51
|
Agulló V, Villaño D, García-Viguera C, Domínguez-Perles R. Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules 2020; 25:E371. [PMID: 31963236 PMCID: PMC7024541 DOI: 10.3390/molecules25020371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
Sugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consumption of sugar. To provide evidence on this issue, in the present work, the bioavailability of anthocyanins was evaluated after the acute ingestion of a new maqui-citrus-based functional beverage rich in polyphenols, and supplemented with a range of sweeteners including sucrose (natural high caloric), stevia (natural non-caloric), and sucralose (artificial non-caloric), as an approach that would allow reducing the intake of sugars while providing bioactive phenolic compounds (anthocyanins). This approach allowed the evaluation of the maximum absorption and the diversity of metabolites excreted through urine. The beverages created were ingested by volunteers (n = 20) and the resulting anthocyanin metabolites in their urine were analyzed by UHPLC-ESI-MS/MS. A total of 29 degradation metabolites were detected: Caffeic acid, catechol, 3,4-dihidroxifenilacetic acid, hippuric acid, trans-ferulic acid, 2,4,6-trihydroxybenzaldehyde, trans-isoferulic acid, and vanillic acid derivatives, where peak concentrations were attained at 3.5 h after beverage intake. Sucralose was the sweetener that provided a higher bioavailability for most compounds, followed by stevia. Sucrose did not provide a remarkably higher bioavailability of any compounds in comparison with sucralose or stevia. The results propose two sweetener alternatives (sucralose and stevia) to sucrose, an overused high calorie sweetener that promotes some metabolic diseases.
Collapse
Affiliation(s)
- Vicente Agulló
- Phytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, Spain
| | - Débora Villaño
- Universidad Católica San Antonio de Murcia (UCAM), Department of Pharmacy, Faculty of Health Sciences, Campus de los Jerónimos, Guadalupe, 30107 Murcia, Spain
| | - Cristina García-Viguera
- Phytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, Spain
| |
Collapse
|
52
|
Singla RK, Kumar R, Khan S, Mohit, Kumari K, Garg A. Natural Products: Potential Source of DPP-IV Inhibitors. Curr Protein Pept Sci 2019; 20:1218-1225. [DOI: 10.2174/1389203720666190502154129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Out of multiple therapeutic targets, DPP-IV is the lead target for the treatment of type 2 diabetes.
Natural products have always been available for the possible lead generation against various diseases
and disorders. In the present review, we have covered various natural sources which have experimentally
validated anti-diabetic activity for type 2 diabetic patients with specific focus on the DPP-IV
inhibition. Out of all, the most potent DPP-IV inhibitors were found to be resveratrol, luteolin, apigenin
and flavone having activity in nanomolar range. Standard drugs like sitagliptin, saxagliptin, and diprotin
A have complex structures as compared to these phenolic compounds. Flavonoids and phenolic compounds
have their added advantages in being present in a number of functional foods and carry antioxidant
properties as well. So, the scientists working on the new chemical entity hunting for the type 2 diabetes
treatment can also explore these natural sources for lead generation.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Drug Design & Discovery Laboratory, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| | - Rishabh Kumar
- Drug Design & Discovery Laboratory, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| | - Sameer Khan
- Drug Design & Discovery Laboratory, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| | - Mohit
- Drug Design & Discovery Laboratory, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| | - Kajal Kumari
- Drug Design & Discovery Laboratory, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| | - Arun Garg
- Drug Design & Discovery Laboratory, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| |
Collapse
|
53
|
Palachai N, Wattanathorn J, Muchimapura S, Thukham-mee W. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5972575. [PMID: 31827683 PMCID: PMC6881582 DOI: 10.1155/2019/5972575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022]
Abstract
