/CDDP cells. Bioorthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry were used to identify proteins modulated by CDDP in A549 and A549/CDDP cells. RESULTS Proteins related to proteostasis, telomere maintenance, cell adhesion, cytoskeletal remodeling, and cell redox homeostasis were found enriched in both cell lines upon CDDP exposure. On the other hand, proteins involved in drug response, metabolic pathways and mRNA processing and splicing were up-regulated by CDDP only in A549/CDDP cells. CONCLUSION Our study revealed proteome dynamics involved in the non-genetic response to CDDP, pointing out potential targets to monitor and overcome epigenetic resistance in lung cancer.
Collapse
Affiliation(s)
- Cristine DE Souza Dutra
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Lumertz Martello
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nathan Araujo Cadore
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
60
|
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, Siddiqui M, Biringer K, Kudela E, Pec M, Gadanec LK, Šudomová M, Hassan STS, Zulli A, Shakibaei M, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 2021; 12:155-176. [PMID: 34025826 PMCID: PMC8126506 DOI: 10.1007/s13167-021-00242-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Cost-efficacy of currently applied treatments is an issue in overall cancer management challenging healthcare and causing tremendous economic burden to societies around the world. Consequently, complex treatment models presenting concepts of predictive diagnostics followed by targeted prevention and treatments tailored to the personal patient profiles earn global appreciation as benefiting the patient, healthcare economy, and the society at large. In this context, application of flavonoids as a spectrum of compounds and their nano-technologically created derivatives is extensively under consideration, due to their multi-faceted anti-cancer effects applicable to the overall cost-effective cancer management, primary, secondary, and even tertiary prevention. This article analyzes most recently updated data focused on the potent capacity of flavonoids to promote anti-cancer therapeutic effects and interprets all the collected research achievements in the frame-work of predictive, preventive, and personalized (3P) medicine. Main pillars considered are: - Predictable anti-neoplastic, immune-modulating, drug-sensitizing effects; - Targeted molecular pathways to improve therapeutic outcomes by increasing sensitivity of cancer cells and reversing their resistance towards currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
61
|
Synchronous effects of targeted mitochondrial complex I inhibitors on tumor and immune cells abrogate melanoma progression. iScience 2021; 24:102653. [PMID: 34189432 PMCID: PMC8220235 DOI: 10.1016/j.isci.2021.102653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 10/26/2022] Open
Abstract
Metabolic heterogeneity within the tumor microenvironment promotes cancer cell growth and immune suppression. We determined the impact of mitochondria-targeted complex I inhibitors (Mito-CI) in melanoma. Mito-CI decreased mitochondria complex I oxygen consumption, Akt-FOXO signaling, blocked cell cycle progression, melanoma cell proliferation and tumor progression in an immune competent model system. Immune depletion revealed roles for T cells in the antitumor effects of Mito-CI. While Mito-CI preferentially accumulated within and halted tumor cell proliferation, it also elevated infiltration of activated effector T cells and decreased myeloid-derived suppressor cells (MDSC) as well as tumor-associated macrophages (TAM) in melanoma tumors in vivo. Anti-proliferative doses of Mito-CI inhibited differentiation, viability, and the suppressive function of bone marrow-derived MDSC and increased proliferation-independent activation of T cells. These data indicate that targeted inhibition of complex I has synchronous effects that cumulatively inhibits melanoma growth and promotes immune remodeling.
