51
|
Pignanelli C, Petrick HL, Keyvani F, Heigenhauser GJF, Quadrilatero J, Holloway GP, Burr JF. Low-load resistance training to task failure with and without blood flow restriction: muscular functional and structural adaptations. Am J Physiol Regul Integr Comp Physiol 2020; 318:R284-R295. [PMID: 31823670 DOI: 10.1152/ajpregu.00243.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of blood flow restriction (BFR) during resistance exercise is increasingly recognized for its ability to improve rehabilitation and for its effectiveness in increasing muscle hypertrophy and strength among healthy populations. However, direct comparison of the skeletal muscle adaptations to low-load resistance exercise (LL-RE) and low-load BFR resistance exercise (LL-BFR) performed to task failure is lacking. Using a within-subject design, we examined whole muscle group and skeletal muscle adaptations to 6 wk of LL-RE and LL-BFR training to repetition failure. Muscle strength and size outcomes were similar for both types of training, despite ~33% lower total exercise volume (load × repetition) with LL-BFR than LL-RE (28,544 ± 1,771 vs. 18,949 ± 1,541 kg, P = 0.004). After training, only LL-BFR improved the average power output throughout the midportion of a voluntary muscle endurance task. Specifically, LL-BFR training sustained an 18% greater power output from baseline and resulted in a greater change from baseline than LL-RE (19 ± 3 vs. 3 ± 4 W, P = 0.008). This improvement occurred despite histological analysis revealing similar increases in capillary content of type I muscle fibers following LL-RE and LL-BFR training, which was primarily driven by increased capillary contacts (4.53 ± 0.23 before training vs. 5.33 ± 0.27 and 5.17 ± 0.25 after LL-RE and LL-BFR, respectively, both P < 0.05). Moreover, maximally supported mitochondrial respiratory capacity increased only in the LL-RE leg by 30% from baseline (P = 0.006). Overall, low-load resistance training increased indexes of muscle oxidative capacity and strength, which were not further augmented with the application of BFR. However, performance on a muscle endurance test was improved following BFR training.
Collapse
Affiliation(s)
- Christopher Pignanelli
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Fatemeh Keyvani
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
52
|
Granata C, Oliveira RSF, Little JP, Bishop DJ. Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein content of PGC-1α and p53 in human skeletal muscle. Am J Physiol Endocrinol Metab 2020; 318:E224-E236. [PMID: 31794264 PMCID: PMC7052577 DOI: 10.1152/ajpendo.00233.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Exercise-induced increases in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and p53 protein content in the nucleus mediate the initial phase of exercise-induced mitochondrial biogenesis. Here, we investigated whether exercise-induced increases in these and other markers of mitochondrial biogenesis were altered after 40 sessions of twice-daily high-volume, high-intensity interval training (HVT) in human skeletal muscle. Vastus lateralis muscle biopsies were collected from 10 healthy recreationally active participants before, immediately postexercise, and 3 h after a session of high-intensity interval exercise (HIIE) performed at the same absolute exercise intensity before and after HVT (pre-HVT and post-HVT, respectively). The protein content of common markers of exercise-induced mitochondrial biogenesis was assessed in nuclear- and cytosolic-enriched fractions by immunoblotting; mRNA contents of key transcription factors and mitochondrial genes were assessed by qPCR. Despite exercise-induced increases in PGC-1α, p53, and plant homeodomain finger-containing protein 20 (PHF20) protein content, the phosphorylation of p53 and acetyl-CoA carboxylase (p-p53 Ser15 and p-ACC Ser79, respectively), and PGC-1α mRNA Pre-HVT, no significant changes were observed post-HVT. Forty sessions of twice-daily high-intensity interval training blunted all of the measured exercise-induced molecular events associated with mitochondrial biogenesis that were observed pre-HVT. Future studies should determine whether this loss relates to the decrease in relative exercise intensity, habituation to the same exercise stimulus, or a combination of both.