Due to the antimetabolic syndrome effect of mulberry and ginger together with the advantages of the synergistic effect and phytosome encapsulation technique, we hypothesized that phytosome containing the combined extracts of mulberry and ginger (PMG) should be able to manage MetS. PMG was developed and assessed the phenolic content and biological activities associated with the pathophysiology of MetS. The antimetabolic syndrome effect and the possible underlying mechanisms in the animal model of MetS were also assessed. Male Wistar rats induced MetS by subjecting to a 16-week high-carbohydrate high-fat diet. MetS rats were orally given PMG at doses of 50, 100, and 200 mg/kg for 21 days. They were determined metabolic parameter changes in serum, histomorphology changes of adipose tissue, the inflammatory cytokines such as IL-6 and TNF-α, oxidative stress status, PPAR-γ, and HDAC3 in adipose tissue. Our in vitro data showed that PMG increased phenolic contents and biological activities. PMG significantly improved MetS parameters including body weight gain, lipid profiles, plasma glucose, HOMA-IR, and ACE. In addition, the density and size of adipocyte, adiposity index, and weights of adipose tissues were also improved. Moreover, the decrease in TNF-α and IL-6, oxidative stress status, and HDAC3 expression together with the increase in PPAR-γ expression in adipose tissue was also observed. These data suggest that PMG exhibit antimetabolic syndrome and the possible underlying mechanism may be associated partly with the modulation effect on HDAC3, PPAR-γ, and adipose tissue. In addition, PMG also improves oxidative stress and inflammation in MetS. Therefore, PMG can be served as the potential supplement to manage MetS. However, a clinical trial study is essential to confirm this health benefit.
Collapse
Affiliation(s)
- Nut Palachai
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jintanaporn Wattanathorn
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Muchimapura
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
54
|
Ghattamaneni NK, Sharma A, Panchal SK, Brown L. Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. Eur J Nutr 2019; 59:2905-2918. [PMID: 31696323 DOI: 10.1007/s00394-019-02130-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine whether the anthocyanin, pelargonidin 3-glucoside (P3G), attenuates symptoms of inflammatory bowel disease (IBD) and metabolic syndrome in rats. METHODS We tested P3G-enriched strawberry in two models of chronic inflammation in rats, chronic IBD induced by 0.5% dextran sodium sulphate in the drinking water for 12 weeks (D) and metabolic syndrome induced by a high-carbohydrate, high-fat diet (H) for 16 weeks. P3G-enriched strawberry was added to the diet for the final 6 weeks in IBD rats (DP) or 8 weeks in H rats (HP) to provide a dose of 8 mg P3G/kg/day. RESULTS D rats had marked diarrhoea, bloody stools, erosion of mucosal epithelium, crypt atrophy, loss of villi and goblet cells, and inflammatory cell infiltration. These symptoms were reversed by P3G with healthy stools and mucosal lining of ileum and colon including increased villi, crypts and goblet cells and reduced inflammation. H rats developed hypertension, dyslipidaemia, central obesity, increased ventricular stiffness, cardiac and liver inflammation, and steatosis. P3G treatment in H rats improved systolic blood pressure, ventricular stiffness, and cardiac and liver structure, and reduced abdominal fat, abdominal circumference and body weight gain. CONCLUSIONS Our study indicates that dietary P3G decreased inflammation to decrease the symptoms of IBD, and to improve cardiovascular, liver and metabolic functions in metabolic syndrome.
Collapse
Affiliation(s)
- Naga Kr Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Ashwini Sharma
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia. .,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
55
|
Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019; 9:biom9110645. [PMID: 31653006 PMCID: PMC6920888 DOI: 10.3390/biom9110645] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.
Collapse
|
56
|
Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11288-11306. [PMID: 31557009 DOI: 10.1021/acs.jafc.9b05079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/β, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.