Collapse
|
62
|
Han JH, Kim M, Kim HJ, Jang SB, Bae SJ, Lee IK, Ryu D, Ha KT. Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int J Mol Sci 2021; 22:ijms22105406. [PMID: 34065602 PMCID: PMC8161398 DOI: 10.3390/ijms22105406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Resistance to anticancer therapeutics occurs in virtually every type of cancer and becomes a major difficulty in cancer treatment. Although 5-fluorouracil (5FU) is the first-line choice of anticancer therapy for gastric cancer, its effectiveness is limited owing to drug resistance. Recently, altered cancer metabolism, including the Warburg effect, a preference for glycolysis rather than oxidative phosphorylation for energy production, has been accepted as a pivotal mechanism regulating resistance to chemotherapy. Thus, we investigated the detailed mechanism and possible usefulness of antiglycolytic agents in ameliorating 5FU resistance using established gastric cancer cell lines, SNU620 and SNU620/5FU. SNU620/5FU, a gastric cancer cell harboring resistance to 5FU, showed much higher lactate production and expression of glycolysis-related enzymes, such as lactate dehydrogenase A (LDHA), than those of the parent SNU620 cells. To limit glycolysis, we examined catechin and its derivatives, which are known anti-inflammatory and anticancer natural products because epigallocatechin gallate has been previously reported as a suppressor of LDHA expression. Catechin, the simplest compound among them, had the highest inhibitory effect on lactate production and LDHA activity. In addition, the combination of 5FU and catechin showed additional cytotoxicity and induced reactive oxygen species (ROS)-mediated apoptosis in SNU620/5FU cells. Thus, based on these results, we suggest catechin as a candidate for the development of a novel adjuvant drug that reduces chemoresistance to 5FU by restricting LDHA.
Collapse
Affiliation(s)
- Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
| | - MinJeong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hyeon Jin Kim
- Department of Molecular Biology, College of Natural Science, Busan 46241, Korea; (H.J.K.); (S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Science, Busan 46241, Korea; (H.J.K.); (S.B.J.)
| | - Sung-Jin Bae
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine Kyungpook National University, Daegu 41566, Korea;
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: (D.R.); (K.-T.H.)
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (D.R.); (K.-T.H.)
| |
Collapse
|
63
|
Li P, Zhu K, Mo Y, Deng X, Jiang X, Shi L, Guo C, Zhang W, Zeng Z, Li G, Xiong W, Zhang S, Gong Z. Research Progress of circRNAs in Head and Neck Cancers. Front Oncol 2021; 11:616202. [PMID: 33996542 PMCID: PMC8117014 DOI: 10.3389/fonc.2021.616202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Because of their characteristics of a closed loop structure, disease- and tissue-specificity, and high conservation and stability, circRNAs have the potential to be biomarkers for disease diagnosis. Head and neck cancers are one of the most common malignant tumors with high incidence rates globally. Affected patients are often diagnosed at the advanced stage with poor prognosis, owing to the concealment of anatomic sites. The characteristics, functions, and specific mechanisms of circRNAs in head and neck cancers are increasingly being discovered, and they have important clinical significance for the early diagnosis, treatment, and prognosis evaluation of patients with cancer. In this study, the generation, characteristics, and functions of circRNAs, along with their regulatory mechanisms in head and neck cancers have been summarized. We report that circRNAs interact with molecules such as transcription and growth factors to influence specific pathways involved in tumorigenesis. We conclude that circRNAs have an important role to play in the proliferation, invasion, metastasis, energy and substance metabolism, and treatment resistance in cancers.
Collapse
Affiliation(s)
- Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiangying Deng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lei Shi
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wenling Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
64
|
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, Neri A, Piva R. The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers (Basel) 2021; 13:1235. [PMID: 33799793 PMCID: PMC8000754 DOI: 10.3390/cancers13061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.