Collapse
Affiliation(s)
- Cesare Granata
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Rodrigo S F Oliveira
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
53
|
Groennebaek T, Sieljacks P, Nielsen R, Pryds K, Jespersen NR, Wang J, Carlsen CR, Schmidt MR, de Paoli FV, Miller BF, Vissing K, Bøtker HE. Effect of Blood Flow Restricted Resistance Exercise and Remote Ischemic Conditioning on Functional Capacity and Myocellular Adaptations in Patients With Heart Failure. Circ Heart Fail 2019; 12:e006427. [PMID: 31830830 DOI: 10.1161/circheartfailure.119.006427] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Patients with congestive heart failure (CHF) have impaired functional capacity and inferior quality of life. The clinical manifestations are associated with structural and functional impairments in skeletal muscle, emphasizing a need for feasible rehabilitation strategies beyond optimal anticongestive medical treatment. We investigated whether low-load blood flow restricted resistance exercise (BFRRE) or remote ischemic conditioning (RIC) could improve functional capacity and quality of life in patients with CHF and stimulate skeletal muscle myofibrillar and mitochondrial adaptations. METHODS We randomized 36 patients with CHF to BFRRE, RIC, or nontreatment control. BFRRE and RIC were performed 3× per week for 6 weeks. Before and after intervention, muscle biopsies, tests of functional capacity, and quality of life assessments were performed. Deuterium oxide was administered throughout the intervention to measure cumulative RNA and subfraction protein synthesis. Changes in muscle fiber morphology and mitochondrial respiratory function were also assessed. RESULTS BFRRE improved 6-minute walk test by 39.0 m (CI, 7.0-71.1, P=0.019) compared with control. BFRRE increased maximum isometric strength by 29.7 Nm (CI, 10.8-48.6, P=0.003) compared with control. BFRRE improved quality of life by 5.4 points (CI, -0.04 to 10.9; P=0.052) compared with control. BFRRE increased mitochondrial function by 19.1 pmol/s per milligram (CI, 7.3-30.8; P=0.002) compared with control. RIC did not produce similar changes. CONCLUSIONS Our results demonstrate that BFRRE, but not RIC, improves functional capacity, quality of life, and muscle mitochondrial function. Our findings have clinical implications for rehabilitation of patients with CHF and provide new insights on the myopathy accompanying CHF. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT03380663.
Collapse
Affiliation(s)
- Thomas Groennebaek
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Peter Sieljacks
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Roni Nielsen
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Kasper Pryds
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Nichlas R Jespersen
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Jakob Wang
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Caroline R Carlsen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Michael R Schmidt
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| | - Frank V de Paoli
- Department of Biomedicine (F.V.d.P.), Aarhus University Hospital, Denmark.,Department of Cardiothoracic and Vascular Surgery (F.V.d.P.), Aarhus University Hospital, Denmark
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City (B.F.M.)
| | - Kristian Vissing
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark (T.G., P.S., J.W., C.R.C., K.V.)
| | - Hans Erik Bøtker
- Department of Cardiology (R.N., K.P., N.R.J., M.R.S., H.E.B.), Aarhus University Hospital, Denmark
| |
Collapse
|
54
|
Clarkson MJ. Unpacking the mitochondrial bioenergetics of blood flow restricted resistance exercise. J Physiol 2019; 598:15-17. [PMID: 31670390 DOI: 10.1113/jp278902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/29/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Matthew J Clarkson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
55
|
Petrick HL, Pignanelli C, Barbeau PA, Churchward-Venne TA, Dennis KMJH, van Loon LJC, Burr JF, Goossens GH, Holloway GP. Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H 2 O 2 emission rates in human skeletal muscle. J Physiol 2019; 597:3985-3997. [PMID: 31194254 DOI: 10.1113/jp277765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Blood flow restricted resistance exercise (BFR-RE) is capable of inducing comparable adaptations to traditional resistance exercise (RE), despite a lower total exercise volume. It has been suggested that an increase in reactive oxygen species (ROS) production may be involved in this response; however, oxygen partial pressure ( P O 2 ) is reduced during BFR-RE, and the influence of P O 2 on mitochondrial redox balance remains poorly understood. In human skeletal muscle tissue, we demonstrate that both maximal and submaximal mitochondrial ROS emission rates are acutely decreased 2 h following BFR-RE, but not RE, occurring along with a reduction in tissue oxygenation during BFR-RE. We further suggest that P O 2 is involved in this response because an in vitro analysis revealed that reducing P O 2 dramatically decreased mitochondrial ROS emissions and electron leak to ROS. Altogether, these data indicate that mitochondrial ROS emission rates are attenuated following BFR-RE, and such a response is likely influenced by reductions in P O 2 . ABSTRACT Low-load blood flow restricted resistance exercise (BFR-RE) training has been proposed to induce comparable adaptations to traditional resistance exercise (RE) training, however, the acute signalling events remain unknown. Although a suggested mechanism of BFR-RE is an increase in reactive oxygen species (ROS) production, oxygen partial pressure ( P O 2 ) is reduced during BFR-RE, and the influence of O2 tension on mitochondrial redox balance remains ambiguous. We therefore aimed to determine whether skeletal muscle mitochondrial bioenergetics were altered following an acute bout of BFR-RE or RE, and to further examine the role of P O 2 in this response. Accordingly, muscle biopsies were obtained from 10 males at rest and 2 h after performing three sets of single-leg squats (RE or BFR-RE) to failure at 30% one-repetition maximum. We determined that mitochondrial respiratory capacity and ADP sensitivity were not altered in response to RE or BFR-RE. Although maximal (succinate) and submaximal (non-saturating ADP) mitochondrial ROS emission rates were unchanged following RE, BFR-RE attenuated these responses by ∼30% compared to pre-exercise, occurring along with a reduction in skeletal muscle tissue oxygenation during BFR-RE (P < 0.01 vs. RE). In a separate cohort of participants, evaluation of mitochondrial bioenergetics in vitro revealed that mild O2 restriction (50 µm) dramatically attenuated maximal (∼4-fold) and submaximal (∼50-fold) mitochondrial ROS emission rates and the fraction of electron leak to ROS compared to room air (200 µm). Combined, these data demonstrate that mitochondrial ROS emissions are attenuated following BFR-RE, a response which may be mediated by a reduction in skeletal muscle P O 2 .