Collapse
Affiliation(s)
- Zhixi Chen
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Rui Zhang
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Weimei Shi
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Linfu Li
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Hai Liu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Zhiping Liu
- School of Basic Medicine , Gannan Medical University , Ganzhou 341000 , China
| | - Longhuo Wu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| |
Collapse
|
57
|
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20194957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
|
58
|
Tomasello B, Malfa GA, La Mantia A, Miceli N, Sferrazzo G, Taviano MF, Di Giacomo C, Renis M, Acquaviva R. Anti-adipogenic and anti-oxidant effects of a standardised extract of Moro blood oranges (Citrus sinensis (L.) Osbeck) during adipocyte differentiation of 3T3-L1 preadipocytes. Nat Prod Res 2019; 35:2660-2667. [DOI: 10.1080/14786419.2019.1660337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Tomasello
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | | | - Alfonsina La Mantia
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Claudia Di Giacomo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Marcella Renis
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
59
|
Sobolev AP, Ciampa A, Ingallina C, Mannina L, Capitani D, Ernesti I, Maggi E, Businaro R, Del Ben M, Engel P, Giusti AM, Donini LM, Pinto A. Blueberry-Based Meals for Obese Patients with Metabolic Syndrome: A Multidisciplinary Metabolomic Pilot Study. Metabolites 2019; 9:metabo9070138. [PMID: 31295937 PMCID: PMC6680695 DOI: 10.3390/metabo9070138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/23/2022] Open
Abstract
A pilot study was carried out on five obese/overweight patients suffering from metabolic syndrome, with the aim to evaluate postprandial effects of high fat/high glycemic load meals enriched by blueberries. Postprandial urine samples were analyzed by 1H-NMR spectroscopy after 2 and 4 h from ingestion to identify potential markers of blueberry intake. Significant decrease of methylamines, acetoacetate, acetone and succinate, known indicators of type 2 diabetes mellitus, were observed after the intake of meals enriched with blueberries. On the other hand, an accumulation of p-hydroxyphenyl-acetic acid and 3-(3’-hydroxyphenyl)-3-hydropropionic acid originating from gut microbial dehydrogenation of proanthocyanidins and procyanidins was detected. Real-time PCR-analysis of mRNAs obtained from mononuclear blood cells showed significant changes in cytokine gene expression levels after meals integrated with blueberries. In particular, the mRNAs expression of interleukin-6 (IL-6) and Transforming Growth Factor-β (TGF-β), pro and anti-inflammation cytokines, respectively, significantly decreased and increased after blueberry supplementation, indicating a positive impact of blueberry ingestion in the reduction of risk of inflammation. The combined analysis of the urine metabolome and clinical markers represents a promising approach in monitoring the metabolic impact of blueberries in persons with metabolic syndrome.
Collapse
Affiliation(s)
- Anatoly Petrovich Sobolev
- Laboratorio di Risonanza Magnetica "Annalaura Segre", Istituto per i Sistemi Biologici, CNR, via Salaria km 29.300, I-00015 Monterotondo, Italy
| | - Alessandra Ciampa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Cinzia Ingallina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| | - Luisa Mannina
- Laboratorio di Risonanza Magnetica "Annalaura Segre", Istituto per i Sistemi Biologici, CNR, via Salaria km 29.300, I-00015 Monterotondo, Italy.
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| | - Donatella Capitani
- Laboratorio di Risonanza Magnetica "Annalaura Segre", Istituto per i Sistemi Biologici, CNR, via Salaria km 29.300, I-00015 Monterotondo, Italy
| | - Ilaria Ernesti
- Sezione di Fisiopatologia Medica, Scienza dell'Alimentazione ed Endocrinologia - Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Elisa Maggi
- Dipartimento di Scienze e Biotecnologie medico-chirurgiche, Sapienza Università di Roma, Corso della Repubblica 79, 04100 Latina, Italy
| | - Rita Businaro
- Dipartimento di Scienze e Biotecnologie medico-chirurgiche, Sapienza Università di Roma, Corso della Repubblica 79, 04100 Latina, Italy
| | - Maria Del Ben
- Dipartimento di Medicina Interna e Specialità Mediche, Policlinico Umberto 1 Sapienza Università di Roma, viale del Policlinico 151, I-00185, Roma, Italy
| | - Petra Engel
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Ufficio Rapporti Istituzionali e Relazioni Internazionali, Via Po 14, 00198 Roma, Italy
| | - Anna Maria Giusti
- Sezione di Fisiopatologia Medica, Scienza dell'Alimentazione ed Endocrinologia - Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Lorenzo M Donini
- Sezione di Fisiopatologia Medica, Scienza dell'Alimentazione ed Endocrinologia - Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Alessandro Pinto
- Sezione di Fisiopatologia Medica, Scienza dell'Alimentazione ed Endocrinologia - Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
60
|
He G, Ma R. Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7. Curr Stem Cell Res Ther 2019; 15:570-578. [PMID: 31269885 DOI: 10.2174/1574888x14666190703144917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.