Collapse
Affiliation(s)
- Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
65
|
Alpertunga I, Sadiq R, Pandya D, Lo T, Dulgher M, Evans S, Bennett B, Rennert N, Frank RC. Glycemic Control as an Early Prognostic Marker in Advanced Pancreatic Cancer. Front Oncol 2021; 11:571855. [PMID: 33718132 PMCID: PMC7947820 DOI: 10.3389/fonc.2021.571855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Impaired glucose metabolism is present in most patients with pancreatic ductal adenocarcinoma (PDAC). Whereas previous studies have focused on pre-treatment glycemic indices and prognosis in those with concomitant diabetes, the effects of glycemic control during chemotherapy treatment on prognosis, in patients with and without diabetes, have not been well characterized. We examined the relationship between early glycemic control and overall survival (OS) in a cohort of patients with advanced PDAC treated in a community setting. PATIENTS AND METHODS Seventy-three patients with advanced PDAC (38% with diabetes) receiving chemotherapy while participating in a biobanking clinical trial were included. Clinical characteristics and laboratory results during 1 year were obtained from the electronic medical record. Kaplan-Meier estimate, log-rank test and hazard ratios were computed to assess the effect of glycemic control on OS. The Cox proportional hazards regression model was applied to ascertain the significance of glycemic control with other survival variables. RESULTS One thousand four hundred eighteen random blood glucose (RBG) values were analyzed. In accord with previous findings, a 50% decline in the serum tumor marker CA 19-9 at any time was predictive of survival (P=0.0002). In univariate analysis, an elevated pre-treatment average RBG, 3-month average RBG (RBG-3) and the FOLFIRINOX regimen were associated with longer survival. Based on ROC analysis (AUC=0.82), an RBG-3 of 120 mg/dl was determined to be the optimal cutoff to predict 12-month survival. In multivariate analysis that included age, stage, BMI, performance status, presence of diabetes, and chemotherapy regimen, only RBG-3 maintained significance: an RBG-3 ≤120 mg/dl predicted for improved OS compared to >120 mg/dl (19 vs. 9 months; HR=0.37, P=0.002). In contrast, an early decline in CA 19-9 could not predict OS. CONCLUSION Lower glucose levels during the first 3 months of treatment for advanced PDAC predict for improved OS in patients both with and without diabetes. These results suggest that RBG-3 may be a novel prognostic biomarker worthy of confirmation in a larger patient cohort and that studies exploring a possible cause and effect of this novel survival-linked relationship are warranted.
Collapse
Affiliation(s)
- Ipek Alpertunga
- Department of Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
| | - Rabail Sadiq
- Department of Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
| | - Deep Pandya
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States
| | - Tammy Lo
- Department of Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
| | - Maxim Dulgher
- Department of Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
| | - Sarah Evans
- Department of Medicine, Danbury Hospital, Nuvance Health, Danbury, CT, United States
| | - Bridget Bennett
- Department of Nutrition, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
| | - Nancy Rennert
- Department of Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
| | - Richard C. Frank
- Department of Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT, United States
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States
| |
Collapse
|
66
|
Mohapatra P, Shriwas O, Mohanty S, Ghosh A, Smita S, Kaushik SR, Arya R, Rath R, Das Majumdar SK, Muduly DK, Raghav SK, Nanda RK, Dash R. CMTM6 drives cisplatin resistance by regulating Wnt signaling through the ENO-1/AKT/GSK3β axis. JCI Insight 2021; 6:143643. [PMID: 33434185 PMCID: PMC7934946 DOI: 10.1172/jci.insight.143643] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Rewiring tumor cells to undergo drug-induced apoptosis is a promising way to overcome chemoresistance. Therefore, identifying causative factors for chemoresistance is of high importance. Unbiased global proteome profiling of sensitive, early, and late cisplatin-resistant oral squamous cell carcinoma (OSCC) lines identified CMTM6 as a top-ranked upregulated protein. Analyses of OSCC patient tumor samples demonstrated significantly higher CMTM6 expression in chemotherapy (CT) nonresponders as compared with CT responders. In addition, a significant association between higher CMTM6 expression and poorer relapse-free survival in esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, and lung squamous cell carcinoma was observed from Kaplan-Meier plot analysis. Stable knockdown (KD) of CMTM6 restored cisplatin-mediated cell death in chemoresistant OSCC lines. Upon CMTM6 overexpression in CMTM6-KD lines, the cisplatin-resistant phenotype was rescued. The patient-derived cell xenograft model of chemoresistant OSCC displaying CMTM6 depletion restored the cisplatin-induced cell death and tumor burden substantially. The transcriptome analysis of CMTM6-KD and control chemoresistant cells depicted enrichment of the Wnt signaling pathway. We demonstrated that CMTM6 interaction with membrane-bound Enolase-1 stabilized its expression, leading to activation of Wnt signaling mediated by AKT–glycogen synthase kinase-3β. CMTM6 has been identified as a stabilizer of programmed cell death ligand 1. Therefore, as CMTM6 facilitates tumor cells for immune evasion and mediates cisplatin resistance, it could be a promising therapeutic target for treating therapy-resistant OSCC.