Collapse
Affiliation(s)
- Heather L Petrick
- Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | | | - Pierre-Andre Barbeau
- Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Kaitlyn M J H Dennis
- Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jamie F Burr
- Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Graham P Holloway
- Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
56
|
Sieljacks P, Wang J, Groennebaek T, Rindom E, Jakobsgaard JE, Herskind J, Gravholt A, Møller AB, Musci RV, de Paoli FV, Hamilton KL, Miller BF, Vissing K. Six Weeks of Low-Load Blood Flow Restricted and High-Load Resistance Exercise Training Produce Similar Increases in Cumulative Myofibrillar Protein Synthesis and Ribosomal Biogenesis in Healthy Males. Front Physiol 2019; 10:649. [PMID: 31191347 PMCID: PMC6548815 DOI: 10.3389/fphys.2019.00649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: High-load resistance exercise contributes to maintenance of muscle mass, muscle protein quality, and contractile function by stimulation of muscle protein synthesis (MPS), hypertrophy, and strength gains. However, high loading may not be feasible in several clinical populations. Low-load blood flow restricted resistance exercise (BFRRE) may provide an alternative approach. However, the long-term protein synthetic response to BFRRE is unknown and the myocellular adaptations to prolonged BFRRE are not well described. Methods: To investigate this, 34 healthy young subjects were randomized to 6 weeks of low-load BFRRE, HLRE, or non-exercise control (CON). Deuterium oxide (D2O) was orally administered throughout the intervention period. Muscle biopsies from m. vastus lateralis were collected before and after the 6-week intervention period to assess long-term myofibrillar MPS and RNA synthesis as well as muscle fiber-type-specific cross-sectional area (CSA), satellite cell content, and myonuclei content. Muscle biopsies were also collected in the immediate hours following single-bout exercise to assess signaling for muscle protein degradation. Isometric and dynamic quadriceps muscle strength was evaluated before and after the intervention. Results: Myofibrillar MPS was higher in BFRRE (1.34%/day, p < 0.01) and HLRE (1.12%/day, p < 0.05) compared to CON (0.96%/day) with no significant differences between exercise groups. Muscle RNA synthesis was higher in BFRRE (0.65%/day, p < 0.001) and HLRE (0.55%/day, p < 0.01) compared to CON (0.38%/day) and both training groups increased RNA content, indicating ribosomal biogenesis in response to exercise. BFRRE and HLRE both activated muscle degradation signaling. Muscle strength increased 6-10% in BFRRE (p < 0.05) and 13-23% in HLRE (p < 0.01). Dynamic muscle strength increased to a greater extent in HLRE (p < 0.05). No changes in type I and type II muscle fiber-type-specific CSA, satellite cell content, or myonuclei content were observed. Conclusions: These results demonstrate that BFRRE increases long-term muscle protein turnover, ribosomal biogenesis, and muscle strength to a similar degree as HLRE. These findings emphasize the potential application of low-load BFRRE to stimulate muscle protein turnover and increase muscle function in clinical populations where high loading is untenable.
Collapse
Affiliation(s)
- Peter Sieljacks
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jakob Wang
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Thomas Groennebaek
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Emil Rindom
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Jon Herskind
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anders Gravholt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Andreas B. Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | | | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kristian Vissing
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|