Collapse
Affiliation(s)
- Gaole He
- Department of Spine, Honghui-Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
61
|
Asgary S, Karimi R, Momtaz S, Naseri R, Farzaei MH. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev Endocr Metab Disord 2019; 20:173-186. [PMID: 31065943 DOI: 10.1007/s11154-019-09494-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We summarized 16 controlled studies and evaluated the correlation of resveratrol supplementation with metabolic parameters such as the body weight, waist circumference (WC), systolic blood pressure (sbp), HDL, total cholesterol, triglyceride and glucose levels. This meta-analysis was carried out to determine the association between the resveratrol intake with metabolic parameters in metabolic syndrome patients. PubMed, Scopus, Cochrane and Google Scholar were searched from inception to December 2018 using relevant keywords. All articles were independently reviewed by two authors using predetermined selection criteria. We have selected the studies that investigated the effects of resveratrol on metabolic parameters. Of 16 studies, 10 were performed on human subjects, and in 6 studies animal models were used. Standard mean difference (SMD) with 95% confidence interval were determined using Der Simonian and Laird random-effects modeling, when there was a significant heterogeneity between studies. Funnel plot and Egger's test were conducted to examine the risk of publication bias. Pooled effect sizes in human studies indicated a significant impact of resveratrol supplementation on glucose level [-1.73 (-2.99, -0.47); p = 0.007)] and WC [-1.73 (-2.79, -0.67); p = 0.001] compared with the control group. Also combining the results of studies on rat samples (n = 6), indicated significant effect of resveratrol on decreasing weight [-22.95 (-44.74, -1.17); p = 0.04], TGs [-6.76 (-11.10, -2.42); p = 0.001], sbp [-7.30 (-12.48, -2.13); p = 0.006], and it can influence significantly on increasing HDL level (4.75 (1.87, 7.63); p = 0.001). However, resveratrol was not significantly effective on total cholesterol in both samples. The results of subgroup analysis of human studies showed that resveratrol has significant effect on metabolic parameters (glucose level and WC) at the dosage of > 500 mg and with long-term interventions ≥ 10 weeks. Administration of resveratrol can meaningfully reduce the BW, WC, TGs, and glucose level, also it can increase HDL, but not total cholesterol.
Collapse
Affiliation(s)
- Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Raheleh Karimi
- Epidemiology and Biostatistics Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
62
|
Tsakiroglou P, VandenAkker NE, Del Bo' C, Riso P, Klimis-Zacas D. Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview. Nutrients 2019; 11:nu11051075. [PMID: 31096573 PMCID: PMC6566276 DOI: 10.3390/nu11051075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cell migration is a critical process that is highly involved with normal and pathological conditions such as angiogenesis and wound healing. Important members of the RHO GTPase family are capable of controlling cytoskeleton conformation and altering motility characteristics of cells. There is a well-known relationship between small GTPases and the PI3K/AKT pathway. Endothelial cell migration can lead to angiogenesis, which is highly linked to wound healing processes. Phenolics, flavonoids, and anthocyanins are major groups of phytochemicals and are abundant in many natural products. Their antioxidant, antimicrobial, anti-inflammatory, antidiabetic, angiogenenic, neuroprotective, hepatoprotective, and cardioprotective properties have been extensively documented. This comprehensive review focuses on the in vitro and in vivo role of berry extracts and single anthocyanin and phenolic acid compounds on cell migration and angiogenesis. We aim to summarize the most recent published studies focusing on the experimental model, type of berry extract, source, dose/concentration and overall effect(s) of berry extracts, anthocyanins, and phenolic acids on the above processes.
Collapse
Affiliation(s)
| | | | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20123 Milan, Italy.
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20123 Milan, Italy.
| | | |
Collapse
|