Collapse
Affiliation(s)
- Pallavi Mohapatra
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Omprakash Shriwas
- Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Sibasish Mohanty
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, India
| | | | - Sandeep Rai Kaushik
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Arya
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rachna Rath
- Sriram Chandra Bhanj Medical College and Hospital, Cuttack, India
| | | | - Dillip Kumar Muduly
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sunil K Raghav
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ranjan K Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
67
|
Shuvalov O, Daks A, Fedorova O, Petukhov A, Barlev N. Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers (Basel) 2021; 13:cancers13040762. [PMID: 33673109 PMCID: PMC7917602 DOI: 10.3390/cancers13040762] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In the present review, we discuss the role of metabolic reprogramming which occurs in malignant cells. The process of metabolic reprogramming is also known as one of the “hallmarks of cancer”. Due to several reasons, including the origin of cancer, tumor microenvironment, and the tumor progression stage, metabolic reprogramming can be heterogeneous and dynamic. In this review, we provide evidence that the usage of metabolic drugs is a promising approach to treat cancer. However, because these drugs can damage not only malignant cells but also normal rapidly dividing cells, it is important to understand the exact metabolic changes which are elicited by particular drivers in concrete tissue and are specific for each stage of cancer development, including metastases. Finally, the review highlights new promising targets for the development of new metabolic drugs. Abstract The specific molecular features of cancer cells that distinguish them from the normal ones are denoted as “hallmarks of cancer”. One of the critical hallmarks of cancer is an altered metabolism which provides tumor cells with energy and structural resources necessary for rapid proliferation. The key feature of a cancer-reprogrammed metabolism is its plasticity, allowing cancer cells to better adapt to various conditions and to oppose different therapies. Furthermore, the alterations of metabolic pathways in malignant cells are heterogeneous and are defined by several factors including the tissue of origin, driving mutations, and microenvironment. In the present review, we discuss the key features of metabolic reprogramming and plasticity associated with different stages of tumor, from primary tumors to metastases. We also provide evidence of the successful usage of metabolic drugs in anticancer therapy. Finally, we highlight new promising targets for the development of new metabolic drugs.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
| | - Alexandra Daks
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
| | - Olga Fedorova
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
| | - Alexey Petukhov
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
- Almazov National Medical Research Center, 197341 St-Petersburg, Russia
| | - Nickolai Barlev
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
- MIPT, 141701 Dolgoprudny, Moscow Region, Russia
- Orekhovich IBMC, 119435 Moscow, Russia
- Correspondence: ; Tel.: +7-812-297-4519
| |
Collapse
|
68
|
Kumar PR, Moore JA, Bowles KM, Rushworth SA, Moncrieff MD. Mitochondrial oxidative phosphorylation in cutaneous melanoma. Br J Cancer 2021; 124:115-123. [PMID: 33204029 PMCID: PMC7782830 DOI: 10.1038/s41416-020-01159-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The Warburg effect in tumour cells is associated with the upregulation of glycolysis to generate ATP, even under normoxic conditions and the presence of fully functioning mitochondria. However, scientific advances made over the past 15 years have reformed this perspective, demonstrating the importance of oxidative phosphorylation (OXPHOS) as well as glycolysis in malignant cells. The metabolic phenotypes in melanoma display heterogeneic dynamism (metabolic plasticity) between glycolysis and OXPHOS, conferring a survival advantage to adapt to harsh conditions and pathways of chemoresistance. Furthermore, the simultaneous upregulation of both OXPHOS and glycolysis (metabolic symbiosis) has been shown to be vital for melanoma progression. The tumour microenvironment (TME) has an essential supporting role in promoting progression, invasion and metastasis of melanoma. Mesenchymal stromal cells (MSCs) in the TME show a symbiotic relationship with melanoma, protecting tumour cells from apoptosis and conferring chemoresistance. With the significant role of OXPHOS in metabolic plasticity and symbiosis, our review outlines how mitochondrial transfer from MSCs to melanoma tumour cells plays a key role in melanoma progression and is the mechanism by which melanoma cells regain OXPHOS capacity even in the presence of mitochondrial mutations. The studies outlined in this review indicate that targeting mitochondrial trafficking is a potential novel therapeutic approach for this highly refractory disease.
Collapse
Affiliation(s)
- Prakrit R Kumar
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jamie A Moore
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kristian M Bowles
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Stuart A Rushworth
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Marc D Moncrieff
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK.
| |
Collapse
|
69
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
70
|
Hu W, Pan J, Wang B, Guo J, Li M, Xu M. Metagenomic insights into the metabolism and evolution of a new Thermoplasmata order (Candidatus Gimiplasmatales). Environ Microbiol 2020; 23:3695-3709. [PMID: 33295091 DOI: 10.1111/1462-2920.15349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023]
Abstract
Thermoplasmata is a widely distributed and ecologically important archaeal class in the phylum Euryarchaeota. Because few cultures and genomes are available, uncharacterized Thermoplasmata metabolisms remain unexplored. In this study, we obtained four medium- to high-quality archaeal metagenome-assembled genomes (MAGs) from the filamentous fragments of black-odorous aquatic sediments (Foshan, Guangdong, China). Based on their 16S rRNA gene and ribosomal protein phylogenies, the four MAGs belong to the previously unnamed Thermoplasmata UBA10834 clade. We propose that this clade (five reference genomes from the Genome Taxonomy Database (GTDB) and four MAGs from this study) be considered a new order, Candidatus Gimiplasmatales. Metabolic pathway reconstructions indicated that the Ca. Gimiplasmatales MAGs can biosynthesize isoprenoids and nucleotides de novo. Additionally, some taxa have genes for formaldehyde and acetate assimilation, and the Wood-Ljungdahl CO2 -fixation pathway, indicating a mixotrophic lifestyle. Sulfur reduction, hydrogen metabolism, and arsenic detoxification pathways were predicted, indicating sulfur-, hydrogen-, and arsenic-transformation potentials. Comparative genomics indicated that the H4 F Wood-Ljungdahl pathway of both Ca. Gimiplasmatales and Methanomassiliicoccales was likely obtained by the interdomain lateral gene transfer from the Firmicutes. Collectively, this study elucidates the taxonomic and potential metabolic diversity of the new order Ca. Gimiplasmatales and the evolution of this subgroup and its sister lineage Methanomassiliicoccales.
Collapse
Affiliation(s)
- Wenzhe Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jie Pan
- Shenzhen key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meng Li
- Shenzhen key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
71
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
72
|
Bioenergetic Profiling of the Differentiating Human MDS Myeloid Lineage with Low and High Bone Marrow Blast Counts. Cancers (Basel) 2020; 12:cancers12123520. [PMID: 33255926 PMCID: PMC7759906 DOI: 10.3390/cancers12123520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) encompass a very heterogeneous group of clonal hematopoietic stem cell differentiation disorders with malignant potential, an elusive pathobiology, and a poor prognosis. Given that the bioenergetic profile of the hematopoietic precursors is central to their effective differentiation, we investigated the metabolic status of a human differentiating MDS bone marrow-derived myeloid lineage. Our findings suggest that a perturbed metabolism underlies the syndrome’s pathogenesis and also determines the disease severity. We also propose that these bioenergetic alterations are essentially featured in and indeed drive the process of leukemic transformation. Our data not only offer novel insight into the elusive MDS pathophysiology, but also change our viewpoint on MDS-related acute myeloid leukemia biology. Abstract Myelodysplastic syndromes (MDS) encompass a very heterogeneous group of clonal hematopoietic stem cell differentiation disorders with malignant potential and an elusive pathobiology. Given the central role of metabolism in effective differentiation, we performed an untargeted metabolomic analysis of differentiating myeloid lineage cells from MDS bone marrow aspirates that exhibited <5% (G1) or ≥5% (G2) blasts, in order to delineate its role in MDS severity and malignant potential. Bone marrow aspirates were collected from 14 previously untreated MDS patients (G1, n = 10 and G2, n = 4) and age matched controls (n = 5). Following myeloid lineage cell isolation, untargeted mass spectrometry-based metabolomics analysis was performed. Data were processed and analyzed using Metabokit. Enrichment analysis was performed using Metaboanalyst v4 employing pathway-associated metabolite sets. We established a bioenergetic profile coordinated by the Warburg phenomenon in both groups, but with a massively different outcome that mainly depended upon its group mitochondrial function and redox state. G1 cells are overwhelmed by glycolytic intermediate accumulation due to failing mitochondria, while the functional electron transport chain and improved redox in G2 compensate for Warburg disruption. Both metabolomes reveal the production and abundance of epigenetic modifiers. G1 and G2 metabolomes differ and eventually determine the MDS clinical phenotype, as well as the potential for malignant transformation.
Collapse
|
73
|
Khan T, Sullivan MA, Gunter JH, Kryza T, Lyons N, He Y, Hooper JD. Revisiting Glycogen in Cancer: A Conspicuous and Targetable Enabler of Malignant Transformation. Front Oncol 2020; 10:592455. [PMID: 33224887 PMCID: PMC7667517 DOI: 10.3389/fonc.2020.592455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Once thought to be exclusively a storage hub for glucose, glycogen is now known to be essential in a range of physiological processes and pathological conditions. Glycogen lies at the nexus of diverse processes that promote malignancy, including proliferation, migration, invasion, and chemoresistance of cancer cells. It is also implicated in processes associated with the tumor microenvironment such as immune cell effector function and crosstalk with cancer-associated fibroblasts to promote metastasis. The enzymes of glycogen metabolism are dysregulated in a wide variety of malignancies, including cancers of the kidney, ovary, lung, bladder, liver, blood, and breast. Understanding and targeting glycogen metabolism in cancer presents a promising but under-explored therapeutic avenue. In this review, we summarize the current literature on the role of glycogen in cancer progression and discuss its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Tashbib Khan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mitchell A. Sullivan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jennifer H. Gunter
- Faculty of Health, Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Thomas Kryza
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Nicholas Lyons
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Yaowu He
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - John D. Hooper
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
74
|
Yang H, Zhu J, Wang G, Liu H, Zhou Y, Qian J. STK35 Is Ubiquitinated by NEDD4L and Promotes Glycolysis and Inhibits Apoptosis Through Regulating the AKT Signaling Pathway, Influencing Chemoresistance of Colorectal Cancer. Front Cell Dev Biol 2020; 8:582695. [PMID: 33117809 PMCID: PMC7578231 DOI: 10.3389/fcell.2020.582695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer (CRC) is often sporadic, but its etiology is multifactorial. Chemoresistance of CRC leads to tumor recurrence and poor prognosis in patients. The phosphorylation of protein kinase B (AKT) can activate metabolic reprogramming toward cellular glycolysis. Serine/threonine kinase 35 (STK35) regulates the cell cycle and is frequently associated with cancer progression, whereas little is known about its specific roles in CRC. In the current study, bioinformatics analyses were performed to investigate the relationship between STK35 and CRC prognosis. STK35 knockdown and overexpressing CRC cells were established to examine its functions in CRC. Fluorouracil (5-FU) was utilized to evaluate the effect of STK35 on CRC chemoresistance. Moreover, co-immunoprecipitation was performed to explore the ubiquitination of STK35. STK35 was highly expressed in CRC, and its protein expression was negatively correlated with the survival of CRC patients. Furthermore, STK35 overexpression could promote glycolysis, suppress apoptosis, upregulate p-AKT, and counteract the antitumor functions of 5-FU and neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L) in CRC cells. NEDD4L was associated with and could ubiquitinate STK35. STK35 could be a prognostic biomarker for CRC prognosis and has promotive effects on CRC cellular activities, partially through the AKT pathway. Moreover, STK35 also interferes with the chemosensitivity of CRC.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Zhu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guangyao Wang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hanyang Liu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Zhou
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Qian
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
75
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
76
|
Samuel SM, Varghese E, Koklesová L, Líšková A, Kubatka P, Büsselberg D. Counteracting Chemoresistance with Metformin in Breast Cancers: Targeting Cancer Stem Cells. Cancers (Basel) 2020; 12:E2482. [PMID: 32883003 PMCID: PMC7565921 DOI: 10.3390/cancers12092482] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the leaps and bounds in achieving success in the management and treatment of breast cancers through surgery, chemotherapy, and radiotherapy, breast cancer remains the most frequently occurring cancer in women and the most common cause of cancer-related deaths among women. Systemic therapeutic approaches, such as chemotherapy, although beneficial in treating and curing breast cancer subjects with localized breast tumors, tend to fail in metastatic cases of the disease due to (a) an acquired resistance to the chemotherapeutic drug and (b) the development of intrinsic resistance to therapy. The existence of cancer stem cells (CSCs) plays a crucial role in both acquired and intrinsic chemoresistance. CSCs are less abundant than terminally differentiated cancer cells and confer chemoresistance through a unique altered metabolism and capability to evade the immune response system. Furthermore, CSCs possess active DNA repair systems, transporters that support multidrug resistance (MDR), advanced detoxification processes, and the ability to self-renew and differentiate into tumor progenitor cells, thereby supporting cancer invasion, metastasis, and recurrence/relapse. Hence, current research is focusing on targeting CSCs to overcome resistance and improve the efficacy of the treatment and management of breast cancer. Studies revealed that metformin (1, 1-dimethylbiguanide), a widely used anti-hyperglycemic agent, sensitizes tumor response to various chemotherapeutic drugs. Metformin selectively targets CSCs and improves the hypoxic microenvironment, suppresses the tumor metastasis and inflammation, as well as regulates the metabolic programming, induces apoptosis, and reverses epithelial-mesenchymal transition and MDR. Here, we discuss cancer (breast cancer) and chemoresistance, the molecular mechanisms of chemoresistance in breast cancers, and metformin as a chemo-sensitizing/re-sensitizing agent, with a particular focus on breast CSCs as a critical contributing factor to acquired and intrinsic chemoresistance. The review outlines the prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer/chemo-sensitizing drug in the treatment of breast cancer. It intends to provide a rationale for the use of metformin as a combinatory therapy in a clinical setting.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Lenka Koklesová
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
77
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
78
|
Abad E, Samino S, Yanes O, Potesil D, Zdrahal Z, Lyakhovich A. Activation of glycogenolysis and glycolysis in breast cancer stem cell models. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165886. [PMID: 32592934 DOI: 10.1016/j.bbadis.2020.165886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/06/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - David Potesil
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035 Barcelona, Spain..
| |
Collapse
|